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1.Introduction 

    Definite integral has an interesting history as the idea of   definite integral arose from 

problems of calculating the lengths, areas, and volumes of curved geometric shapes.  These 

problems were solved for the first time by Greek mathematicians and passed through multiple 

stages until in 1868 Riemann presented the concept of integration over a period and Libeck 

introduced the integral based on the concept of measurement in 1902. 

In 1918, Daniell published his paper entitled “A general form of integral” where he defined the 

integral as a positive linear function defined on a vector lattice (Riesz space) whose elements are 

real valued function defined on a set that has no conditions only being a non-empty set. Daniell 

integral was more general than the Riemann integral and Lebesgue integral. 

This research includes four other items in addition to the introduction. In the first item, we 

touched on some basic definitions and concepts related to vector space and lattice space, and we 

demonstrated some theorems related to this concept. The second item included the definition of  

Daniell space and the Daniell function as well, and we proved some theorems related to this 

space, either in item  Third, we have expanded Daniell space and proved that the extension space 

is a complete space. As for the fourth item, it included the definition of the integration of the 

upper and lower Daniell, and we have mentioned some definitions and proofs related to this 

concept. 

 

2.Fundamental Concepts 

       The.letters ℝ and ℂ will.always. denote the field of real. numbers and the field of complex 

numbers, respectively. For. the moment, let 𝐹 stand for .either ℝ or ℂ. A scalar is a member of 

the .scalar field 𝐹. 
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ABSTRACT 

 

In this work, we presented both the concept of Daniell space and the extension Daniell 

space and some basic results related to them, and we proved that the extension Daniel 

space is a complete space, and then we introduced the concept of Danielly integrable 

functions by introducing the concept of the upper and lower Daniel integration.  Finally, 

some properties of this integration have been proven 
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Definition 2.1[𝟕] 

A linear space over 𝐹 is a set. 𝑋, whose elements are called vector, and in which two operations, 

addition (+: 𝑋 × 𝑋 → 𝑋) and scalar .multiplication (∙: 𝐹 × 𝑋 → 𝑋) such that 

(1)   𝑥 + 𝑦 ∈ 𝑋 for all 𝑥, 𝑦 ∈ 𝑥. 

(2)   𝑥 + 𝑦 = 𝑦 + 𝑥 for all 𝑥, 𝑦 ∈ 𝑋. 

(3)   𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

(4)   There exists 0 ∈ 𝑋 such that   𝑥 + 0 = 0 + 𝑥  for all 𝑥 ∈ 𝑋 and 0 is the zero vector or the 

origin. 

(5)   For all 𝑥 ∈ 𝑋,there exist – 𝑥 ∈ 𝑋 such that    𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0 

(6)   𝜆 ∙ 𝑥 ∈ 𝑋 for all 𝜆 ∈ 𝐹 and for all 𝑥 ∈ 𝑋. 

(7)   𝜆 ∙ (𝑥 + 𝑦) = 𝜆 ∙ 𝑥 + 𝜆 ∙ 𝑦 for all 𝜆 ∈ 𝐹 and for all 𝑥, 𝑦 ∈ 𝑋. 

(8)  (𝛼 + 𝛽) ∙ 𝑥 = 𝛼𝑥 + 𝛽𝑥 for all 𝛼, 𝛽 ∈ 𝐹 and for all 𝑥 ∈ 𝑋. 

(9)  (𝛼 ∙ 𝛽) = 𝛼 ∙ (𝛽 ∙ 𝑥) for all 𝛼, 𝛽 ∈ 𝐹 and for all 𝑥 ∈ 𝑋. 

            𝐼 ∙ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 and  𝐼 is the unity element of the field F. [8] 

Remark: 

A real. linear space is one .for which 𝐹 = ℝ, a complex is linear. space is one for, which 𝐹 = ℝ.  

Definition 2.2[𝟏] 

Let Ω be an arbitrary set. Suppose 𝑓 and 𝑔 are real valued functions on 𝛺 (𝑓, 𝑔: Ω → ℝ),  . we 

define  

𝑓˅𝑔 = max{𝑓, 𝑔} = {𝑓, 𝑔} = 𝑚𝑎𝑥{𝑓 + 𝑔, 0} + 𝑔 and 

𝑓˄𝑔 = min{𝑓, 𝑔} = (𝑓 + 𝑔) − max{𝑓, 𝑔}, where 0 is the zero function. 

Definition 2.3[𝟏] 

Let 𝐿  be a set of real valued function defined on 𝛺. we say that 𝐿  is a lattice if 

max{𝑓, 𝑔} ,  min{𝑓, 𝑔} ∈ 𝐿 for all 𝑓, 𝑔 ∈ 𝐿. Further, a linear 𝐿 of real valued functions on a set Ω 

over the real field is called a vector lattice (or Riesz space) provided 𝐿 is also a lattice. 

Notice that if 𝑓 is in some Riesz space, then |𝑓| is also in that Riesz space. 

Theorem 2.4[𝟏] 

Suppose 𝐿 is a linear space of real valued functions on a set Ω. Then 𝐿 is a vector lattice if 

max{𝑓, 0} ∈ 𝐿 for all 𝑓 ∈ 𝐿. 

Proof: 

Let 𝑓, 𝑔 ∈ 𝐿, Since 𝐿 is a linear space, then 𝑓 − 𝑔 ∈ 𝐿, thus  𝑚𝑎𝑥{𝑓 − 𝑔, 0} ∈ 𝐿 and  𝑚𝑎𝑥{𝑓 −

𝑔, 0} + 𝑔 ∈ 𝐿. 

Hence 𝑚𝑎𝑥{𝑓, 𝑔} ∈ 𝐿. Similarly, 𝑓 + 𝑔 ∈ 𝐿 and 𝑚𝑎𝑥{𝑓, 𝑔} ∈ 𝐿, so 𝑚𝑖𝑛{𝑓, 𝑔} ∈ 𝐿. 

Definition 2.5 

Let Ω be any set and 𝑓 ∶ 𝛺  ℝ a function, we define the positive and negative parts 𝑓+and 𝑓−  

by 𝑓 + 𝑚𝑎𝑥{ 𝑓 ,0}  and 𝑓 −  𝑚𝑖𝑛{ 𝑓 ,0}  𝑚𝑎𝑥{ 𝑓 ,0}  

i.e. 
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𝑓+(𝑥) = {

  
𝑓(𝑥),                𝑓(𝑥) ≥ 0

     0,                      𝑓(𝑥) ≤ 0       
and  𝑓−(𝑥) = {

  
−𝑓(𝑥),                𝑓(𝑥) ≤ 0

        0,                       𝑓(𝑥) > 0       
 

 

It follows that 

(1) 𝑓+ and 𝑓− are non-negative 

(2) 𝑓 = 𝑓+ − 𝑓−and |𝑓| = 𝑓+ + 𝑓− = 𝑓++(−𝑓)− 

(3) 𝑓+ =
1

2
(|𝑓| + 𝑓) and 𝑓− =

1

2
(|𝑓| − 𝑓) 

(4) (−𝑓)+ = 𝑓− and (−𝑓)− = 𝑓+ 

(5) If 𝜆 > 0, then (𝜆𝑓)+ = 𝜆𝑓+ and (𝜆𝑓)− = 𝜆𝑓− 

Now if we define, for 𝑓, 𝑔: Ω → ℝ, 𝑥 ∈ 𝛺 

(𝑓˅𝑔) = 𝑚𝑎𝑥{𝑓(𝑥), 𝑔(𝑥)} = and (𝑓˄𝑔) = 𝑚𝑖𝑛{𝑓(𝑥), 𝑔(𝑥)}. 

It follows that  

(1) 𝑓+ = 𝑓˅0 and 𝑓− = −(𝑓˄0) = (−𝑓)˅0 

(2) 𝑓˅𝑔 = (𝑓 − 𝑔)˅0 + 𝑔 and 𝑓˄𝑔 = 𝑓 + 𝑔 − (𝑓˅𝑔) 

 

Theorem 2.6 

Let  𝐿 is a linear space of real valued functions on 𝛺. Then 𝐿 is a Riesz space if and only if for 

every 𝑓 ∈ 𝐿, then |𝑓| ∈ 𝐿. 

Proof: 

Suppose that 𝐿 is a Riesz space 

Let 𝑓 ∈ 𝐿, since 𝐿 is a linear space, then −𝑓 ∈ 𝐿 

by theorem 2.4,  we have  max{ 𝑓 ,0} ∈ 𝐿 and max{ −𝑓 ,0} ∈ 𝐿 

since 𝑓 + 𝑚𝑎𝑥{ 𝑓 ,0}  and 𝑓 − 𝑚𝑎𝑥{ 𝑓 ,0}, then 𝑓+, 𝑓− ∈ 𝐿, so 𝑓+ + 𝑓− ∈ 𝐿 , since |𝑓| =

𝑓+ + 𝑓−, then |𝑓| ∈ 𝐿. 

Conversely, suppose |𝑓| ∈ 𝐿 for all 𝑓 ∈ 𝐿. To prove 𝐿 is a vector lattice. 

Suppose 𝑓 ∈ 𝐿, then |𝑓| ∈ 𝐿, so 
1

2
(|𝑓| + 𝑓) ∈ 𝐿 

Since 𝑚𝑎𝑥{𝑓, 0} = 𝑓+ =
1

2
(|𝑓| + 𝑓), then 𝑚𝑎𝑥{𝑓, 0}, by theorem 2.4, 𝐿 is a vector lattice. 

Definition 2.7 

Let ℝ be the set of real numbers. The extended real numbers system consists of the real numbers 

system to be the real number with two symbols, +∞ and  ∞ . and it is denoted by ℝ̅ , i.e 

ℝ ̅̅̅ = ℝ ∪ {∞} ∪ {−∞} = {−∞, ∞} 

The following algebraic relation among  them and real numbers 𝑥: −∞ < 𝑥 < ∞ 

(1) 𝑥 + ∞ = ∞ + 𝑥 = ∞, 𝑥 + (−∞) = −∞ + 𝑥 = −∞ 

(2) If 𝑥 = 0, then 𝑥(∞) = 0 and 𝑥(−∞) = 0 

(3) If 𝑥 > 0, then 𝑥(∞) = ∞ and 𝑥(−∞) = ∞ 

(4) If 𝑥 < 0, then 𝑥(∞) = −∞ and 𝑥(−∞) = −∞ 

(5) ∞ + ∞ = ∞, −∞ + (−∞) = −∞, ∞ − (−∞) = ∞, −∞ − ∞ = −∞ 
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3. Daniell Space 

        

We will introduce the concept of  Daniell integration as presented by Daniel in his research paper 

(A General Form of  Integral).  

Recall that a functional 𝐼 on a linear space 𝐿 over the field 𝐹  is called a linear functional if  

𝐼(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐼(𝑓) + 𝛽𝐼(𝑔) for all 𝑓, 𝑔 ∈ 𝐿 and 𝛼, 𝛽 ∈ 𝐹. 

 

Definition 3.1 

Let 𝐿 be a Riesz space of real valued functions defined on a set 𝛺. A linear functional 𝐷: 𝛺 → ℝ 

is called  

(1) Positive if 𝐷(𝑓) ≥ 0 whenever 𝑓 ∈ 𝐿 and 𝑓 ≥ 0. 

(2) Continuous under monotone limits if, for every increasing sequence {𝑓𝑛} of functions in 𝐿 

and 𝑓 ∈ 𝐿 such that 𝑓(𝑥) ≤ lim𝑛→∞ 𝑓𝑛(𝑥) for all 𝑥 ∈ 𝛺, then 𝐷(𝑓) 𝑙𝑖𝑚𝑛→∞ 𝐷(𝑓𝑛). 

Note that if 𝐼 is positive, then 𝐷(𝑓) ≤ 𝐷(𝑔) for each 𝑓 ∈ 𝐿 and 𝑓 ≤ 𝑔. 

(3) Daniell functional (or Daniell integral) if  D is positive and continuous under monotone 

limit. 

Remark 

𝐷 is continuous under monotone limit iff 𝐷(𝑓𝑛) ↓ 0 whenever 𝑓𝑛 ↓ 0 and each 𝑓𝑛 ∈ 𝐿. 

Definition 3.2 

A triple (𝛺, 𝐿, 𝐷) is called a Daniell space if  𝛺 is a nonempty set, 𝐿 is a Riesz space of  real 

valued functions on 𝛺, and 𝐷: 𝐿 → ℝ is a Daniell functional. 

Theorem 3.3[𝟏] 

Let 𝐿 be a vector lattice of real valued function on a set 𝛺. Suppose that  𝐷 is a Daniell integral 

on 𝐿. Then 𝐷(𝑓) ≤ ∑ 𝐷(𝑓𝑛)∞
𝑛=1  whenever {𝑓𝑛} is a sequence of nonnegative functions in 𝐿 and 

𝑓 ∈ 𝐿 such that 𝑓(𝑥) ≤ ∑ 𝑓𝑛(𝑥)∞
𝑛=1  for all 𝑥 ∈ 𝛺. 

Proof:  

Let {𝑓𝑛} is a sequence of nonnegative functions in 𝐿 and 𝑓 ∈ 𝐿 such that 𝑓(𝑥) ≤ ∑ 𝑓𝑛(𝑥)∞
𝑛=1  for 

all 𝑥 ∈ 𝛺. 

Define 𝑔𝑛(𝑥) = ∑ 𝑓𝑖(𝑥) 𝑛
𝑖=1 for all 𝑥 ∈ 𝛺.  Then 𝑔𝑛 ∈ 𝐿  for all n and lim𝑛→∞ 𝑔𝑛(𝑥) =

∑ 𝑓𝑛(𝑥)∞
𝑛=1  for all 𝑥 ∈ 𝛺. 

Since 𝑓(𝑥) ≤ ∑ 𝑓𝑛(𝑥)∞
𝑛=1  for all 𝑓(𝑥) ≤ ∑ 𝑓𝑛(𝑥)∞

𝑛=1 , then 𝑓(𝑥) ≤ 𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) for all 𝑥 ∈ 𝛺 . 

Thus 𝐷(𝑓) ≤ 𝑙𝑖𝑚𝑛→∞ 𝐷(𝑔𝑛). 

But 𝐷(𝑔𝑛) = ∑ 𝐷(𝑓𝑖).𝑛
𝑖=1  Hence 𝑙𝑖𝑚𝑛→∞ 𝐷(𝑔𝑛) = ∑ 𝐷(𝑓𝑛),∞

𝑛=1  so 𝐷(𝑓) ≤ ∑ 𝐷(𝑓𝑛)∞
𝑛=1 . [1] 

 

4. Complete Daniell Space 

Definition 4.1[𝟏] 

Let 𝐿∗ be .the class of all those .extended real.-valued functions on 𝛺 each of which is the limit of 

.a monotone increasing .sequence of functions in the vector lattice 𝐿. 
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In other words: Let 𝐿 be a vector lattice, then 𝑓 ∈ 𝐿∗ iff 𝑓: 𝛺 → ℝ̅  is a function and there exists a 

sequence {𝑓𝑛} of monotone increasing sequences of functions in 𝐿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 = lim𝑛→∞ 𝑓𝑛. [1] 

Definition4.2[𝟐] 

Let 𝑓 be a real function on 𝛺. if there exist function 𝑓𝑛 ∈ 𝐿,𝑛 ∈ ℕ, such that 

(1) ∑ 𝐷(|𝑓𝑛|) < ∞∞
𝑛=1  

(2) 𝑓(𝑥) = ∑ 𝑓𝑛(𝑥)∞
𝑛=1  for every 𝑥 ∈ 𝛺 and ∑ |𝑓𝑛(𝑥)|∞

𝑛=1 < ∞ 

then we write 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1  or 𝑓 = 𝑓1 + 𝑓2 + 𝑓3 + ⋯ 

Definition 4.3[𝟐] 

A Daniell space  (𝛺, 𝐿, 𝐷) is called complete if 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1  for some 𝑓1, 𝑓2, , …  ∈ 𝐿, implies that 

𝑓 ∈ 𝐿. 

Theorem4.4  [𝟏] 

Let {𝑓𝑛} and {𝑔𝑚} are monotone increasing sequences such that 𝑓𝑛 and 𝑔𝑚 are in 𝐿 for all 𝑛 and 

𝑚. Let 𝑙𝑖𝑚𝑓𝑛 ≤ 𝑙𝑖𝑚𝑔𝑚. Then lim 𝐷(𝑓𝑛) ≤ lim 𝐷(𝑔𝑚). Further if 𝑓 is in 𝐿∗ , 𝑓𝑛 ↑ 𝑓 and 𝑔𝑚 ↑ 𝑓, 

then lim 𝐷(𝑓𝑛) = lim 𝐷(𝑔𝑚). 

Proof: Let n arbitrary and fixed. Then 𝑓𝑛 ≤ 𝑙𝑖𝑚𝑓𝑛 ≤ 𝑙𝑖𝑚𝑔𝑛, 𝑠𝑜 𝐷(𝑓𝑛) ≤ lim 𝐷(𝑔𝑚) for each n. 

Hence 𝑙𝑖𝑚 𝐷(𝑓𝑛) ≤ 𝑙𝑖𝑚 𝐷(𝑔𝑚). 

Let 𝑓 is in 𝐿∗, 𝑓𝑛 ↑ 𝑓 and 𝑔𝑚 ↑ 𝑓, then lim 𝑓𝑛 = 𝑓 ≤ lim 𝑔𝑚, so  lim 𝐷(𝑓𝑛) ≤ lim 𝐷(𝑔𝑚). 

But lim 𝑔𝑚 = 𝑓 ≤ lim 𝑓𝑛, so lim 𝐷(𝑔𝑚) ≤ lim 𝐷(𝑓𝑛). Therefore  𝑙𝑖𝑚 𝐷(𝑓𝑛) = 𝑙𝑖𝑚 𝐷(𝑔𝑚). 

Remark[𝟏] 

If  𝑓  is in  𝐿∗ , then there exist an increasing sequence  {𝑓𝑛} such that 𝑓𝑛  is in 𝐿  for all n and 

𝑓 = 𝑙𝑖𝑚𝑓𝑛 . Then 𝐷(𝑓) = 𝑙𝑖𝑚 𝐷(𝑓𝑛). 

Theorem 4.5 [𝟏] 

Let 𝑓 in  𝐿∗, then 𝑓 is in 𝐿∗ if and only if there exist a sequences {𝑓𝑛} of non-negative functions in 

𝐿 with  𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 . Further, 𝐷(𝑓) = ∑ 𝐷(𝑓𝑛)∞

𝑛=1 . 

Proof:(⟹) Let  𝑓 is in 𝐿∗ then there exist asequences {𝑔𝑛} of functions in 𝐿 such that 𝑔𝑛 ↑ 𝑓. 

Suppose that 𝑔𝑛 are non-negative.Let 𝑓1 = 𝑔1, and 𝑓𝑛 = 𝑔𝑛 − 𝑔𝑛−1 for 𝑛 ≥ 2.  

Then  ∑ 𝑓𝑛 = ∑ (𝑔𝑛 − 𝑔𝑛−1) + 𝑔1 = 𝑔𝑘.𝑘
𝑛=2

𝑘
𝑛=1  Thus  ∑ 𝑓𝑛 = lim𝑘 ∑ 𝑓𝑛 = lim𝑘 𝑔𝑘 = 𝑓.𝑘

𝑛=1𝑛  

Therefore, 𝐷(𝑓) = lim 𝐷(𝑔𝑛) = lim 𝐷(∑ 𝑓𝑖) = lim ∑ 𝐷(𝑓𝑖) = ∑ 𝐷(𝑓𝑖).∞
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  

(⟸) Let {𝑓𝑛} be a sequences of non-negative functions in 𝐿 with  𝑓 = ∑ 𝑓𝑛
∞
𝑛=1  and  

𝐷(𝑓) = ∑ 𝐷(𝑓𝑛)∞
𝑛=1 , then 𝑓 is in 𝐿𝑢, since 𝐿 ⊂ 𝐿∗. 

Theorem 4.6 

(𝛺, 𝐿∗ , 𝐷) is a complete Daniell space. 

Proof  

i. First we must prove that 𝐿∗ is a Riesz space 

Let 𝑓, 𝑔 ∈ 𝐿∗, 𝜆, 𝛽 ∈ ℝ,  then 𝑓 = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛 𝑎𝑛𝑑 𝑔 = 𝑙𝑖𝑚𝑚→∞ 𝑔𝑛  , 𝑤ℎ𝑒𝑟𝑒 𝑓𝑛 𝑎𝑛𝑑 𝑔𝑛  are 

increasing sequences of function in 𝐿, then  

𝜆𝑓(𝑥) + 𝛽𝑔(𝑥) = 𝜆 𝑙𝑖𝑚
𝑛→∞

 𝑓𝑛(𝑥) + 𝛽 𝑙𝑖𝑚
𝑚→∞

𝑔𝑛 (𝑥) = 

𝑙𝑖𝑚𝑛→∞𝜆 𝑓(𝑥) + 𝑙𝑖𝑚𝑚→∞𝛽 𝑔𝑛(𝑥) = lim𝑛,𝑚→∞(𝜆𝑓𝑛(𝑥) + 𝛽𝑔𝑚(𝑥)) . 

there fore 𝜆𝑓 + 𝛽𝑔 is in 𝐿∗. 
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Since 𝐿 is Riesz then  𝑓𝑛⋁𝑔𝑛 is in 𝐿 for all n then lim𝑛→∞ 𝑓𝑛⋁𝑔𝑛) is in 𝐿∗ to show that 𝑓𝑛⋁𝑔𝑛 is 

monotone increasing, let 𝑥 ∈ 𝛺 then 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) ≤ (𝑓𝑛+1⋁𝑔𝑛+1)(𝑥) 

and 𝑔𝑛(𝑥) ≤ 𝑔𝑛+1(𝑥) ≤ (𝑓𝑛+1⋁𝑔𝑛+1)(𝑥), so that  (𝑓𝑛⋁𝑔𝑛)(𝑥) ≤ (𝑓𝑛+1⋁𝑔𝑛+1)(𝑥). 

Therefore 𝑓𝑛⋁𝑔𝑛 is monotone increasing.  If  lim 𝑓𝑛(𝑥) = ∞ or  

𝑙𝑖𝑚𝑔𝑛(𝑥) = ∞, lim (𝑓𝑛⋁𝑔𝑛)(𝑥) = ∞ and (𝑓⋁𝑔)(𝑥) = ∞ then (𝑓⋁𝑔)(𝑥) = lim(𝑓𝑛⋁𝑔𝑛)(𝑥). 

Let  lim 𝑓𝑛(𝑥) ≠ ∞ and 𝑙𝑖𝑚𝑔𝑛(𝑥) ≠ ∞, then lim (𝑓𝑛⋁𝑔𝑛)(𝑥) ≠ ∞ and (𝑓⋁𝑔)(𝑥) ≠ ∞.   

Now define ℎ𝑛 = 𝑓𝑛⋁𝑔𝑛 for all n. Then ℎ𝑛 is in 𝐿, and lim ℎ𝑛(𝑥) = lim(𝑓𝑛⋁𝑔𝑛)(𝑥).   

Let ℎ𝑛(𝑥) > max(𝑙𝑖𝑚𝑓𝑛(𝑥), 𝑙𝑖𝑚𝑔𝑛(𝑥)) = max(𝑓(𝑥), 𝑔(𝑥)). 

Suppose that there exist 𝑁 ∈ 𝕫+ such that 𝑛 ≥ 𝑁  implies that 

ℎ𝑛(𝑥) > 𝑚𝑎𝑥(𝑓(𝑥), 𝑔(𝑥)) , since ℎ𝑛is monotone.  But {𝑓𝑛}, {𝑔𝑛}  monotone increasing implies 

𝑙𝑖𝑚𝑔𝑛(𝑥) ≥ 𝑔𝑛(𝑥) and 𝑙𝑖𝑚𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑥) for all n.  

Thus  ℎ𝑛(𝑥) > 𝑚𝑎𝑥(𝑓𝑖(𝑥), 𝑔𝑖(𝑥)) for all 𝑖 and for all 𝑛 ≥ 𝑁 which is a contradication. 

Therefore, 𝑙𝑖𝑚 ℎ𝑛(𝑥) ≤ 𝑚𝑎𝑥(𝑓(𝑥), 𝑔(𝑥)). But ℎ𝑛(𝑥) ≥ 𝑓𝑛(𝑥)  for all n implies ℎ𝑛(𝑥) ≥ 𝑓(𝑥), 

and ℎ𝑛(𝑥) ≥ 𝑔𝑛(𝑥)  for all n implies  ℎ𝑛(𝑥) ≥ 𝑔(𝑥) , thus 𝑙𝑖𝑚 ℎ𝑛(𝑥) ≥ 𝑚𝑎𝑥(𝑓(𝑥), 𝑔(𝑥)),  so 

𝑙𝑖𝑚 ℎ𝑛(𝑥) = 𝑚𝑎𝑥(𝑓(𝑥), 𝑔(𝑥)). 

Therefore, 𝑓 ∨ 𝑔 is in 𝐿∗, by the same way we can prove that 𝑓 ∧ 𝑔 is in 𝐿∗. Since 𝐿 ⊂  𝐿∗, then 𝐿∗ 

is a lattice contained 𝐿. 

ii. to prove that 𝐷: 𝐿∗ → ℝ is a positive linear function on 𝐿∗ 

Let 𝑓 ∈ 𝐿∗, 𝑓 ≥ 0, there is an increasing sequence {𝑓𝑛} such that 𝑓𝑛 is in 𝐿 for all n=1,2,3,…. and 

 0 ≤ 𝑓 = 𝑙𝑖𝑚𝑓𝑛 ⟹ lim𝐷(𝑓𝑛) ≥ 𝐷(0) = 0. 

Let 𝑓, 𝑔 ∈ 𝐿∗  then  𝑓 = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛 𝑎𝑛𝑑 𝑔 = 𝑙𝑖𝑚𝑚→∞ 𝑔𝑚  , 𝑤ℎ𝑒𝑟𝑒 𝑓𝑛 𝑎𝑛𝑑 𝑔𝑛  are are monotone 

increasing sequences of function in 𝐿. 

Suppose that 𝑓 ≤ 𝑔 implies that 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛 ≤ 𝑙𝑖𝑚𝑚→∞ 𝑔𝑚 then  

𝐷(𝑓) = 𝐷( 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛) ≤ 𝐷(𝑙𝑖𝑚𝑚→∞ 𝑔𝑚) = 𝐷(𝑔) implies 

𝐷(𝑓) = 𝑙𝑖𝑚𝑛→∞𝐷( 𝑓𝑛) ≤ 𝑙𝑖𝑚𝑚→∞ 𝐷(𝑔𝑚) = 𝐷(𝑔) there fore 𝐷(𝑓) ≤ 𝐷(𝑔). 

Let 𝑓, 𝑔 ∈ 𝐿∗ 𝑎𝑛𝑑 𝛼, 𝛽 ∈ ℝ then D(𝛼𝑓 + 𝛽𝑔) = D(𝛼( 𝑙𝑖𝑚
𝑛→∞

 𝑓𝑛) + 𝛽 ( 𝑙𝑖𝑚
𝑚→∞

𝑔𝑚)) 

                                                           = 𝛼𝐷(lim 𝑓𝑛
𝑛→∞

 ) +𝛽𝐷(lim 𝑔𝑚
𝑚→∞

) = 𝛼𝐷(𝑓) + 𝛽𝐷(𝑔). 

iii. To prove that 𝐷 is a Daniell integral on 𝐿∗. 

Let {𝑓𝑛} be an increasing sequence in 𝐿∗ and 𝑓 in 𝐿∗ with 𝑓 ≤ 𝑙𝑖𝑚
𝑛→∞

 𝑓𝑛  

Let 𝑔𝑛 = 𝑓𝑛 − 𝑓1, 𝑔𝑛 ≥ 𝑓 then 𝐷(𝑓𝑛) = 𝐷(𝑔𝑛) + 𝐷(𝑓1) ⇒ 

lim 𝐷(𝑓𝑛) = lim𝐷(𝑔𝑛) + 𝐷(𝑓1) . 

Let 𝑔 = lim 𝑔𝑛 + 𝑓1 = lim𝑓𝑛 then 𝑔 in 𝐿∗. Then 𝑓 ≤ lim 𝑓𝑛 = 𝑔. 

Then 𝐷(𝑓) ≤ 𝐷(𝑔) = 𝑙𝑖𝑚 𝐷(𝑔𝑛) + 𝐷(𝑓1) = 𝑙𝑖𝑚 𝐷( 𝑓𝑛) 

There fore  𝐷(𝑓) ≤ 𝑙𝑖𝑚
𝑛→∞

 𝐷(𝑓𝑛). 

Hence  (𝛺, 𝐿∗, 𝐷) is a Daniell space. 

iv. To prove that (𝛺, 𝐿∗ , 𝐷) is complete.  

Let 𝑓𝑛 ∈ 𝐿∗, 𝑓𝑛 ≥ 0𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 = 1,2, … and 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 , we must prove that 𝑓 ∈ 𝐿∗. 
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Then there is a sequence of non-negative functions {𝑔𝑚,𝑛} In 𝐿 for each n  

such that 𝑓𝑛 = ∑ 𝑔𝑛,𝑚
∞
𝑚=1  

Then 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 = ∑ ∑ 𝑔𝑛,𝑚

∞
𝑚=1 = ∑ 𝑔𝑛,𝑚

∞
𝑛,𝑚=1

∞
𝑛=1  then by (Thm.4.5), 𝑓 ∈ 𝐿∗. 

          Therefore (𝛺, 𝐿∗ , 𝐷) is a complete Daniell space. 

5. Upper and Lower Daniell Integral 

Defintion 5.1  

Let  𝑓 ∈ 𝐿∗. Define the upper Daniell integral of 𝑓 by D̅(f) = inf{D(g): g ∈ 𝐿∗ , g ≥ f} 

 (i.e  inf(∅) = ∞). 

Theorem 5.2: 

Let 𝑓1, 𝑓2, 𝑔 𝐿∗, then 

(1)  If  𝑎 > 0, D̅(𝑎𝑓) = 𝑎D̅(𝑓). 

(2) D̅(𝑓1 + 𝑓2) ≤ D̅(𝑓1) + D̅(𝑓2). 

(3) If 𝑓 ≤ 𝑔 then D̅(𝑓) ≤ D̅(𝑔). 

Proof:  

(1) Let  𝑐 > 0. 𝑇ℎ𝑒𝑛 

              D̅(𝑎𝑓) = 𝑖𝑛𝑓{𝐷(𝑎 𝑔): 𝑎 𝑔 ∈  𝐿∗, 𝑎 𝑔 ≥ 𝑎𝑓} = 

                D̅(𝑎𝑓) = 𝑖𝑛𝑓{𝑎 𝐷(𝑔): 𝑔 ∈  𝐿∗, 𝑔 ≥ 𝑓} 

                D̅(𝑓) = 𝑎 D̅(𝑓). 

(2) Let 𝑔1, 𝑔2 ∈ 𝐿𝑢 such that 𝑓1 ≤ 𝑔1 and 𝑓2 ≤ 𝑔2. 

Then 𝑓1 + 𝑓2 ≤ 𝑔1 + 𝑔2 therefore 𝐷(𝑓1 + 𝑓2) ≤ 𝐷(𝑔1 + 𝑔2)= 𝐷(𝑔1) + 𝐷(𝑔2). 

For fixed 𝑔1 and for all 𝑔2 ≥ 𝑓2, the inequality holds. Thus  

D̅(𝑓1 + 𝑓2) ≤ �̅�(𝑓1) + I(̅𝑓2). Since this inequality holds for all 𝑔1 ≥ 𝑓1  it follows that D̅(𝑓1 +

𝑓2) ≤ D̅(𝑓1) + D̅(𝑓2). 

(3) Let 𝑒 ∈ 𝐿∗ and 𝑒 ≥ 𝑔. Then 𝑒 ≥ 𝑓 so {𝑒: 𝑒 ∈ 𝐿∗, 𝑒 ≥ 𝑓} ⊃ {𝑒: 𝑒 ∈ 𝐿∗, 𝑒 ≥ 𝑔 }. 

Definition 5.3  

Let  𝑓 ∈ 𝐿∗. the lower Daniell integral of 𝑓 is defined by 𝐷(𝑓) = 𝑠𝑢𝑝{𝐼(𝑙): 𝑙 ∈ 𝐿∗, 𝑙 ≤ 𝑓}. 

i.e.  D(𝑓) = −D̅(−𝑓)  

Theorem 5.4 

Let 𝑓1, 𝑓2and 𝑔  are extended real-valued function on 𝛺. then 

(1) D(𝑓) ≤ D̅(𝑓) for all 𝑓 ∈ 𝐿∗. 

(2) D̅(𝑓⋁𝑔) + D̅(𝑓⋀𝑔) ≤ D̅(𝑓) + D̅(𝑔). 

(3) D̅(|𝑓|) − D(|𝑓|) ≤ D̅(𝑓) − D(𝑓). 

Proof:  

(1) 0 = D̅(0) = D̅(𝑓 − 𝑓) ≤ D̅(𝑓) + D̅(−𝑓) but  

 D̅(−𝑓) = − D(𝑓) (by definition). Thus  D(𝑓) ≤ D̅(𝑓).  

(2) Let ℎ1, ℎ2 ∈ 𝐿∗, ℎ1 ≥ 𝑓,ℎ2 ≥ 𝑔. Then ℎ1⋀ℎ2 ≥ 𝑓⋀𝑔  

𝑎𝑛𝑑 ℎ1⋁ ℎ2 ≥ 𝑓 ⋁𝑔.  Therefore D̅(𝑓⋁𝑔) + D̅(𝑓⋀𝑔) ≤ 𝐷(ℎ1⋁ℎ2) + 𝐷(ℎ1⋀ℎ2) = 𝐷(ℎ1) +

𝐷(ℎ2) 𝑠𝑖𝑛𝑐𝑒 (ℎ1⋁ℎ2) + (ℎ1⋀ℎ2) = 𝐷(ℎ1) + 𝐷(ℎ2). 

(3) |𝑓| = 𝑓⋁(−𝑓) and −|𝑓| = 𝑓⋀(−𝑓). 
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Thus D̅(|𝑓|) + D̅(−|𝑓|) ≤ D̅(𝑓) + D̅(−𝑓). That is,  D̅(|𝑓|) − D(|𝑓|) ≤ D̅(𝑓) − D(𝑓). 

Theorem 5.5[𝟏] 

 Let {𝑓𝑛} be a sequence of non-negative extended real-valued functions on 𝛺, and that 𝑓 = ∑ 𝑓𝑛𝑛 . 

Then 𝐷(𝑓) ≤ ∑ �̅�(𝑓𝑛).𝑛  

Proof: 

Suppose that �̅�(𝑓𝑛) = ∞  for some n. Then  ∑  �̅�(𝑓𝑛) = ∞𝑛 . Let  �̅�(𝑓𝑛) ≠ ∞ for all n, given 

∈> 0, there exists a 𝑔𝑛 in 𝐿∗ such that 𝑓𝑛 ≤ 𝑔𝑛 and with 𝐷(𝑔𝑛) ≤ �̅�(𝑓𝑛) +
∈

2𝑛
. Then  

𝑔𝑛 ≥ 𝑓𝑛 ≥ 0  for all n and hence, 𝑔 = ∑ 𝑔𝑛𝑛 is in 𝐿𝑢 . and 𝐷(𝑔) = ∑ 𝐷(𝑔𝑛).𝑛  But 𝐷(𝑔) =

∑ 𝐷(𝑔𝑛) ≤ ∑ (𝑛𝑛 �̅�(𝑓𝑛) +
∈

2𝑛) = ∑ 𝐷(𝑓𝑛)+∈.𝑛  

𝑔𝑛 ≥ 𝑓𝑛 implies that 𝑔 = ∑ 𝑔𝑛𝑛 ≥ ∑ 𝑓𝑛 = 𝑓𝑛 . Therefore, 𝐷(𝑔) ≥ �̅�(𝑓). 

Hence, �̅�(𝑓) ≤ 𝐷(𝑔) ≤ ∑ �̅�(𝑓𝑛)+∈.𝑛  But ∈> 0 was arbitrary. Hence, �̅�(𝑓) ≤ ∑ �̅�(𝑓𝑛).𝑛 [1] 

Definition 5.6[𝟏]  

We say that a function  𝑓 ∈ 𝐿∗is  𝐷-integrable if �̅�(𝑓) = 𝐷(𝑓) and is finite.we will denote to the 

class of all 𝐷-integrable function by 𝐿1.  

   If 𝑓 ∈ 𝐿1 we write 𝐷(𝑓) for �̅�(𝑓). 

In this case define 𝐷(𝑓) = D̅(𝑓) = D(𝑓). 𝐷(𝑓) is called the Daniell integral.. [1] 

Theorem 5.7[𝟏] 

the set 𝐿1 is a Riesz space of functions containing 𝐿, 𝐷 is a positive linear functional on 𝐿1, 𝐿 ⊂

𝐿1 

Proof:  

We want to show that if 𝑓 in 𝐿1 implies that 𝑐𝑓 is in 𝐿1for all real 𝑐. 

Let 𝑓 ∈ 𝐿1, 𝑐 ≥ 0 then �̅�(𝑐𝑓) = 𝑐�̅�(𝑓) = 𝑐𝐷(𝑓) = 𝐷(𝑐𝑓). 

Suppose that 𝑐 ≤ 0.  Then  �̅�(𝑐𝑓) =  �̅�(−|𝑐|𝑓) = |𝑐| �̅�(−𝑓) = −|𝑐|𝐷(𝑓) = −|𝑐|�̅�(𝑓) =

−�̅�(|𝑐|𝑓) = 𝐷(−|𝑐|𝑓) = 𝐷(𝑐𝑓).Therefore, 𝑐𝑓 is in 𝐿1. 

we want to show that if 𝑓 𝑎𝑛𝑑 𝑔 in 𝐿1 then 𝑓 + 𝑔 is in 𝐿1. 

Let 𝑓, 𝑔 ∈ 𝐿1, 𝑡ℎ𝑒𝑛 �̅�(𝑓 + 𝑔) ≤ 𝐷(𝑓) + 𝐷(𝑔)  

Also, −𝑓 𝑎𝑛𝑑 − 𝑔 are in 𝐿1, hence �̅�(−𝑓 − 𝑔) ≤ 𝐷(−𝑓) + 𝐷(−𝑔) = −𝐷(𝑓) − 𝐷(𝑔). 

Thus 𝐷(𝑓 + 𝑔) = −�̅�(−𝑓 − 𝑔) ≥ 𝐷(𝑓) + 𝐷(𝑔) ≥ �̅�(𝑓 + 𝑔). But 𝐷(𝑓 + 𝑔) ≤ �̅�(𝑓 + 𝑔). 

Therefore 𝐷(𝑓 + 𝑔) = �̅�(𝑓 + 𝑔),  this implies that 𝑓 + 𝑔 is in 𝐿1. 

Third we must proof that if 𝑓 𝑎𝑛𝑑 𝑔 in 𝐿1and 𝑎, 𝑏 are real numbers, then 𝑎𝑓 + 𝑏𝑔 is in 𝐿1. 

𝐷(𝑎𝑓 + 𝑏𝑔) = 𝐷(𝑎𝑓) + 𝐷(𝑏𝑔) = 𝑎𝐷(𝑓) + 𝑏𝐷(𝑔). 

Hence 𝐿1 is a vector space and 𝐷 is a linear functional. 

If 𝑓 ≤ 𝑔 then if ℎ is in 𝐿∗ and ℎ ≥ 𝑔 then ℎ ≥ 𝑓. Hence, �̅�(𝑓) ≤ �̅�(𝑔). 

If 𝑓 ≤ 𝑔 then – 𝑓 ≥ −𝑔 and – �̅�(−𝑓) ≤ −�̅�(−𝑔). Thus 𝐷(𝑓) ≤ 𝐷(𝑔). 

By above, we see that 𝐷 is positive.  

if 𝑓 is in 𝐿∗, then there is a sequence {𝑔𝑛} , 𝑔𝑛 ⊂ 𝐿, such that 𝑔𝑛 ↑ 𝑓 and 𝑓 ≥ 𝑔𝑛 for all n. 

Hence 𝐷(𝑓) ≥ 𝐷(𝑔𝑛) = 𝐼(𝑔𝑛) for all n. Therefore 𝐷(𝑓) ≥ lim 𝐷(𝑔𝑛) = 𝐷(𝑓). 
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But  𝐷(𝑓) ≤ �̅�(𝑓) = 𝐷(𝑓). Hence, But  𝐷(𝑓) = 𝐷(𝑓) = �̅�(𝑓). 

Let 𝑓 ∈ 𝐿 then 𝐷(𝑓) < ∞. Hence 𝑓 ∈ 𝐿1, implies that 𝐿1 is an extension of 𝐿. 

To prove that 𝐿1 is a vector lattice we must show that if 𝑓 ∈ 𝐿1 then 𝑓⋁0 is in 𝐿1. 

Let 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐿∗with 𝑔 ≥ 𝑓. Then 𝑔 ∨ 0 ≥ 𝑓 ∨ 0 and 𝑔 ∧ 0 ≥ 𝑓 ∧ 0 

Then �̅�(𝑓 ∨ 0) + �̅�(𝑓 ∧ 0) ≤ �̅�(𝑔 ∨ 0) + �̅�(𝑔 ∧ 0) = 𝐷(𝑔) and since 𝑔 ≥ 𝑓  

then �̅�(𝑓 ∨ 0) + �̅�(𝑓 ∧ 0) ≤ 𝐷(𝑓). 

If we replace 𝑓 by −𝑓 in the above inquality, we must replace 𝑓 ∨ 0 by −(𝑓 ∧ 0) and 𝑓 ∧ 0 by 

−(𝑓 ∨ 0). Then �̅�(−(𝑓 ∧ 0) + �̅�(−(𝑓 ∨ 0)) ≤ 𝐷(−𝑓). 

Thus – 𝐷(𝑓 ∧ 0) − 𝐷(𝑓 ∨ 0) ≤ 𝐷(−𝑓) = −𝐷(𝑓). 

Therefore, �̅�(𝑓 ∨ 0) + �̅�(𝑓 ∧ 0) ≤ 𝐷(𝑓) ≤ 𝐷(𝑓 ∧ 0) + 𝐷(𝑓 ∨ 0)  which implies that �̅�(𝑓 ∨

0) − 𝐷(𝑓 ∨ 0) + �̅�(𝑓 ∧ 0) − 𝐷(𝑓 ∧ 0) ≤ 0. But 𝐷(ℎ) ≤ 𝐷(ℎ)  for all h in 𝐿∗ , then  𝐷(ℎ) −

𝐷(ℎ) ≥ 0 for all h in 𝐿∗.  

Hence �̅�(𝑓 ∨ 0) − 𝐷(𝑓 ∨ 0) = 0. 

Therefore, 𝑓⋁0 is in 𝐿1 and 𝐿1is a vector lattice. [1] 

Theorem 5.8  

(1) If 𝑓 is D-integrable, and 𝑓 ≥ 0 then 𝐷(𝑓) ≥ 0. 

(2) If c is a real number and 𝑓 is I integrable, then 𝑐𝑓 is I integrable and 𝐷(𝑐𝑓) = 𝑐𝐷(𝑓). 

(3) 𝐼𝑓 𝑓1𝑎𝑛𝑑 𝑓2 𝑎𝑟𝑒 I  integrable, then 𝑓1 +  𝑓2  are I  integrable and 𝐷(𝑓1 +  𝑓2) = 𝐷(𝑓1) +

 𝐷(𝑓2). 

(4) If 𝑓1 𝑎𝑛𝑑 𝑓2 𝑎𝑟𝑒 I integrable, then 𝑓1⋁𝑓2 𝑎𝑛𝑑 𝑓1 ⋀𝑓2 are D-integrable. 

(5) If 𝑓 is D integrable, |𝑓| is D integrable and (|𝐷(𝑓)|) ≤ 𝐷(|𝑓|). 

Proof:  

(1) Since 0 ≤ 𝑓, 0 = D̅(0) ≤ D̅(𝑓). Therefore 𝐷(𝑓) = D̅(𝑓) ≥ 0. 

(2) Let 𝑐 ≥ 0. 𝐵𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚  D̅(𝑐𝑓) = 𝑐D̅(𝑓) = 𝑐𝐷(𝑓).  

There fore  D(𝑐𝑓) = 𝑐𝐷(𝑓), and so for 𝑐 ≥ 0, 𝐷(𝑐𝑓) = D̅(𝑐𝑓) = D(𝑐𝑓) = 𝑐𝐷(𝑓). 𝐿𝑒𝑡 𝑐

< 0. Then D̅(𝑐𝑓) = D̅((−𝑐)(−𝑓)) = −𝑐D̅(−𝑓) = 𝑐D(𝑓)

= 𝑐𝐷(𝑓) and − D(𝑐𝑓) = D̅(−𝑐𝑓) = −𝑐D̅(𝑓) = −𝑐𝐷(𝑓) > That is, D(𝑐𝑓)

= 𝑐𝐷(𝑓). 

Thus for all real c, 𝐷(𝑐𝑓) = D(𝑐𝑓) = D̅(𝑐𝑓) = 𝑐𝐷(𝑓). 

(3) since D̅(𝑓1 + 𝑓2) ≤ D̅(𝑓1) + D̅(𝑓2) = D(𝑓1) + D(𝑓2). 

−D(𝑓1 + 𝑓2) = D̅(−𝑓1 − 𝑓2) ≤ D̅(−𝑓1) + D̅(−𝑓2) 

                                                                = −𝐷(𝑓1)  − 𝐷(𝑓2). 

Therefore D(𝑓1 + 𝑓2) ≥ 𝐷(𝑓1) + 𝐼(𝑓2).  

Since D̅(𝑓1 + 𝑓2) ≥ D(𝑓1 + 𝑓2) ⇒ D̅(𝑓1 + 𝑓2) = 𝐷(𝑓1) + 𝐷(𝑓2), and also D(𝑓1 + 𝑓2) = 𝐷(𝑓1) +

𝐷(𝑓2),therefore  𝑓1 + 𝑓2 is D-integrable and 𝐷(𝑓1 + 𝑓2) = 𝐷(𝑓1) +  𝐷(𝑓2). 

(4) Suppose 𝑓1 𝑎𝑛𝑑 𝑓2 𝑎𝑟𝑒 I integrable.  Then D̅(𝑓1⋁𝑓2) + D̅( 𝑓1 ⋀𝑓2) ≤ D̅(𝑓1) + D̅(𝑓2) =

𝐷(𝑓1) + 𝐷(𝑓2), 

and D̅(−𝑓1⋁ − 𝑓2) =  D̅(−𝑓1⋀ − 𝑓2) ≤ D̅(−𝑓1) + I(̅−𝑓2). 

Now −𝑓1⋁ − 𝑓2 = −( 𝑓1 ⋀𝑓2), and  −𝑓1⋀ − 𝑓2 = −(𝑓1⋁𝑓2) therefore 
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− D(𝑓1⋀𝑓2) − D(𝑓1⋁𝑓2) ≤ −D(𝑓1) − D(𝑓2) = −𝐼(𝑓1) − 𝐼(𝑓2). 

Hence D(𝑓1⋀𝑓2) + D(𝑓1⋁𝑓2) ≥ 𝐷(𝑓1) + 𝐷(𝑓2) ≥ D̅(𝑓1⋁𝑓2) + D̅( 𝑓1 ⋀𝑓2).  

That is [D̅(𝑓1⋁𝑓2) − D(𝑓1⋁𝑓2)] + [D̅( 𝑓1 ⋀𝑓2) − D(𝑓1⋀𝑓2)] ≤ 0. 

Since each of these differences is non-negative, each must be zero, and so the theorem is proved. 

(5) D̅(|𝑓|) − D(|𝑓|) ≤ D̅(𝑓) − D(𝑓)   = 𝐷(𝑓) − 𝐷(𝑓) = 0, but   

D̅(|𝑓|) − D(|𝑓|) ≥ 0 , thus D̅(|𝑓|) = D(|𝑓|)  and |𝑓|  is 𝐷 -integrable .Since −|𝑓| ≤ 𝑓 ≤

|𝑓| ⟹  −𝐷(|𝑓|) ≤ 𝐷(𝑓) ≤ 𝐷(|𝑓|).That is, |𝐷(𝑓)| ≤ 𝐷(|𝑓|). 

Theorem 5.9[𝟏]  

If {𝑓𝑛} is a sequence of functions in 𝐿1 such that 𝑓𝑛 ↑ 𝑓. Then 𝑓 is in 𝐿1 if and only if lim 𝐷(𝑓𝑛) is 

finite. If 𝑓 in 𝐿1, then 𝐷(𝑓) = lim 𝐷(𝑓𝑛). 

Proof: 

(⟹) suppose that lim 𝐷(𝑓𝑛) = ∞ and since 𝑓𝑛 ↑ 𝑓, 𝑓 ≥ 𝑓𝑛 for all n then  

𝐷(𝑓) ≥ lim 𝐷(𝑓𝑛) = ∞. this implies that 𝑓 is not in 𝐿1. 

(⟸) Suppose that lim 𝐷(𝑓𝑛) is finite, since 𝑓 ≥ 𝑓𝑛 then −𝑓 ≤ −𝑓𝑛 for all n. 

Thus  𝐷(𝑓) ≤ 𝐷(𝑓) = 𝐷(𝑓𝑛) for all n which implies that 𝐷(𝑓) ≥ lim 𝐷(𝑓𝑛). 

Let 𝜀 > 0 and let {𝑔𝑛} be a sequence of functions in 𝐿∗ such that 𝑔1 ≥ 𝑓1, 𝑔𝑛 ≥ 𝑓𝑛 − 𝑓𝑛−1  for 

𝑛 ≥ 2 and with 𝐷(𝑔1) < 𝐷(𝑓1) + 𝜖
2⁄  and 𝐷(𝑔𝑛) < 𝐷(𝑓𝑛 − 𝑓𝑛−1) + 𝜖

2⁄  for 𝑛 ≥ 2,  𝑔𝑛 ≥ 𝑓𝑛 −

𝑓𝑛−1 ≥ 0. Now define ℎ𝑛 = ∑ 𝑔𝑖
𝑛
𝑖=1  for all n. then  ℎ𝑛 is in 𝐿∗ for all n and the sequence {ℎ𝑛} is 

monotone increasing, which implies that lim ℎ𝑛 is in 𝐿∗ and 𝐼(lim ℎ𝑛 ) = lim 𝐼( ℎ𝑛 ). 

Then ℎ𝑛 = ∑ 𝑔𝑖
𝑛
𝑖=1 ≥ ∑ (𝑓𝑖 − 𝑓𝑖−1) + 𝑓1 = 𝑓𝑛

𝑛
𝑖=2  which implies that lim ℎ𝑛 ≥ lim 𝑓𝑛 = 𝑓 ,  so that 

lim I( ℎ𝑛) ≥ 𝐼(̅𝑓).  

But 𝐷(ℎ𝑛) = ∑ 𝐷(𝑔𝑖) < ∑ 𝐷(𝑓𝑖 − 𝑓𝑖−1) + 𝐷(𝑓) + ∑ 𝜖
2𝑖⁄

𝑛
𝑖=1

𝑛
𝑖=2

𝑛
𝑖=1  

= 𝐷(𝑓𝑛) + ∑ 𝜖
2𝑖⁄

𝑛

𝑖=1

 . 

Thus  lim 𝐷(ℎ𝑛) < lim 𝐷( 𝑓𝑛) +  𝜖.  

Hence �̅�(𝑓) ≤ lim 𝐷(ℎ𝑛) ≤ lim 𝐷(𝑓𝑛) + 𝜖 ≤ 𝐷(𝑓) + 𝜖. 

But ϵ was arbitrary, so  �̅�(𝑓) ≤ 𝐷(𝑓). 

Thus �̅�(𝑓) = 𝑙𝑖𝑚 𝐷(𝑓𝑛) = 𝐷(𝑓) = 𝐷(𝑓) which is finite. 

Therefore 𝑓 is in 𝐿1. 

Theorem 5.10 [𝟏] 

let  𝑓𝒎 be a sequence of non-negative functions in 𝐿1. Then 𝑖𝑛𝑓𝑓𝑚 𝑖𝑠 𝑖𝑛  𝐿1. Further, if 𝑙𝑖𝑚 𝐼(𝑓𝑚 ) 

is finite then is in 𝐿1 and I(𝑙𝑖𝑚  𝑓𝑚) ≤ 𝑙𝑖𝑚 𝐷(𝑓𝑚). 

Proof: 

Let 𝑔𝑛 = 𝑓1 ∧ 𝑓2 ∧ … … ∧ 𝑓𝑛. Then the sequence {𝑔𝑛} is a decreasing sequence of non-negative 

function in 𝐿1. At any point x of 𝛺, 𝑔𝑛(𝑥) = 𝑔1𝑏1≤𝑖≤𝑛 𝑓𝑖(𝑥) 

Hence 𝑔 = lim 𝑔𝑛 = inf 𝑓𝑚 then −𝑔𝑛 ↑ −𝑔. Since 𝑔𝑛 ≥ 0, −𝑔𝑛 ≤ 0 then 𝐷(−𝑔𝑛) ≤ 0 for all n. 

Thus lim 𝐷(−𝑔𝑛) ≤ 0 and is finite, so, −𝑔 is in 𝐿1, this implies that 𝑔 = inf 𝑓𝑚 is in 𝐿1. 
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Define the sequence {ℎ𝑛} by ℎ𝑛 = 𝑖𝑛𝑓𝑚≥𝑛𝑓𝑚, ℎ𝑛 is in 𝐿1 for all n. 

Since 𝑓𝑚 ≥ 0, ℎ𝑛 ≥ 0, lim ℎ𝑛 = lim  𝑓𝑚, and ℎ𝑛 ≤ 𝑓𝑚 if 𝑛 ≤ 𝑠, thus 

lim 𝐷(ℎ𝑛) ≤ lim 𝐷(𝑓𝑚) and is finite. 

Hence lim ℎ𝑛 = 𝑙𝑖𝑚  𝑓𝑚 is in 𝐿1, and 𝐷(lim 𝑓𝑚) = 𝐷((lim ℎ𝑛) = lim  𝐷(ℎ𝑛) ≤ lim 𝐷(𝑓𝑚) . 

Theorem 5.11  

Let {𝑓𝑛} be a sequence of functions in 𝐿1, 𝑔 in 𝐿1 such that |𝑓𝑛| ≤ 𝑔 for all n. then if  

𝑓 = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛, 𝐷(𝑓) = 𝑙𝑖𝑚𝑛→∞ 𝐷(𝑓𝑛). 

Proof: 

Since −𝑓𝑛 ≤ |𝑓𝑛| ≤ 𝑔 implies that 𝑓𝑛 + 𝑔 ≥ 0 for all n, 𝑓𝑛 + 𝑔 is in 𝐿1 for all n, 𝑓𝑛 ≤ |𝑓𝑛| ≤ 𝑔 

for all n, and 𝐷(𝑓𝑛) ≤ 𝐷(𝑔) for all n. 

Therefore, 𝐷(𝑓𝑛 + 𝑔) = 𝐷(𝑓𝑛) + 𝐷(𝑔) ≤ 2𝐷(𝑔) for all n. 

Thus lim  𝐷(𝑓𝑛 + 𝑔) ≤ 2𝐷(𝑔) < ∞. 

Then 𝑙𝑖𝑚 (𝑓𝑛 + 𝑔) = lim𝑓𝑛 + 𝑔 = 𝑓 + 𝑔  is in 𝐿1. 

Thus (𝑓 + 𝑔) − 𝑔 = 𝑓 is in 𝐿1. 

Therefore, 𝐷(𝑓) + 𝐷(𝑔) = 𝐷(𝑓 + 𝑔) = 𝐷 (𝑙𝑖𝑚 (𝑓𝑛 + 𝑔)) ≤  𝑙𝑖𝑚 𝐷(𝑓𝑛 + 𝑔) = 𝑙𝑖𝑚 𝐷(𝑓𝑛) +

𝐷(𝑔). 

Therefore, 𝐷(𝑓) ≤ 𝑙𝑖𝑚 𝐷(𝑓𝑛). 

But 𝑔 − 𝑓𝑛 ≥ 0 implies that 

𝐷(𝑔) − 𝐷(𝑓) = 𝐷(𝑔 − 𝑓) = 𝐷(lim (𝑔 − 𝑓𝑛)) ≤ 𝑙𝑖𝑚  𝐷(𝑔 − 𝑓𝑛) = 𝐷(𝑔) + 𝑙𝑖𝑚  𝐷(−𝑓𝑛)

= 𝐷(𝑔) + 𝑙𝑖𝑚(− 𝐷(𝑓𝑛)) = 𝐷(𝑔) − 𝑙𝑖𝑚 𝐷(𝑓𝑛). 

Therefore, 𝑙𝑖𝑚 𝐷(𝑓𝑛) ≤ 𝐷(𝑓) ≤ 𝑙𝑖𝑚 𝐷(𝑓𝑛)  which implies that lim 𝐷(𝑓𝑛)  exist and 𝐷(𝑓) =

lim 𝐷(𝑓𝑛). 

Theorem 5.12[1] 

let 𝑓 is a real-valued function on  𝛺. then 𝑓 is in 𝐿1 if and only if there exists a sequence {𝑓𝑛} of 

functions in 𝐿 such that  𝐷(|𝑓 − 𝑓𝑛|) ⟶ 0 as 𝑛 ⟶ ∞. 

Proof: 

(⟹) Suppose that 𝐷(|𝑓 − 𝑓𝑛|) ⟶ 0 then 𝐷(𝑓) = lim 𝐷( 𝑓𝑛) < ∞. 

But 𝐷(𝑓) = lim 𝐷( 𝑓𝑛) then −𝐷(𝑓) = 𝐷(−𝑓) = lim 𝐷(− 𝑓𝑛) = lim  (−𝐷(𝑓𝑛)) = −lim  𝐷(𝑓𝑛) =

− 𝐷(𝑓). 

Hence 𝐷(𝑓) = 𝐷(𝑓) and is finite then 𝑓 is in 𝐿1. 

(⟸) suppose that 𝑓 is in 𝐿1. Then there exists a sequence {𝑔𝑛} of functions in 𝐿∗ with 𝑔𝑛 ↑ 𝑓 and 

such that 𝐷(𝑓) ≤ 𝐷(𝑔𝑛) < 𝐷(𝑓) + 1
𝑛⁄ . 

But 𝑔𝑛 in 𝐿∗ then there exist a sequence {ℎ𝑛,𝑚} of functions in 𝐿 for each n, such that ℎ𝑛,𝑚 ↑ 𝑔𝑛 

and 𝐷(ℎ𝑛,𝑚) ↑ 𝐷(𝑔𝑛). 

For each n, we choose 𝑓𝑛 in 𝐿 by 𝑓𝑛 = ℎ𝑛,𝑚 for some 𝑚 with  

𝐷(𝑔𝑛) ≥ 𝐷(𝑓𝑛) = 𝐷(ℎ𝑛,𝑚) > 𝐷(𝑔𝑛) − 1
𝑛⁄ . 
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Then 𝑓𝑛 is in 𝐿 for all n and for each n, 𝐷(𝑓 − 𝑓𝑛) = 𝐷(𝑓) − 𝐷(𝑓𝑛) > 𝐷(𝑔𝑛) − 1
𝑛⁄ − 𝐷(𝑓𝑛) ≥

𝐷(𝑔𝑛) − 1
𝑛⁄ − 𝐷(𝑔𝑛) = − 1

𝑛⁄ . 

𝐷(𝑓 − 𝑓𝑛) = 𝐷(𝑓) − 𝐷(𝑓𝑛) ≤ 𝐷(𝑔𝑛) − 𝐷(𝑓𝑛) < 𝐷(𝑔𝑛) − 𝐷(𝑔𝑛) + 1
𝑛⁄ = 1

𝑛⁄ . 

Therefore,− 1
𝑛⁄ < 𝐷(𝑓 − 𝑓𝑛) < 1

𝑛⁄  so 𝐷(𝑓 − 𝑓𝑛) → 0. 

Consider (𝑓𝑛 ∨ 𝑓) − 𝑓 in 𝐿1 and 𝑓𝑛 ≤ 𝑔𝑛 implies that 𝑓 ≤ 𝑓𝑛 ∨ 𝑓 ≤ 𝑔𝑛 ∨ 𝑓 = 𝑔𝑛. 

Hence 0 ≤ 𝐷((𝑓𝑛 ∨ 𝑓) − 𝑓) ≤ 𝐷(𝑔𝑛) − 𝐷(𝑓). 

But 𝐷(𝑔𝑛) ↓ 𝐷(𝑓) and hence 𝐷(𝑔𝑛) − 𝐷(𝑓) ↓ 0. 

Thus 𝐷 (((𝑓𝑛 ∨ 𝑓) − 𝑓) − 𝑓) ↓ 0. 

Suppose 𝑥 is in 𝛺. then 

((𝑓𝑛 ∨ 𝑓) − 𝑓)(𝑥) > 0 𝑖𝑓𝑓 (𝑓𝑛)(𝑥) > 𝑓(𝑥), and 𝑓𝑛(𝑥) ≤ 𝑓(𝑥)  

implies that ((𝑓𝑛 ∨ 𝑓) − 𝑓) − 𝑓)(𝑥) = 𝑓(𝑥)  

and hence ((𝑓𝑛 ∨ 𝑓) − 𝑓) − 𝑓)(𝑥) = 0. 

Thus (𝑓𝑛 ∨ 𝑓) − 𝑓 = (𝑓𝑛 − 𝑓)+. 

Then (𝑓𝑛 − 𝑓)− = (𝑓𝑛 − 𝑓)+ − (𝑓𝑛 − 𝑓) = (𝑓𝑛 − 𝑓)+ + (𝑓𝑛 − 𝑓). 

Hence 𝐷((𝑓𝑛 − 𝑓)−) → 0. 

Thus, since |𝑓 − 𝑓𝑛| = |𝑓𝑛 − 𝑓| = (𝑓𝑛 − 𝑓)+ + (𝑓𝑛 − 𝑓)−, 

And since 𝐷(|𝑓 − 𝑓𝑛|) → 0. [1] 

Theorem 5.13[𝟏] 

Let h is a real-valued function defined on 𝛺. and let 𝑔 ∧ ℎ is in 𝐿 for all functions 𝑔 in 𝐿. Then 

𝑓 ∧ ℎ is in 𝐿1 for all functions 𝑓 in 𝐿1. 

Proof: 

Suppose that 𝑓 is in 𝐿1. Then there exists a sequence {𝑓𝑛} of functions in 𝐿 with  𝐷(|𝑓 − 𝑓𝑛|) →

0.  

And since 𝑓𝑛 is in 𝐿  then 𝑓𝑛 ∧ ℎ is in 𝐿, and by the inequality  

0 ≤ |(𝑓 ∧ ℎ) − (𝑓𝑛 ∧ ℎ)| ≤ |𝑓 − 𝑓𝑛|  

and since 𝐷(|(𝑓 ∧ ℎ) − (𝑓𝑛 ∧ ℎ)| ≤ |𝑓 − 𝑓𝑛|) ⟶ 0. 

Hence 𝑓 ∧ ℎ is in in 𝐿1. [1] 

Theorem 5.14 [𝟏] 

The functional 𝐷 is a Dniell integral on the vector lattice 𝐿1. 

Proof: 

Since 𝐷 is a positive linear functional and 𝐿1 is a vector lattice  

Let {𝑓𝑛} is an increasing sequence of functions in 𝐿1, and 𝑓 in 𝐿1 with 𝑓 ≤ lim 𝑓𝑛. 

Let 𝑔𝑛 = 𝑓𝑛 − 𝑓1 for all n. Then 𝐷(𝑓𝑛) = 𝐷(𝑓1) + 𝐷(𝑔𝑛)  

then lim 𝐷(𝑓𝑛) = 𝐷(𝑓1) + 𝑙𝑖𝑚  𝐷(𝑔𝑛). 

Let 𝑔 = 𝑙𝑖𝑚 𝐼(𝑓𝑛) = 𝑓1 + 𝑙𝑖𝑚 𝑔𝑛 = lim𝑓𝑛.   

Since 𝑔𝑛 ≥ 𝑓 , and 𝑙𝑖𝑚𝑔𝑛  in 𝐿1  and hence ℎ  in 𝐿1.  Then 𝑓 ≤ lim 𝑓𝑛 = ℎ , so 𝐷(𝑓) ≤ 𝐷(𝑔) =

𝐷(𝑓1) + lim 𝐷(𝑔𝑛) = lim 𝐷(𝑓𝑛). 
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Therefore  𝐷 is a Daniell integral. [1] 
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