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Convergence On Daniell Space With Some Of Their Properties
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these three types, and finally we present the basic theorems of convergence, such as

1. Fundumental Concept

Recall that, A sequence {x,} of real numbers is said to be Converge to the point x € R, if for
each € > 0, there is k € z* such that |x, — x| < & for all n > k and we write lim,,_,, x,, = x or
x, — x. Given a sequence {f,} of real valued functions defined on 2, for x € 2, we have real
sequence {f,, (x)}. If {f,,(x)} is converge for all point of 2. we can define the function f: 2 - R
by, for any x € £2, then f(x) is limit point of {f,,(x)}; that is f(x) = lim,_, f,(x) or f(x) =
f ).

Definition 1.1

let {f;,} be a sequence of real valued functions defined on Q and a function f: Q - R, A € 2. We
say that

(1) {f.} converges to f (pointwise) on A, if for every x € A, then f,,(x) - f(x), i.e. if for
every x € A and for every € > 0 there is k € Z* such that

Ifn(x) — f(x)| < & for all n > k. We write lim,,_,, f,(x) = f(x)
or f, = f on A.

(2) {f»}is a Cauchy sequence (pointwise) on 4, if for every x € 4, then {f, (x)} is a Cauchy
sequence, i.e., for every x € A and for every € > 0 there is k € Z* suh that |f,(x) —
fm()| < eforalln,m > k.

e Note that: In the above definition when A = Q we can omit “on A” from the statements
ie. f, — f, if for every x € Q and for € > 0 there is k € Z* such |f,,(x) — f(x)| < ¢
foralln > k.

e This has meaning only if f£,: Q — R is finite valued. Because R is complete it is clear
that if {f,,} is a Cauchy sequence pointwise on (), there must be an f: Q - R such that
fo—=f OnQ.
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Definition 1.2

let {f,,} be a sequence of real valued functions defined on Q and a function f: Q — R, we say that
(1) {f;.} converges uniformly to f on A, if for every € > 0 there is k € Z*

such that |f,,(x) — f(x)| < e forall n > k and all x € Q, we write
u

fo—fonA
(2) {f,}is a Cauchy sequence uniformly on A, if for every € > 0 there is k € Z*

Such that |f,(x) — f;,(x)| < e forall n,m > k and all x € A.

e |t is clear that every converges uniformly sequence are convergent pointwise, but the
converse is not true.

Remark

Let a,b € Randlet f:Q > R, g: @ » R be functions
LU A9 = f(x) A g(x) = min{f(x), g(x)}
2.(fvg)(x) = f(x) v g(x) = max{f (x), g(x)}
3f=gt=U=sgin{fzg}

4{f > g} = Ui (Usnea {f > S n{g < 2D
5.{min{f,g} <a}={f <a}u{g <a}

6. {min{f, g} > a} ={f > a}n{g > a}
7.{max{f, g} <a} ={f <a}n{g <a}

8. {max{f, g} > a} ={f > a} U {g > a}

Leta € Rand f,:Q — R be a function for all n
1{sup fu < a} = Np_s{fn < a}

2. {sup f, > a} = Up_s1{fn > a}

3{sup fn < a} = Nypii{fn < a}

A{inff, > a} = No=1{fn < a}

5{inff, < a} = Up_i{fn < a}
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Definition 1.3
A function f € L is called a null function if D(|f]) = 0.

Example 1.4

(1) ‘ i ” 8 be an example of a null function.

the function f(x) = {
Remark:

if fis a null function and |g| < |f| then g is a null function.

Since 0 < D(lgl) < D(|f]) = 0.

Definition 1.5

Aset A € 0 is called a null set if the characteristic function of A is a null function,
i.e., D(|IL]) = 0.

Theorem 1.6

If A beanullsetand B € A then B is a null set

Proof

Let A be a null set then D(|I4]) =0, since B<S A then Iz < I, = |Ig| < |I4] = D(p) <
D(Ily) =0 and since |Ig]| = 0= D|Igz| = D(0) = 0 implies that D(|Iz|) = 0. Therefore B is a
null set.

Theorem 1.7

Let A; be a sequence of null setin L forall i = 1,2, ... then Ui, 4; isanull setin L

Proof

Let A; be a sequence of null set, A; < 2 for all i = 1,2, ..., since Iyn a; = la, + 1o, + o+
Ly = Iy = [Tun, a] = [Ta + 0y + 4 Ly = g | < U+ Hag | + 4 s, | -
o, ae] = gl + 1ag ]+ + 1a | = Vaytyeooan] = D ([T, a|) = DD + DL, D +

IU?ﬂAiD < 0 and

o+ D(|In, ) = D(|Layoayeovan)) = 0 = D( IU?=1Ai| z0=1D (|IU?=1Ai|) 2

0=D (|1u?=1Ai|) = 0 there fore UL, 4; be a null set.

Definition 1.8

A function f, g in L are called equivalence if f — g is a null function,

e, f~gif Df—gl) =0
We will denoted to the space of equivalent class in L by £ and [f] be the
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equivalence class of f € L such that [f] ={g € L: D(|f — g|) = 0}.

To prove that ~ be an equivalent relation on £ we must show that ~ is

(1) Reflexive: Let f €L, |f—fl=10=0=D(f —f]) =D(0)=0=D(|f —f]) =
0=f~f.

(2) Symmetric:let f,g€ Land f ~gthenD(|f —g|)=0=D(|g—f|) hence g ~ f.

(3) Transitive: let f,g,h €L with f~g and g~z then |f—z|=|f—-h+g—g| <

If —gl+lg—hl=I|f—hl<|f—gl+|lg—hl=D{f —h]) <D(f — gl +
lg—hD =D(f -gh)+D(g—h)=0+0=0.

then D(|f — h|) < 0 and since |f — z| = 0 then
D(|f —h|]) =D(0) = 0= D(|f — h|) = 0, and hence
D(|f — h|) = 0 implies that f ~ h.
Theorem 1.9
the space of equivalent class (£2, £, D) is a subspace of (£, L, D).
Proof:

(1) Let  [fl[gl € Lthen[f]+[g]l={h€L:D(f —h|=0)}+{s€L:D(lg—s[=0)} =
th+sel:D(f-hD+D(g—-sD=0}={th+seL:D(f —hl+]g—s))=0}=
{h+sel:D(f +gl—Ih+s])=0}=[f+g]

Therefore [f] + [g] € £
(2) Let[f] € Land A € R,then A[f] ={g € L:D(|f —g| = 0)}

={AgeL:AD(If —gl=0)}={h=AgeL:D(Af —h|=0)}={h e L:D(Af — h| =
0)} = [Af]. Therefore A[f] € L.

Theorem 1.10
Let (2, L, D) be a Daniell space and let f, g € L then
(1) f=ga.eifandonlyif D(|f —g|) =0
(2) fisnullsunctionifandonlyif f = 0a.e.
(3) fand g are equivalentifandonlyif f = g a.e.
Proof:
QD LetA={xen:f(x) # gx)}
(=) suppose that f = g a.e.then D(|I4]) = D(Iy) =0

Then |f —g| =1, + 1, + -, impliesthat D(|f — g|) =0
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(&) suppose that D(|f — gl) = 0then I, = |f — gl + |f — gl + -
There fore D(14) = D(]14]) = 0 this implies that A is a null set,
and hence f = g a.e.
(2) Let B = {x € 2: f(x) # 0}
(=) suppose f is null function then D(|f]) = 0, since |f| = 0
implies  f = 0 a.e., or in another proof, if D(|f]) =0
then Iz = |f| + |f| + -+, implies
D(Ig) = D(l1g]) = D(f) + D) + - then D(|Iz|) = 0
therefore B is a null set and then f = 0 a.e.
(=) Letf =0a.e.then D(|Ig|) = D(Ig) = 0 Then
|f| =1Ig + Iz + -+, implies that D(|f|) = 0, then f is null function.
(3) (=) Suppose that f ~ g then D(|f — g|) = 0, thenby (1), f = g a.e.
(=) Letf =ga.e.,thenby (1),D(|f — g|) = 0 impliesthat f ~ g
2. Convergence Almost Everywhere
Definition 2.1
Let (2, L, D) be a Daniell space. A sequence {f,,} in L is said to be

(1) Converges almost everywhere to the function f in L, denoted by f, Eif, if there is a null
set A € ) such that f,, = fon A°.

(2) {f,.} Cauchy almost everywhere, denoted by f,, Cauchy a.e. if there is a null set A € 2
such that f,, Cauchy on A°€.

Theorem 2.2

Let (2, L,D) be a Daniell space and let f,, € L,n € N, if f, Eif, then f € L.

Proof:

Let A, = {x € Q:lim,_,,, f(x) # f(x)}, since f, Eif, then A is a null set

fa(x), x & A

0 ‘e , then if x ¢ A implies f,,(x) = h,(x) =

Define h,(x) = {

lim,_, fr(x) = limh,(x) = f(x) = h(x) implies that {h,,} convergenc pointwise to h on .
n—-oo
Also h,, € L for all n. Hence h € L. Consequently f € L.

Theorem 2.3
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Let (2, L,D) be a Daniell space and let f,f, € L,n € N, if f, Eﬁf then

Q) fn 1s a Cauchy a.e.
a.e.
2 IfgeLandf, = gthen f =ga.e.
a.e.
3) IfgelLandf =gaethenf, —g

4) Ifg,eLandf, = g,a e then g, — f
Proof: Let A = {x € Q: lim,_, f(x) # f(x)},A <€ Q.

(1) Since £, a;eif then D(|I,]) = D(I,) = 0 and f,(x) = f(x) on A€ then f,(x) is a Cauchy
sequence for all x € A, there fore £, is a Cauchy sequence.

2 Since f, a;eif then D(|14|) = D(I4) = 0 and f,(x) = f(x) on A€, since f, a—'>e'g then
there exist B = {x € Q:lim, o fn(x) # g(x)}, B € Q such that D(Iz) = 0 and f,,(x) = g(x)
for all x € B€.

Let C=AUB=1Icqopg=Is+1Ig—Iang =14+ 15— s15) = D) = D(I,) + D(Ip) —
D(l,.Izg) =0, and for any x € C°f,(x) = f(x), fn(x) = g(x), then f(x) =gx)Vx¢&C
impliesthat f = g a.e.

(3) Since f, a;eif then D(|I4]) = D(Iy) = 0 and f,,(x) = f(x) V& A, f = g a.e., then there
exist B ={x € Q: f(x) # g(x)}, B € Q such that

D(g)=0and f(x) =g(x) forall x € B. Let C =AUB = Ilo_pqug =g +Ig — Iynp = I, +
Ig — (4. 1g) = D(I¢) =

D(Iy) + D(Ig) — D(Iy.1g) = 0,and Vx & D lim,,_ fr(x) = f(x) = g(x),
So lim,_, fn(x) = g(x)Vx & D. Therefore f, ﬁg.

(4)  Since £, — f then D(|I,]) = D(I,) = 0 and £, (x) = f(x) on A, and
fn=gna.e., let B, ={x € Q: f,(x) # g,(x)} be a sequence in Q such that f,,(x) = gn(x)
vx¢B, and D(I,)=0 , let C=AU(UnBy) then Ic_ayueo, s,y =1a+ 1= 5, —

Lanue, ) = 1 + Ty, 5, — (- Tyz., 5,), then

D(I¢) = D)+ D(Iye ) = D(Is.1yx 5,) =0 , and Vx & C,lim,_c g, (x) =
lim,, o £, () = £(x). S0 gn(x) = f(x) Vx & C. Therefore g,, —s f.
Theorem 2.4

Let (22,L,D) be a Daniell spaceand let f,f, € L,n € N,and 1 € R,
. a.e. a.e.
if £, = f,and g, — g then

D M2
@  fatgw—f+g
@ 1kl

Proof:
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1) Since f, Eif then there exist A = {x € Q: f,,(x) # f(x)} such that D(|I4]) = D(l,) =
0 and f,(x) » f(x)Vx & A, then Af,,(x) = Af (x)Vx & A there fore Af,,(x) 5 A (x)Vx ¢ A.

(2)  Since f, Eif and g, Eﬁg then the sets A = {x € Q:lim,, o f,(x) # f(x)} ,A € Q and
B={x€Qlim, o, gn(x) #g(x)} ,B<Q are null set, and f,(x) » f(x)vx & A and
In(x) = g(x)Vx & B.

Let C=AUB=Iecpp=la+1g—Lng =1L+ 13— (1z) = D) =D(,)+
D(Ig) — D(l4.1g) = 0 implies that f,(x) - f(x) and g,(x) - g(x) for all x € C¢, so that

frn(x) + gn(x) = f(x) + g(x) forall x € C€. Therefore f,, + g, E;f +g.

3 Since f, ajif then there exist A = {x € Q: f,,(x) # f(x)} such that D(|I4]) = D(ly) =
0 and f,,(x) = f(x)Vx & A, implies that

@ 1,00l - If(0)] vx & A. Therefore |£,| = |£].

Theorem 2.5

Let (2, L,D) be a Daniell space and let f, f,,,g € L, n € N such that f, Eif then

1) If £, = 0ae.then f > 0a.e.

2 If £, < gae. foreahnthen f < ga.e.
(3) If |£,] < lg| a.e.then|f| < |gla.e.

4) If f, < fnyq foreachn,thenf, T f ae.
Proof:

Since f, a;eif then thereisaset A = {x € Q:lim,_o, f,(x) # f(x)}, A € Q.
such that D(|I4]) = D(Iy) = 0 and f,,(x) - f(x)Vx & A.

(1)  Since f, = 0 a.e. then there exist B, = {x € Q: f,(x) < 0}, B, c Q,such that D(Iz ) = 0
and f,(x) = 0 forall x ¢ B,,.

Let  C=AUUnBr)  and  le—auw,sy = la +1u,s, = lanuns = 1a + 1y, s, —
(In-Iyso ,5,), then D(I¢) = D(I4) + D(Iy= 5, ) = D(Ia- Iy ) = 0 implies hat D(I¢) = 0,
then forany x € C

f(x) = lim,_o gn(x) = 0 therefore f > 0 a.e.
2 Since f, < gae. = g—f, = 0a.e.andsince f, cfif then
g—fnﬁg—f, by(1l)g—f =0ae.thenf < g.

(3)  Since f, — f then |f,| = |f| and since |f,| < |g] by (2) If] < glae.
4) Since f, < f,4+1 ae. for each n, then there exist E, =

{x € Q: f,,(%) > f41}, En € Q,suchthat D(I, ) = 0 and f,(x) = f,41(x) forall x ¢ E,,.
Let F =AU (Up=1E,) , then D(Iz) =0, and f,(x) T f(x) for all x ¢ F and f,,(x) = f(x) on
A, therefore f,, T f a.e.

Theorem 2.6
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Let (2, L, D) be a Daniell space and let f, f,, g, 9gn € L,n € N, then

1) Iffn‘ieif,gnﬁgandfn gn ae. foralln, then f = gae
Q) £ SF £ =g,ae forallnand f = ga.e.then g, — g.

Proof
(1) Since f, =5 f then there is a set 4 = {x € Q: lim,,_o, £, (x) # f(x)}, 4 € Q.

such that D(|L,]) = D(Iy) = 0 and f,(x) > f(x)Vx & 4,and g, — g
then there is B = {x € Q: lim,, gn(x) # g(x)},B < Q isanull set,
and g,(x) » g(x)Vx & B, also f,, = g, a.e. = there exist

Cp,={x € Q: f,(x) # gn(x)}, C,, € O, which is a null set for all nand f,(x) = g (x) on C,°.
Let D =(AUB) U (Upz1Cn) which is a null set, f(x) =gx) =lim_e fr(x) =
limy, o gn(x) = g(x) forall x € D, so that f(x) = g(x)for all x € D. Therefore f = g a.e.

(2) Since f, g'f then there is a set A = {x € Q:lim,_ o fn(x) # f(x)}, A € Q. Such that
D(|I4) =D(,) =0and f,(x) » f(x)Vx ¢ A, and f,, = g, a.e. for all n = there
exist B, = {x € Q: f,(x) # g,(x)},B, € Q,

which isanull set forallnand f,(x) = g,(x)on B, ,also f = ga.e =
there exist C = {x € Q: f(x) # g(x)} and f(x) = g(x)on C*.

Let D=AUCU(Uy=1B,) which is a null set, f(x)=gKx)=Ilim, o f(x) =
lim,_ gn(x) forall x ¢ D, there fore g, — g on D¢. Therefore g, Eig a.e.

Theorem 2.7

Let {f,,} be sequence in L, if (lim,,_,,,D( f;)) < oo then f,, converges a.e.

Proof: let f(x) =lim,_ f, (x),f € L = D(f) = D(lim_o fr) = lim,_ D(f) <
LetA ={x € Q: f(x) # lim, f, (x)} and since f(x) = lim,_, f,, (x) on A€

There fore f,, converges.

3.Almost Uniformly Converence

Let (12, L, D) be a Daniell space. A sequence {f,} in L is said to be

(1) converges almost uniformly to the function f € L, denoted by f, X f, if there is a null set
A C ) such that f, if on A°.

(2){f,} Cauchy almost uniformly, denoted by f, Cauchy a.u., if there is a null set A €
0 such that f,, Cauchy uniformly on A°.
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Theorem 3.1

Let (2, L,D) be a Daniell space and let £, f,,, 9, gn € L,n € N, such that f, ﬂif, then

1) Cauchy a.u.

@) If £, g thenf = gae.

3) If f = gae.,thenf, ﬂig

4) If f,, = g, a.e.forall n, then g, Cilif

(5) If £, =gna.e.forallnand f = g a.e. then g, a;u>'g

Proof:

1) since f, Cﬂif, then there is a null set A < 2 such that f, if on A€, thus f,, is uniformly
Cauchy on A€, therefore f,, Cauchy a.u.

2 Since f, Cil{f, then there is a null set A < 2 such that £, if on A€,

fn ﬂg then there is a null set B<S such that fn ig on B¢ |,
fn(x) = f(x) uniformly for any x € A andf,,(x) = g(x)

uniformly for any x ¢ B. Let C = A U B then C be a null set and

fn(x) = f(x), f(x) = g(x) uniformly for any x & C. Since C is a null set and f(x) = g(x)
forany x & C. Therefore f = g a.e.

3) Since f, ﬂf then there is a null set A € 2 such that
fn if on A€ and since f = g a.e. then there exist B c Q

which is a null setand f(x) = g(x) forall x ¢ B.
Let C = AU B then C beanull setand f,,(x) - f(x) = g(x) forany x & C

and f,,(x) = g(x) uniformly. Therefore f,, Cﬂ#g.

4) Since f, Bif then there is a null set A < Q2 such that f, if on A¢and since f, = gn
a.e. for all n then there a sequence B, c 2 and B,, be a null set for each n such that f,,(x) =
gn(x) for all x € B,°. Let C = AU (Us=; B,) then C be a null set and since g,,(x) = f,,(x) -

f (%) uniformly for any x & C. Therefore g,,(x) — f(x) uniformly for any x & C, thus g, a%uif.
(5) Since f, ﬂf then for any € > 0 then there is a null set A < 2 such that

fn if on A€ and since f,, = g, a.e. for all n then

there exist a sequence B, c 2 and B,, be a null set for each n such that f,(x) = g,(x) for all
x € B,°. And f = g a.e. then there exist C c Q

which isanull setand f(x) = g(x) forall x ¢ C,let D = C U (Uy=1 By)
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then D is a null set and g,(x) = f,(x) = f(x) = g(x) uniformly for any x € D. Therefore
a.u.

In — 9.
Theorem 3.2

Let (2, L, D) be a Daniell space and let f, f,,, g, gn € L,n € Nand A € R, such that f, aéu'f and
au.
gn — g, then

O A
@  fatgn—f+g
ONIARIN

Proof

1) Since f, ﬂif then there is a null set A € 2 such that and f, if on A€ this mean
frn(x) = f(x) uniformly for all x & A, then Af,,(x) = Af (x) uniformly for all x &€ A. Therefore

Af, 5521
a.u. u
2 Since f,, — f then there is a null set A € 2 such that f,, = f on A¢, f,(x) = f(x)

uniformly for all x € A and since g, ﬂg then there is a null set B c Q such that g,, ig on
B¢, g,(x) = g(x) uniformly

forall x ¢ B, let C = A U B then C be a null set and
fu(x) + gn(x) = f(x) + g(x) uniformly for all x ¢ C.

Therefore f,, + g, ﬂf +g

(3) Since f, Cﬂif then there is a null set A < 2 such that f, if on A¢, f(x) - f(x)
uniformly for all x € A then |f,,(x)| = |f(x)| uniformly for all x ¢ A. Therefore

a.u.
|ful = If1.
4.Convergence In Norm

Definition 4.1

Let (2,L,D) be a Daniell space. A norm on L is a function [|-||: L - R which is defined by
IIfIl = D(If]). The vector lattice L together with ||-|| is called a normed space in the Daniell
space (2, L, D)and is denoted by (L, [|]]).

Remark

e ||-|| need not be norm since if ||f|| = 0 need not to be f =0 only if f = 0 a.e., that is
[I-]| is a semi-norm but not a norm.
e the space of equivalent class in L is a normed space which is denoted by (£, ||-]|) and

LA = DAfD.
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Definition 4.2

Let (2, L, D) be a Daniell space and let f, f,, € L,n € N, we say that

(1) £ converges in norm to f, denoted by f, Z;f Jf |l —fll =2 0asn - o
(2) {f}is a cauchy in norm, denoted by f,, Cauchy i.n., if
Ifn — fmll = 0asn,m - co.

Theorem 4.3

Let (2, L, D) be a Daniell space and let f, f,,, 9,9, € L,n € Nand A € R, such that f, if and
In l—n> g, then

Q) fa C_:auchy a.u

(2) Afy S Af

Q) fu+ gn Sf+g

@ Iful S1f1

(5) D(fa) = D(f)

Proof

(1) Since £, = f then |If, — fll = D(If, — f]) = Oasn — oo implies that f, Cauchy
sequence'in norm.

(2) Since £, — f then [|f;, — £Il = D(If, — f1) = 0asn — oo,
since Allf, — fll = lIAf, — Afll = D(IAf, — Af])) — Oasn — .

therfore Af, — Af

(3) Since f;, ifthen I, = fll =D(f, — f]) » 0asn - o and since g, l'—>n'g then ||g,, —
gll = D(lgn — gl) = 0asn — o therefore

l(fn+90) —(f + DI =DUfn+g) —(F + 9D
:D(l(fn_f)+(gn_g)|) SD(lfn_fD‘l'D(lgn_gD - 0asn — oo,

then ||(f, + g.) — (f + 9)Il = 0 as n - oo. Therefore f,, + g, l'—>n'f +g

(4) Since f, = f then If, — fIl = D(If, — f1) = 0 as n — oo then
£l = 1F1 = DAl = IF1) < D(Ufy = f) > Oasn > oo then Iyl = If1ll >

0 as n — oo Therefore |£,] = |£].

(5) Since f, - £ then If, — £Il = D(If, — f1) = 0 as n — oo then
ID(£) = DI = ID() = DA = ID(fy = £ < D(If = f1) = O asn — oo
Therefore D(f,) — D(f).
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Theorem 4.4

Let (£2,L, D) be a Daniell space and let f,f,,g €L, if f, ilif then f, ﬂ'g if and only if f =
g ae.

Proof

in. A in. in. ) .
(=) Let f, — g andsince f, — f then f, — f, = f — g impliesthat ||f — g|l = D(If — gl) =
Dfa—fa—f+g) m0asn—oowo=D(f-g)=0=f=gae

(=) Let f=g ae. then ||, —gll=D(f,—9D=DUfn—g—f+fD=<DUfn —fD+
D(|f—g|)=D(|fn—f|))—>Oasn—>oo.Thereforefnf>'g.

Theorem 4.5

Let (2, L, D) be a Daniell space and let f € L and f = lim,,_,, f5,, then f, i'f
Proof:

Let ¢ >0 since f =lim, . f, there is k € Z* such that |f, — f| <& for all n >k, then
D(lf, — f) < e forall n = k. There fore f, ﬂf.
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