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1. INTRODUCTION
Oguz et al explored the actions of soft groups in [4] & discovered several interesting features. Other algebraic
characteristic of soft sets was also investigated in [1,2,5]. Oguz defined the action of soft topological groups and
examined some of its features in 2020[3], as well as presenting some research on soft orbit spaces and soft transitive
spaces. In this paper, by using these concepts we are going to introduce some types of soft group space, and give
some examples and propositions about them.

2. SOFT ACTION
We recall some notions and properties about the soft topological group used throughout the paper.

Definition (2.1)[3]

Let G be a group with topology T, and (F, E) be a non-null soft set (S-set) over G, then (G, T, F, E) is called a soft
topological group (Stg) over G if forall w € E:

i) F(w) < G ( F(w) isasubgroup of G),

i) the mapping ¢, (x,Y) =y of the topological space F(w)xF(w) onto F(w) and the inversion

v, F(w)—> F(w), v,(y) =y " are continuous.

Definition (2.2)[3]

Let (F,E,T') be a Stg over G, and let (K,E,T") be a Sts over X . A soft action of (F,E,T) on (K,ET’) isa
continuous map ¢, : F () x K(w) — K(w) VYo € E such that:

M) ¢, x)=x .Yy €K(w)

(i) 90 (9, 90 (9 % 1)) = 9u(9g 1) . V 9,9 *€ F(w) & y € K(w).

The Sts (K, E, T") is called "Soft Group space" which is denoted by (SG-space).

Example (2.3)
Let (G,T,F,E) be a Stg, then every Sts (K, E,I')is SG-space, where ¢, : F (@) x F(®w) - F(w) defined by

9u(9.9%) =gg* Yoek.
Example (2.4)
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Let G = (Z,+,) with discrete topology TI', E={w,®,} & (F,E)be a S-set over G where
F(w,) ={0},F(w,)=Z,. Then (K,ET") is a SG -space where ¢, : F(@)x F(w) — F(w) defined by
00(9,9%) = g+:,9*+297", Yo cE.

Proposition (2.5)

Let (K,E,T")be a SG -space, then V@ € E the map ¢ q: K(w) = K(w), which is defined by ¢4 (x) = ¢4, (9, X)
,Vy € K(®)is a homeomorphism.

Proof:

Let {175} 4. beanetin K(w)suchthat 7, — y in K(w).

Then ¢, (g,1m5) = 9u(9,X). SO Pug(Mg) = bug(x). Hence ¢, 4is continuous.
Also, its inverse ¢, -1is continuous.

Then ¢,,4 is homeomorphism.

Definition (2.6)[3]

Let (K, E,T")be a SG -space, then Vo € E :

i) The set Orb,, (x) = {0, (g, x): g € F(w)}, V X € K(w) is called the soft Orbit of y .
if) The set Stab,,(x) = {g € F(w): ¢, (9, x) = x} is called the soft stabilizer of y .

iii) The set Ker¢,, = {g € F(w): ¢,(g,x) = x, Yx € K(w)} is called the soft kernel of the soft action ¢

Proposition (2.7)
Let (K, £, T") be a SG -space, then Ve € E :
(i) Stab, () < F(w).
i) Kerg, = (1)Stab, (x).
xeK ()
i) Kerg, < F(w) (normal subgroup).
Proof:
(i) Itis clear that e; € Stab, ()
Then ¢,(9192, %) = x
Then g1g, € Stab,(x) & ¢,(975X) =X, V 91,92 € Stab,(x)
Therefore Stab, (y) < F(w).
ii)letg € Kerop, < ¢,(9,x) = x,Vx € K(w) & g € Stab,,(x),Vy € K(w) & g € Nyek(w)Stab, (x)
Then Kerg, = (\Stab, ().

xeK ()
i) Kerg, < F(w) from (i &ii).
Let geF(w) and h € Kerg,,, then ¢, (ghg ™, x) = x, Vy € K(®)
Then g~1(Kerg,)g < Kerg,,, & therefore Kerg,, S g(Kerg,)g™!.
Thus g(Kerg,)g™' = Kerg, , Vg € F(w). Hence Kerp, < F(w).
Proposition (2.8)
Let (K,E T")beaSG -space, if X be a Hausdorff space, then Vo € E :
i) Kerg,is a closed normal subgroup of F(w),
ii) Stab, () is a closed subgroup of F(w) ,Vy € K(w).
proof:
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i) Kerg, <t F(w) from proposition (2.7(iii))
Now let g € Kerg,, then 3 anet {gg}se, in Kerg,, such that gg 49

Then 9,95, X) = ¢4 (9. 1) , V¥ € K(w)

But g € Ker,¢. Then ¢, (g5, x) = x, Vx € K()

Since K (w) is a Hausdorff Space, then ¢,,(g,x) = x, Vy € K(w)
Then g € Kerg,,.

Hence Kerg, is closed.

i) Stab,, (x) < F(®w), Vy € K(w) from proposition (2.7(i))

Let g € Stab,,(x)

Then there is a net {gg}ge, in Stab,, () such that g - g.

But 9, (95, 0) = X & 9,(gp, %) = ¢©,(9, )

Since K () is a Hausdorff Space, then ¢, (g, x) = x

So g € Stab,,(x)
Thus Stab,, () is closed set.

3. SOME TYPES OF SOFT GROUP SPACES
In this section, we introduce some types of soft group space, and investigate some propositions and examples about
them.

Definition (3.1) [3]
A soft action of the Stg (F, E, T') on the Sts (K, E, T) is called:

i) Transitive if Orb, (7) =K(w), VyeK(w) & Vo k.

ii) Effective (faithful) if Kerp, ={e;}, Vo e E.

iii) Free if Stab_ () ={e.}, Vx e K(w) & Vo €E.

iv) Trivial if Kerg, = F(w), Vo cE.

v) Regular if it is both transitive and free.

vi) Semi-free if Stab, (y) ={e.} or Stab, () =F(®), Vy e K(w) & Vo €E.

Definition (3.2)

A SG -Space (K, E,T”) is called:

i) Transitive SG -Space if its soft action is transitive.
ii) Free SG -Space if its soft action is free.

iii) Effective SG -Space if its soft action is effective.
(iv) Regular SG -Space if its soft action is regular.

(v) Semi-free SG -Space if its soft action is semi-free.

Example (3.3)
In example (2.3), the Sts (K, E,T”") is regular SG -space.

Proposition (3.4)
Every free SG -space is an effective SG -space.
Proof:

Let (K, £, T") be free SG -space, then the soft action ¢, is free Vo € E .
Then Kergp, = [)Stab,, () ={es}

xeK(w)
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So (K,E,T”) is an effective SG-space.
As the following example demonstrates the opposite of (3.4) isn’t true.

Example (3.5)

Let (G,) = ({—1,1},.) with discrete topology, E ={w,,®,}, let (F,E)be a S-set over G defined by
Flo)={}, F(o,)={-11. Let (K,ET’) be a Sts over R such that K(m,) = K(w,) =R. Define
Py - F(w)xK(a) > K(e,) by Doy =2 VyeK(®). & ?,, - F(@,) x K(w,) > K(e,)
by 0, CX)=x 0, Lx)=—x, VyxeK(®,). Then (K,ET’) is an effective SG -space but not
free SG -space.

Proposition (3.6)

Every free SG -space is semi-free SG -space.
Proof:

Let (K,E,T") be a free SG -space, then the soft action ¢ is free, Vo € E .
Then Stab,, () ={e.}
Hence (K,E,T”) is semi-free SG -space.

As the following example demonstrates the opposite of (3.6) isn’t true.

Example (3.7)
Let (G,T,F,E) be commutative Stg. If @, : F(®)xF(®) > F(w) defined by, ¢,(g,h) = ghg™ Vo ek
Then (K, E I'")is semi-free SG -space, but not free SG -space.

Remark (3.8)

Let (K,E T") be a SG -Space, we define a relation * in K (@) as follows:

x*b e 3g € F(w) such that ¢,(g,x) =b

we claim that * is an equivalence relation in K ()

i) * is reflexive: We have y* y, Vy € K(w) Since ¢, (g, 7) = x

i) * is symmetric: Suppose that ¥ *b, then 3g € F(w) such that ¢, (g, x) = b.

Then x = @, (e, X) = 009719, %) = 90 (97" 00 (9, X))
= ¢, (g™, b). Thus ¢, (g~*, b) = x which shows that b* y .

iii) * is transitive: suppose ¥y *b & b*c.
Then there are g4, g, € F(w) such that ¢, (g1, %) =b & ¢,(g,,b) =c¢

NOW @4, (9291, %) = 9w (92 9w (91, X)) = $u (g2, b) = ¢ which shows that a*c.
Thus * is an equivalence relation in K(®), and we have that the equivalence class [ y]of a point y € K(w)

equals

[x]1={b e K(w): x*b} ={b € K(w) :b = 9,,(9.0). g € F(w) }=0rb, ()

Thus, the equivalence class of a under * is exactly the Orb, ().

By K(w)/F(w), We denote the set of equivalence classes under *, that is K (@) / F (@) denotes the set of orbits
in K(w).

By I1,, : K(w) - K(w)/ F (), we denote the natural projection.

We give K(w)/F(w)the quotient topology induced by II, :K(w)—> K(w)/F(w). We call
K(w)/! F(w) the orbit space of the SG -space(K, E, T").
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Proposition (3.9)
The map IT,, : K(w) — K(w)/ F(w)isan open map Ve € E .
Proof:
Let A be an open setin K(w) Vo € E.
Then T1_}(IT,, (A)) = U¢axa (A) isanopenin K(w).
geF (o)

So IT, (A) isanopensetin K(w)/F(w)
Hence T, is an openmap Vo € E .
Proposition (3.10)

Let (K,E,T") be Hausdorff SG -space, and (G, T, F, £) be a compact Stg, then ¢, is a closed map Ve € E .
Proof:

Let V be a closed set in F(w)x K(w)and let y €@, (V), then there is a net {(gp, x3)}peq in V such that

¢,(9p.%3) > x, Yo e E.

Then {gg} has a convergent subnet, say {gz} such that g — gin F () (because F (@) is a compact).
Since x5 = 9,(95" Pw(Gp, X8)) = Cu(g™ " X)

Then (gp, xp) = (9, 997" X)), but {(gp, xp)}peais anetin Vv

Then (9,9, (97" X)) €V, S0 9, (9, 9,(97" X)) € 0 (V)

Hence @, (V) =¢, (V). Thus ¢, isaclosed map, Vo € E .

Definition (3.11)
Let (K,E,T") be a SG -space. A subset V of K(w)is called an invariant of F(w) if F, (V) =V, where

Fo(V) ={9,(9,x): 9 € F(w),x €V}.

Example (3.12)

Let G=(Z+) with discrete space, E={w,®,} and (F,E) be a sset over Gdefined by
Flw)=F(w,)=Z.1f ¢, : F(w)x F(w) — F(w) defined by ¢, (g1, 9,) = 91 + g, Vo € E.

(i) If V = Z ,then V is an invariant set.

(ii) If V = Z, (the set of odd integer numbers), then V isn’t invariant.

Proposition (3.13)
Let (K,E,I") be a Hausdorff SG -space, where (G, T, F, E) a compact Stg, and let V be a closed subset of K ().

i) If V is closed set, then F_(V)is closed in K(®).

i) If V is compact, then F_ (V) is compact.

Proof:
i) If V is closed subset of K (@), then F(@)xV is a closed subset of F(@)x K(w).

Hence by proposition (3.10), we have ¢, (F (@) xV) =F_(V)is closed setin K(®).
2) If V is compact, then F (@) xV is compact, and hence ¢, (F(@w)xV)=F,_ (V) is compact.

Theorem (3.14)
Let (K, E I'") is a Hausdorff SG -Space, where (G, T, F, E)is a compact Stg, then V@ € E:
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i) The natural projection IT : K(®) - K(w)/ F () is a closed map.
ii) The Orbit space K(w)/ F () is Hausdorff.

iif) The map I1,, : K(@w) - K(@)/ F(w) is proper.

iv) K(w)is compact iff K(@)/F (w) is compact.

Proof:

i) Suppose U is a closed subset of K(w) .

Then IT_"(IT,(U)) =F,(U)

By proposition (3.13), we have that F_(U)is closed in K(w)and hence IT, (U) is closed in K(w)/F(w).
Then IT , is closed map.

i) Let @’,b" € K(@)/ F(w) such that " # b’

Then there are @,b € K(w) such that IT (a) =a’, IT,,(b) =b’

Then I1_'(a") = Orb, (a)and IT, (b") = Orb_(b)

The Orb, (a)and Orb, (b)are compacts (by proposition 3.13) and disjoint.

Hence there are disjoint open sets Aand B such that Orb, (a) = A, Orb, (b) = B.

so ANOrb, (b) = ¢

Now: b =TI (b) ¢ Hw(Z). Furthermore Hw(z\) is closed in K(w)/ F (@) by (i).

Thus K(w)/ F(w)-11, (Z) is an open neighborhood of b in K(w)/ F(w).

Since I1, : K(w) - K(w)/ F(w) is an open map, then IT_(A)is an open neighborhood of @' =11 _(a)in
K(w)! F(w).

since TT, (A) N (K (w)/ F (@) —T1,(A)) = ¢ . This completes the proof.

iii) Let A be a compact set in K () / F (), we claim that TT ' (A) is compact.

Let {A; : B € (2} be an open cover of 1" (A). Forall b e K(w)/F(w) we have that IT " (b) is compact.
Since I1 ' (b) = Orb, (a) where I, (a)=b.

Thus, for all b € H (@) there is a finite subset €2, of Q such that

I, (b) = | JA, = A then B, = K(@)/ F(e) -1, (A})

pey,
Since A, isclosed in K(w), we have by (i) that IT_ (A ) is closed in K(w)/ F(w)
Thus B, isanopenin K(w)/F(®).
We claim that T1_'(B,) — A, and b € B,
Let a1, (B,).Then IT_(a) € B, = K(w)/ F(w) -1, (AS)
Thus TT, (a) ¢ I, (A;) . Hence a ¢ A;, and thus a € A,
Since T, (b) = A, then b ¢ TT, (AS) , thatis b e (K(w)/ F(w) —T1,,(AS)) = B,
The sets B, ,b € A form a covering of A by open subsets of K(w)/ F(w)

n
Since A is compact, then there are b, ,...,b, such that A < U Bbi
hrf
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Then IT' (A) < UH;l(Bbi ) < LnJAbI = LnJ UAﬁ .

i=1 peQy,
Thus, the finite sub cover A, : ey (1<i<n}of {A;},, covers I1,'(A)
Then T1_'(A) is compact, hence IT, is proper map.
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