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Abstract 

In this paper, we propose an algorithm for solving nonlinear unconstrained optimization problems by combining an extended 

conjugate gradient method and the damped-technique of Al Baali-Powell for the BFGS method in a sense to be defined. The 

combination will be considered not only at the current iteration, but also at a number of pervious iterations, some convergence 

properties for the proposed algorithm will be investigated and some numerical result will be reported.  
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Introduction 

 

Consider solving the unconstrained optimization problem  

  ),(min xf                   (1) 

where nf :  is a continuously differentiable function, by iterative methods of the form 

,1 kkkk dxx                                                                                                                          (2) 

where k  is a positive steplength and kd is a search direction. Denoting the function value )( kxf , computed at the 

current point kx , by kf  and its gradient )( kxf  by kg , we consider methods which define the search direction 

such the descent property 0k

T

k gd hold which insures that there exists 0k such that 1kf is sufficiently 

smaller than kf .  

       If we take kk gd  , we obtain the gradient method which has wide applications to large- scale optimization 

(see for example Nocedal and Wright, 1999). In general, the class of conjugate gradient (CG) methods is useful for 

solving large-scale optimization problems, because it requires storage of a few vectors. This class defines the search 

direction by 
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where k  is a parameter that determines the different CG methods (see for example Fletcher, 1987). Well known 

choices of k  are 
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which correspond to the FR (Fletcher-Reeves, 1964), PR (Polak-Ribière, 1969) and HS (Hestenes Stiefel, 1952), 
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respectively. The CG methods with exact line search have a finite termination if the objective function is quadratic 

and strictly convex. However, in general, inexact line search technique is used in practice which yields that a method 

may not converge to a solution of (1). 

        To improve the performance of a CG method, other methods have been combined with it. In particular, Shi-

Shen (2004) has combined gradient methods and Al-Bayati and Latif (2011) have combined quasi-Newton methods, 

which we define below, and reported encouraging numerical results.  A new combined method between CG and 

BFGS was hybrid BFGS, that presented by Ibrahim, et al. (2014), and denoted by HBFGS. Moreover, Ibrahim, 

Mamet and Leong (2014) hybridized BFGS with CG, referred by BFGS-CG, which improves the performance for 

methods in solving large scaled unconstrained optimization problems. Forsgren and Odland (2015) studied the 

conditions on the basic matrix of quasi-Newton and its update correction, that belong to Broyden family with one 

parameter to make the method parallel in direction to CG on quadratic programming.  Li, M. (2018) modified a 

nonlinear CG method that closed to momeryless BFGS methods in terms of search direction, which author’s 

modification reduces to Hestenes Stiefel (1952) with exact line search. A new hybridization proposed by Aini, et al. 

(2019), that was between quasi-Newton methods with a modified CG named by Aini-Rivaie-Mustafa (ARM) 

method investigated in 2018 under exact line search. Finally, Li, X. et al. (2019) gave a new spectral CG method 

based on quasi-Newton direction and equation for unconstrained optimization problems.       

        The theoretical and practical merits of the quasi Newton methods for unconstrained optimization have been 

systematically explored. On each iteration of these methods, an estimate kx  of a solution to problem (1) and a 

positive definite Hessian approximation kB are used to compute the search direction kkk gBd 1 . Hence, a new 

estimate 1kx is computed by (2). For the next iteration, kB is updated to a new matrix in terms of the differences 

kkk xxs  1                                                                                                                                 (5)  

and 

kkk ggy  1 .                                                                                                                              (6) 

Several updating formulae have been proposed with some advantages and disadvantages (see for example Fletcher, 

1987, Dennis and Schnabel, 1996, and Nocedal and Wright, 1999). We consider the most attractive update is that of 

BFGS, given by 
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                                                                                                        (7)            

This update is maintained positive definite if the curvature condition 0

kk ys holds. Whether this condition holds 

or not, Al-Baali and Grandinetti (2009) have shown that the performance of the BFGS method can be improved if 

ky is modified before updating to the damped vector 

,)1(ˆ
kkkkkk sByy                                                                                                                (8)      

where 10  k is a parameter which is chosen such that kk ys ˆ
is sufficiently positive. Thus this technique 

maintains the damped BFGS update positive definite whether the curvature condition holds or not. It is essentially 

proposed by Powell (1978), for modifying the BFGS update when applied to a Lagrange function for constrained 

optimization, and used for the first time by Al-Baali (2004) for unconstrained optimization. Al-Baali (2014) has 

shown that this damped technique maintains the useful properties that the BFGS method has for convex functions 

and Al-Baali and Purnama (2012) have shown the usefulness of this damped technique when applied to a simple 

quadratic and ill conditioned problem. One of the authors recommended choices for k is given by  
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where 
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10 2  , 33  and 04  . Note that the condition kk ys ˆ
>0 always holds and the values of 8.02  , 

3 , 04   reduce the above choice of Al-Baali for k to that of Powell (1978), except when kh k

which reduces the Broyden family of updates to a single update. 

      The aim of this paper is to apply the damped quasi-Newton technique to certain combined CG and quasi-Newton 

methods as described in the next section. In Section 3, we obtain the convergence property of the methods. In 

Section 4, we describe some numerical results based on applications to a set of standard test problems. It is shown 

that the proposed combined methods are competitive with the robust BFGS method. 

 

 

Combining Conjugate Gradient and Damped Quasi-Newton Methods 

 

In this section, we propose an algorithm on the basis of combining the CG and damped BFGS methods in the 

following way. We first apply the damped technique to the search direction of Al-Bayati and Latif (2011) to obtain 


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                                                                                                         (11)      

where k is a suitable positive scalar, 2r is a preset integer and k is a CG parameter (eg, see (4)) or given by                                                                                                                 

},0,
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where kB  is a quasi-Newton Hessian approximation. The search direction (11) is reduced to that of Al-Bayati and 

Latif (2011) if kk yy ˆ (ie, 1k ) for all values of k  and to that of conjugate gradient direction if 1k , 

1r  and 1k  is given by a conjugate gradient parameter (eg, by one choice in (4)). 

       Similarly, applying the damped technique to the search direction of  Al-Bayati and Latif (2011) for the 

combined CG and quasi-Newton methods, it follows that 
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Here, we consider the damped BFGS Hessian which is defined by (7) with ky replaced by kŷ (given by (11)) that is 
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We note that search direction (13) is reduced to the damped BFGS  direction for sufficiently large value of r and 

hence to the BFGS  direction when kk yy ˆ . Thus for a fixed value of r , the corresponding method is reduced in 

the limit to that of the damped BFGS  method so that the global and superlinear convergence property on convex 
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functions is obtained (for details, see Al-Baali, 2014). It is assumed that the steplength k  is chosen such that the 

following Wolfe-Powell conditions hold: 

,)( 0 kkkkkk gdfdxf
k

                                                                                   (15) 

,11 kkk gdgd
k





 
                                                                                               (16) 

where 5.00 0  and 110   and 1k is tried first. Note that condition (16) ensures the curvature 

condition so that the BFGS update is maintained positive definite. 

     For simplicity, the Armijo (1966) rule is sometimes used for defining k as follows. Setting scalars )1,0(  

and a starting value  , we choose k be the largest value in the set ,...},,,{ 32   such that  

         kkkkkk ggfdxf
k

  0)(                                                                                           (17) 

which is like condition (15) with kgd
k


 replaced by kgg

k

 . Although this line search condition does not 

guarantee the curvature condition, the damped BFGS update is maintained positive definite.         

     We now outline the proposed algorithm which combines CG with the damped quasi-Newton methods as follows. 

    

Algorithm 2.1 

 

    Step 1: Given a starting point 0x , a symmetric and positive definite matrix 0B , nr 2 , and values for ,0  

,1  ,2 ,3  4  (such that 5.00 0  , 110  , 10 2  , 33  , 04  ), a tolerance 0 , 

and set .0k  

 

    Step 2: If the Euclidean norm kg holds, then stop. 

 

    Step 3: Compute the search direction as defined by (13).  

 

    Step 4: Find a step length k  such that condition (17) holds and compute a new point 1kx by (2) and hence the 

gradient 1kg  at this point. 

 

    Step 5: Compute kk ys ,  and kŷ , using (5), (6) and (8), with (9)-(10), respectively. 

  

    Step 6: Update kB to 1kB , using formula (14). 

 

    Step 7: Set 1 kk  and go to Step 2. 

 

Although the line search condition in Step 1 does not guarantee the curvature condition, the damped technique in 

Step 5 ensures that kk ys ˆ
>0 which is required in Step 6 to maintain the damped BFGS update positive definite. 

However, if k is computed such that the Wolfe-Powell conditions (15) and (16) hold, then the condition 

0

kk ys holds which yields the condition kk ys ˆ
>0 for any value of 10  k . Thus, we consider the following 

algorithm. 

 

Algorithm 2.2 

 

    It is defined by Algorithm 2.1 with Step 4 is replaced by 
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    Step 4: Find k  such that the Wolfe conditions (15) and (16) hold and compute a new point 1kx by (2) and 

hence the gradient 1kg  at this point. 

 

    We note that the above two algorithms are reduced in the limit to that of the damped BFGS method of Al-Baali 

(2014). They satisfy the descent property as shown in the next section. Since Algorithm 2.2 uses the Wolfe-Powell 

conditions on k , it has the global and superlinear convergence property that the BFGS method has for uniformly 

convex functions (see Al-Baali, 2014, for details). However, since Algorithm 2.1 may not satisfy this property, we 

study its convergence properties in the next section.  

 

 

 Convergence Properties 

 

To ensure that Algorithm 2.1 converges globally, consider the following standard assumptions: 

1H : The level set )}()({ 0xfxfx n   is bounded. 

2H : In some neighborhood N of f, is continuously differentiable and its gradient satisfies the Lipschitz 

condition  

       NyxLygxg  yx,   , )()(         (18) 

for some constant 0L .                                                                               

 

Theorem 3.1             

Let kd be defined by (2)and (13) for some 0k and k be given by one formula in (4).Then the descent property 

0k

T

k gd holds for all k .  

Proof.  

From (2) and (3) we get 
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Since the damped methods guarantee that the Hessian approximations are maintained positive definite and bounded 

(see Al-Baali, 2014), so that ,|||| 1 cBk 
 where c is a positive constant, it follows from (13) and the above result 

that Algorithms 2.1 and 2.2 satisfy the descent property. 

 

Theorem 3.2 

        The Algorithm 2.1 generates an infinite sequence }{ kx  if )( 1H  and )( 2H  hold, then 

                         ,
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Proof.  

Since }{ kf is a decreasing sequence and satisfies Assumption ( )1H  and Assumption ( 2H ) it is a convergent 

sequence .In particular, we have by ( )1H  and (16) that 
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Using modified Armijo line search rule (15), it follows that there exist 0 such that 
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kkkk ggsff 

  11   

Because of kkg 
2

, we have 

kkkkk dgff 

  11 2      

This together with (23) implies that (21) holds.   

 

We now show that the class of combined conjugate gradient and quasi-Newton methods satisfies the descent 

property.  

 

Theorem 3.3 

If the conditions in Theorem 4.2 hold, then either 0lim 
k

kg  or }{ kx  has no bound.  

Proof.  

If 0lim 
k

kg , then there exists an infinite subset ,...}1,{0  rr  and 0 such that: 
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                                                                                           (25) 

By Theorem 3.2 and for 1k , we obtain  

             }{max
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Now if rk  , then the conclusion is obvious. Otherwise, rk  , by induction process, we obtain the following 

conclusion:  
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Then there exists at least one rii 2:  such that: 




kk

ikd
,

1

0

lim                                               

Therefor }{ kx  has no bound. 

 

 

Numerical Results 

 

We now test the behavior of Algorithm 2.1, using ,0 IB  the identity matrix, and the three values of  r=2, 4 and 

10. For comparison, we also consider the value of r which yields the standard BFGS method.  The values for 

the other parameters, required in Step 1 of Algorithm 2.1, which we used are ,01.00  ,5.01  ,9.02 

,93  ,10 4

4

 .10 6  The line search subroutine, which is required in Step 4 to compute the step length 

k always tried the value of 1k  first.  

     We applied the above four algorithms to a set of 80 test problems obtained as follows. We used 20 different types 

of standard minimization problems (their functions are described by Andrei, 2005, and listed in the Appendix). We 

used these problems with four values of dimension n=6, 12, 120 and 360 so that the total number of test problems is 

80. The number of iterations (referred to as NIT) which are required to solve each problem in the set for these values 

of n are given in Figures 1, 2, 3 and 4, respectively. For a clarity comparison of these algorithms, we also used these 

numbers to obtain the plots in these figures. Note that the number of gradient evaluations is equal to NIT.   

Similarly, a comparison of the number of function evaluations (referred to as NFE) which are required to solve the 

test problems is illustrated in Figures 5, 6, 7 and 8.  

     The eight figures clearly show that the proposed algorithms solved all problems successfully.   They also show 

that the performance of the proposed algorithms is competitive with that of the BFGS method for all values of r and 

n.  In some cases, for the problems 10, 11, 12, 13 and 19, and n=120 and 360 (see Figures 3, 4, 7 and 8), the 

proposed algorithms work substantially better than the BFGS  methods.        
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Figure 1: NIT required to solve problems with dimension n =6 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

 

 
Figure 2: NIT required to solve problems with dimension n =12 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 
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Figure 3: NIT required to solve problems with dimension n =120 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

 

 
Figure 4: NIT required to solve problems with dimension n =360 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 



            Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:6  Issue:2 Year: 2022   pages: 14-26   

 

23 
 

 

 
Figure 5: NFE required to solve problems with dimension n =6 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

 

 
Figure 6: NFE required to solve problems with dimension n =12 
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by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

 
Figure 7: NFE required to solve problems with dimension n =120 

by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

 

 
Figure 8: NFE required to solve problems with dimension n =360 
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by Algorithm 2.1 for r=2, 4, 10 and r (the BFGS  method) 

 

Conclusion 

 

        We proposed an algorithm which combine the damped quasi-Newton methods and conjugate gradient method. 

For simplicity, we used the inexact Armijo line search strategy and show that the number r of terms in the search 

direction affects the numerical performance and proposed the algorithm. It is competitive with the robust BFGS 

method in terms of iterations and function and gradient evaluations. However, further improvements are expected.  

 

 الملخص

تكاو  فكي امامكد –سائل أمثيليات غير مقيدة وغير خطيه وذلك  تترييكط يرةقكة التكدرم الفترافقكة مكج نفكوذم الب لكينقترح في هذا البحث خوارزمية لحل م

 ئج ال ددةة.يرةقة ب.ف.م.س. في حل مسائل في الامثيليات غير الفقيدة .وقد ام اثبات ان هذه الطرةقة افتل  خاصية التقارب الشامل وقد اظهراه النتا
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