On σ -Convergent Triple Sequences Spaces Defined by Triple Sequence of Young Functions

Authors Names	ABSTRACT
Aqeel Mohammed Hussein	In this article, we introduce the concept of σ -convergent triple sequences spaces, which are defined by triple sequences of young functions
Publication data: 31 /8/2023 Keywords: Triple sequence space, σ-convergent, young function, linear space, ideal sequence algebra	$(c_0)^{3\sigma}(\mathbb{U}), (c)^{3\sigma}(\mathbb{U}), (\ell_\infty)^{3\sigma}(\mathbb{U}), (\mathbb{m}_0)^{3\sigma}(\mathbb{U}), \text{ and } (\mathbb{m})^{3\sigma}(\mathbb{U}) \text{ and we examine}$ some of their topological and algebraic properties, such as linear space and sequence algebra. Inclusion relations involving these sequence spaces are also proved by us.

1. Introducation

Fast [4] and Schoenberg [11] independently each presented the idea of statistical convergence for the first time. This idea was expanded upon by Kumar [6] in probabilistic normed space. The σ -convergence double sequence spaces were first introduced by Khan and Khan ([7],[8]). Tripathy [13] established the concept of statistical convergent double sequence and developed it in σ -convergent double sequence.

The double sequence space connected to multiplier sequences was researched by Tripathy and Sen [14]. A generalization of statistical convergence is the idea of σ -convergence. Kostyrko, Salat, and Wilczynski [5] established the concept of σ -convergence of real sequence in its earliest stage. Later, Salat, Tripathy, and Ziman [12] and other other scholars investigated it. Utilizing triple difference sequences of real numbers, Tripathy and Goswami [15] expanded this idea in probabilistic normed space. Sahiner, Gurdal, and Duden [10] introduced and studied the many conceptions of triple sequences in the beginning.

This idea is generalized by Dutta, Esi, and Tripathy [1] using the Orlicz function. In their study of σ -related features in triple sequence spaces, Sahiner and Tripathy [9] produced several intriguing findings. Recently, Tripathy and Goswami ([16],[17]) explored multiple sequences in probabilistic normed spaces and vector valued multiple sequences using the Orlicz function, respectively. By utilizing the difference operator, Debnath, Sharma, and Das [3] and Debnath and Das [2] generalized these ideas.

2. Definitions and Preliminaries

 $\Omega:[0,\infty)\to[0,\infty)$ is a continuous, non-decreasing , and convex with $\Omega(0)=0,\Omega(\mathfrak{A})\succ 0$ as $\mathfrak{A}\succ 0$ and $\Omega(\mathfrak{A})\to\infty$ as $\mathfrak{A}\to\infty$ implies Ω is an Orlicz function .

 $\mathcal{H}: [0,\infty) \to [0,\infty) \ni \mathcal{H}(\mathfrak{A}) = \frac{\Omega(\mathfrak{A})}{\mathfrak{A}}$, $\mathfrak{A} \succ 0$ and $\mathcal{H}(0) = 0$, $\mathcal{H}(\mathfrak{A}) \succ 0$ as $\mathfrak{A} \succ 0$ and $\mathcal{H}(\mathfrak{A}) \to 0$ as $\mathfrak{A} \to \infty$ tend to \mathcal{H} is a young function .

The conditions are holds:

- (i) $\varphi \in \sigma$.
- (ii) \mathbb{A} , $\mathbb{B} \in \sigma$ implies $\mathbb{A} \cup \mathbb{B} \in \sigma$.
- (iii) $\mathbb{A} \in \sigma$, $\mathbb{B} \subset \mathbb{A}$ implies $\mathbb{B} \in \sigma$ lead to $\sigma \subset \mathbb{X} \neq \phi$ is an ideal in \mathbb{X} .

 $\forall \ \epsilon > 0 \ , \{(\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathbb{L}| \geqslant \epsilon\} \in \sigma \text{ pointing to a sequence } (\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}) \text{ is } \sigma\text{-Convergence to a number } \mathbb{L}.$

$$\forall \; \epsilon \succ 0 \;, \exists \; \mathfrak{e} = \mathfrak{e}_0 \;, \delta = \mathfrak{d}_0 \;, c = \mathfrak{c}_0 \; \ni \left\{ (\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \left| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathfrak{S}_{ebc} \right| \geqslant \epsilon \right\} \in \sigma \; \; \text{implies} \; \left(\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \right) \text{ is} \\ \sigma\text{-Cauchy.} \; \exists \; \mathcal{M} \succ 0 \; \ni \left\{ (\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \left| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \right| \succ \mathcal{M} \right\} \in \sigma \; \text{lead to} \; \left(\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \right) \text{ is} \; \sigma\text{-Bounded}.$$

 $(\mathfrak{S}_{\mathfrak{hgf}} * \mathfrak{E}_{\mathfrak{hgf}}) \in \mathbb{E}^3$, whenever $(\mathfrak{S}_{\mathfrak{hgf}}) \in \mathbb{E}^3$ and $(\mathfrak{E}_{\mathfrak{hgf}}) \in \mathbb{E}^3$ tend to a triple sequences space \mathbb{E}^3 is a sequence algebra. We provide and define these spaces as follows in this study:

$$(c_0)^{3\sigma}(\mho) = \{ \mathfrak{S} \in \mathbb{W}^3 : \sigma - \lim \mathcal{H}_{\mathfrak{h}\mathfrak{q}\mathfrak{f}} (|\mathfrak{S}_{\mathfrak{h}\mathfrak{q}\mathfrak{f}}|) = 0 \} \in \sigma.$$

$$(c)^{3\sigma}(\mho) = \{ \mathfrak{S} \in \mathbb{W}^3 : \sigma - \lim \mathcal{H}_{\mathsf{baf}} (|\mathfrak{S}_{\mathsf{baf}} - \mathbb{L}|) = 0, \text{ for some } \mathbb{L} \} \in \sigma.$$

$$(\ell_\infty)^{3\sigma}(\mho) = \left\{ \mathfrak{S} \in \mathbb{W}^3 : \sup_{\mathfrak{h}, \mathfrak{g}, \mathfrak{f} \in \mathbb{N}} \ \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \big(|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}| \big) < \infty \right\} \in \sigma.$$

$$(\mathbf{m}_0)^{3\sigma}(\mho) = (c_0)^{3\sigma}(\mho) \cap (\ell_\infty)^{3\sigma}(\mho).$$

$$(\mathbf{m})^{3\sigma}(\mho) = (c)^{3\sigma}(\mho) \cap (\ell_{\infty})^{3\sigma}(\mho).$$

3. Main Results

Theorem 3.1: $(c_0)^{3\sigma}(\mho)$, $(c)^{3\sigma}(\mho)$, $(\ell_\infty)^{3\sigma}(\mho)$, $(m_0)^{3\sigma}(\mho)$, and $(m)^{3\sigma}(\mho)$ are linear spaces.

Proof: Assume that (\mathfrak{S}_{haf}) , $(\mathfrak{E}_{haf}) \in (c)^{3\sigma}(\mathfrak{V})$ and α , β be two scalars such that

$$|\alpha| \le 1$$
 and $|\beta| \le 1$. Then

$$\sigma - \lim \mathcal{H}_{hgf}(|\mathfrak{S}_{hgf} - \mathbb{L}_1|) = 0$$
, for some $\mathbb{L}_1 \in \mathbb{C}$

$$\sigma - \lim \mathcal{H}_{hqf}(|\mathfrak{E}_{hqf} - \mathbb{L}_2|) = 0$$
, for some $\mathbb{L}_2 \in \mathbb{C}$

Now, $\forall \epsilon > 0$, we can write

$$\mathbb{A}_1 = \left\{ (\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \left(\left| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathbb{L}_1 \right| \right) > \frac{\varepsilon}{2} \right\} \in \sigma. \ (1)$$

$$\mathbb{A}_2 = \left\{ (\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \left(\left| \mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathbb{L}_2 \right| \right) > \frac{\varepsilon}{2} \right\} \in \sigma. \eqno(2)$$

Since \mathcal{H}_{haf} is a young function, we get

$$\begin{split} &\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\big(\alpha\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}+\beta\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big)-(\alpha\mathbb{L}_1+\beta\mathbb{L}_2)\big|\big)=\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\big(\alpha\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\alpha\mathbb{L}_1\big)+\big(\beta\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\beta\mathbb{L}_2\big)\big|\big)\\ &\leqslant \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\alpha\big|\big|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_1\big|\big)+\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\beta\big|\big|\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_2\big|\big)=|\alpha|\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_1\big|\big)+|\beta|\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_2\big|\big)\\ &\leqslant \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_1\big|\big)+\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}_2\big|\big). \end{split}$$

From (1) and (2), we obtain

$$\left\{(\mathfrak{h},\mathfrak{g},\mathfrak{f})\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big(\big|\big(\alpha\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}+\beta\mathfrak{E}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big)-(\alpha\mathbb{L}_1+\beta\mathbb{L}_2)\big|\big)\succ\epsilon\right\}\subset\mathbb{A}_1\cup\mathbb{A}_2.$$

Therefore $\alpha \mathfrak{S}_{\mathfrak{hgf}} + \beta \mathfrak{E}_{\mathfrak{hgf}} \in (c)^{3\sigma}(\mathfrak{V})$. Thus, $(c)^{3\sigma}(\mathfrak{V})$ is a linear space.

Other cases are similar.

Theorem 3.2: A sequence $\mathfrak{S} = (\mathfrak{S}_{\mathfrak{hgf}}) \in (\mathfrak{m})^{3\sigma}(\mathfrak{V})$ is σ -convergence $\Leftrightarrow \forall \varepsilon > 0, \exists \mathbb{I}_{\varepsilon}, \mathbb{J}_{\varepsilon}, \mathbb{K}_{\varepsilon} \in \mathbb{N} \ni \{(\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathcal{H}_{\mathfrak{hqf}} | \mathfrak{S}_{\mathfrak{hqf}} - \mathfrak{S}_{\mathbb{I}_{\varepsilon}\mathbb{I}_{\varepsilon}\mathbb{K}_{\varepsilon}}| \leq \varepsilon \} \in (\mathfrak{m})^{3\sigma}(\mathfrak{V}).$

Proof: Let $\mathbb{L} = \sigma - \lim \mathfrak{S}$. Then we have

$$\mathbb{A}_{\varepsilon} = \left\{ (\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \big| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathbb{L} \big| \leqslant \frac{\varepsilon}{2} \right\} \in (\mathbb{m})^{3\sigma}(\mathfrak{V}), \forall \ \varepsilon > 0.$$

Next fix \mathbb{I}_{ε} , \mathbb{J}_{ε} , $\mathbb{K}_{\varepsilon} \in \mathbb{A}_{\varepsilon}$ then we have

$$\left|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathfrak{S}_{\mathbb{I}_{\mathcal{E}}\mathbb{M}_{\mathcal{E}}}\right| \leqslant \left|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathbb{L}\right| + \left|\mathbb{L}-\mathfrak{S}_{\mathbb{I}_{\mathcal{E}}\mathbb{M}_{\mathcal{E}}}\right| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \forall \mathfrak{h}, \mathfrak{g}, \mathfrak{f} \in \mathbb{A}_{\varepsilon}.$$

Thus, $\{(\mathfrak{h},\mathfrak{g},\mathfrak{f})\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}\big|\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}-\mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{I}_{\epsilon}\mathbb{K}_{\epsilon}}\big|\leqslant\epsilon\}\in(\mathbb{m})^{3\sigma}(\mho).$

Conversely, suppose that $\{(\mathfrak{h},\mathfrak{g},\mathfrak{f})\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\mathcal{H}_{\mathfrak{h}\mathfrak{q}\mathfrak{f}}\big|\mathfrak{S}_{\mathfrak{h}\mathfrak{q}\mathfrak{f}}-\mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{I}_{\epsilon}\mathbb{K}_{\epsilon}}\big|\leqslant\epsilon\}\in(\mathbb{m})^{3\sigma}(\mho), \text{we get}$

$$\begin{split} \big\{ (\mathfrak{h},\mathfrak{g},\mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \big| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{J}_{\epsilon}\mathbb{K}_{\epsilon}} \big| \leqslant \epsilon \big\} \in (m)^{3\sigma}(\mho), \forall \ \epsilon > 0, \text{ then we can find the set} \\ \mathbb{B}_{\epsilon} = \big\{ (\mathfrak{h},\mathfrak{g},\mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \in \big[\mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{J}_{\epsilon}\mathbb{K}_{\epsilon}} - \epsilon, \mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{J}_{\epsilon}\mathbb{K}_{\epsilon}} + \epsilon \big] \big\} \in (m)^{3\sigma}(\mho). \end{split}$$

 $\forall \; \epsilon > 0 \text{, consider } \mathcal{N}_{\epsilon} = \big[\mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{J}_{\epsilon}\mathbb{K}_{\epsilon}} - \epsilon, \mathfrak{S}_{\mathbb{I}_{\epsilon}\mathbb{J}_{\epsilon}\mathbb{K}_{\epsilon}} + \epsilon \big].$

Now we have $\mathbb{B}_{\varepsilon} \in (\mathbb{m})^{3\sigma}(\mathfrak{V})$ as well as $\mathbb{B}_{\frac{\varepsilon}{2}} \in (\mathbb{m})^{3\sigma}(\mathfrak{V})$, hence $\mathbb{B}_{\varepsilon} \cap \mathbb{B}_{\frac{\varepsilon}{2}} \in (\mathbb{m})^{3\sigma}(\mathfrak{V})$ which implies

 $\mathbb{B}_{\varepsilon} \cap \mathbb{B}_{\frac{\varepsilon}{2}} \neq \varphi$. Then $\{(\mathfrak{h}, \mathfrak{g}, \mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \in \mathbb{N}\} \in (\mathbb{m})^{3\sigma}(\mathfrak{T})$ which implicates diam $\mathbb{M} \leq \operatorname{diam} \mathbb{M}$

 \mathbb{M}_{ϵ} where the length of the interval \mathbb{N} is indicated by the diam of $\mathbb{M}.$

Thus, using the principle of induction, we discovered the series of closed intervals

$$\mathbb{M}_{\varepsilon} = \sigma_0 \supseteq \sigma_1 \supseteq \sigma_2 \supseteq \cdots \supseteq \sigma_{\mathbb{S}} \supseteq \cdots$$

with the help of the property that diam $\sigma_s \leq \frac{1}{2}$ diam σ_{s-1} , $\forall s = 1,2,3,4,...$ and $\{(\mathfrak{h},\mathfrak{g},\mathfrak{f}) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathfrak{S}_{haf} \in \sigma_{haf}\} \in (\mathbb{m})^{3\sigma}(\mathfrak{T})$, $\forall \mathfrak{h},\mathfrak{g},\mathfrak{f} = 1,2,3,4,...$

Then $\exists \ \xi \in \cap \ \sigma_{\mathbb{S}}$ where $\mathbb{S} \in \mathbb{N} \ni \xi = \sigma - \lim \mathfrak{S}$, so that $\mathcal{H}_{\mathfrak{hgf}}(\xi) = \sigma - \lim \mathcal{H}_{\mathfrak{hgf}}(\mathfrak{S})$ therefore $\mathbb{L} = \sigma - \lim \mathcal{H}_{\mathfrak{hgf}}(\mathfrak{S})$.

Theorem 3.3: $(c_0)^{3\sigma}(\mho) \subset (c)^{3\sigma}(\mho) \subset (\ell_\infty)^{3\sigma}(\mho)$.

Proof: We consider $(\mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}}) \in (c)^{3\sigma}(\mathfrak{V})$. Then $\exists \ \mathbb{L} \in \mathbb{C} \ni \sigma - \lim \mathcal{H}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} \left(\left| \mathfrak{S}_{\mathfrak{h}\mathfrak{g}\mathfrak{f}} - \mathbb{L} \right| \right) = 0$,

we get $\mathcal{H}_{haf}\left(\left|\mathfrak{S}_{haf}\right|\right) \leqslant \mathcal{H}_{haf}\left(\left|\mathfrak{S}_{haf}-\mathbb{L}\right|\right) + \mathcal{H}_{haf}\left(\left|\mathbb{L}\right|\right)$.

On taking supremum over \mathfrak{h} , \mathfrak{g} , and \mathfrak{f} on both sides gives $(\mathfrak{S}_{haf}) \in (\ell_{\infty})^{3\sigma}(\mathfrak{V})$.

Therefore $(c)^{3\sigma}(\mho) \subset (\ell_{\infty})^{3\sigma}(\mho)$. The direction $(c_0)^{3\sigma}(\mho) \subset (c)^{3\sigma}(\mho)$.

Thus, $(c_0)^{3\sigma}(\mho) \subset (c)^{3\sigma}(\mho) \subset (\ell_\infty)^{3\sigma}(\mho)$.

Theorem 3.4: $(c_0)^{3\sigma}(\mho)$, $(c)^{3\sigma}(\mho)$, $(\ell_\infty)^{3\sigma}(\mho)$, $(m_0)^{3\sigma}(\mho)$, and $(m)^{3\sigma}(\mho)$ are sequence algebras.

Proof: Let $(\mathfrak{S}_{\mathfrak{hgf}})$, $(\mathfrak{E}_{\mathfrak{hgf}}) \in (c_0)^{3\sigma}(\mathfrak{V})$, then we have $\sigma - \lim \mathcal{H}_{\mathfrak{hgf}}(|\mathfrak{S}_{\mathfrak{hgf}}|) = 0$ and

 $\sigma - \lim \mathcal{H}_{hgf}(|\mathfrak{E}_{hgf}|) = 0.$

Now we obtain $\sigma - \lim \mathcal{H}_{hgf} \left(\left| \mathfrak{S}_{hgf} . \mathfrak{E}_{hgf} \right| \right) = 0$. It implies that $\left(\mathfrak{S}_{hgf} . \mathfrak{E}_{hgf} . \mathfrak{E}_{hgf} \right) \in (c_0)^{3\sigma}(\mathfrak{V})$

Thus, $(c_0)^{3\sigma}(\mho)$ is a sequence algebra.

Other cases are similar.

Refrences

- [1] A.J. Datta, A. Esi & B.C. Tripathy, "Statistically convergent triple sequence spaces defined by Orlicz function", J. Math. Anal., 4(2), pp. 16-22, (2013).
- [2] S. Debnath & B.C. Das, "Some new type of difference triple sequence spaces", Palestine J. Math.Vol. 4(2), pp. 284-290, (2015).
- [3] S. Debnath, B. Sharma & B.C. Das ,"Some generalized triple sequence spaces of real numbers", J. Nonlinear Anal. Opti. 6(1), pp. 71-79, (2015).
- [4] H. Fast, "Surla convergence statistique", Colloq. Math., 2, pp. 241-244, (1951).
- [5] P. Kostyrko, T. Salat & W. Wilczynski, "I-convergence", Real Anal. Exch. 26(2), pp. 669-686, (2000).
- [6] V. Kumar," On I-convergence of double sequences ", Math. Commun., 12, pp. 171-181, (2007).
- [7] V.A. Khan & N. Khan,"On some I-convergent double sequence space defined by a modulus function", Scientific Research, 5, pp. 35-40, (2013).
- [8] V.A. Khan & N. Khan,"On some I-convergent double sequence spaces defined by a sequence of moduli", Ilirias Journal of Mathematics, 4(2), pp.1-8, (2013).

- [9] A. Sahiner & B.C. Tripathy, "Some I-related properties of Triple sequences", Selcuk. J. Appl. Math., 9(2), pp. 9-18, (2008).
- [10] A. Sahiner, M. Gurdal & K. Duden, "Triple sequences and their statistical convergence", Selcuk. J. Appl. Math., 8(2), pp. 49-55, (2007).
- [11] I.J. Schoenberg, "The integrability of certain functions and related summability methods", Amer. Math. Monthly, 66, pp. 361-375, (1959).
- [12] T. Salat, B.C. Tripathy & M. Ziman, "On some properties of I-convergence", Tatra Mountain Mathematical Publications, pp. 669-686, (2000).
- [13] B.C. Tripathy, "Statistically convergent double sequence", Tamkang. J. Math., 34(3), pp. 231-237, (2003).
- [14] B.C. Tripathy & M. Sen, "Paranormed I-convergent double sequence spaces associated with multiplier sequences", KYUNGPOOK Math. J. 54, pp. 321-332, (2014).
- [15] B.C. Tripathy & R. Goswami, "On triple difference sequences of real numbers in probabilistic normed spaces", Proyecciones J. Math., 33(2), pp. 157-174, (2014).
- [16] B.C. Tripathy &R. Goswami, "Vector valued multiple sequences defined by Orlicz functions", Bol. Soc. Paran. Mat., 33 (1), pp. 67-79, (2015).
- [17] B.C. Tripathy & R. Goswami, "Multiple sequences in probabilistic normed spaces", Afrika Matematika, 26 (5-6), pp. 753-760, (2015).