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       Soft Banach Algebras represent a fascinating extension of traditional Banach 

Algebras, providing a versatile mathematical framework for studying algebraic 

properties in various applied contexts. This paper offers an overview of key 

concepts in Soft Banach Algebra theory and explores their fundamental 

applications. 

 The exposition begins by introducing the definition and general characteristics of 

Soft Banach Algebras, highlighting the principal distinctions from conventional 

Banach Algebras. The paper proceeds to delve into the essential properties of Soft 

Banach Algebras and demonstrates their applicability in differential and integral 

calculus. 

  Furthermore, the paper showcases practical examples and applications of Soft 

Banach Algebras in fields such as number theory and mathematical physics. This 

section emphasizes how Soft Banach Algebras can be leveraged to solve practical 

problems across diverse domains 

 

1 .   Introduction 

     In topology, compact spaces and KC-spaces are of great importance in mathematics and applied 

sciences. Understanding the properties of these spaces provides a strong foundation for developing 

theories and solving problems in a wide range of fields, from pure mathematical analysis to practical 

applications in engineering and sciences .The definition of 𝒦𝔠 − space (which  every 𝔠ompa𝔠t subset is 

𝔠lose𝒹)was presented by [1]  and new concepts were introduced through the definition of the following 

topological spaces 𝒦(𝔤𝔠) − spaces  (which  every 𝔠ompa𝔠t  subset is 𝔤 − 𝔠lose𝒹), 𝔤𝒦(𝔤𝔠) − spaces  

(which  every 𝔤 −  𝔠ompa𝔠t subset is 𝔤 − 𝔠lose𝒹) by S. K. Jassim   and H. G. Ali[2]. In this research 

work, the aim was to introduce new concepts of spaces, which is  named 𝔤( 𝒦𝔠) −spaces  . New 

definitions were also introduced, which are On  Weaker Forms of  𝔤( 𝒦𝔠) −spaces and Co−𝔤 −  𝔠ompa𝔠t 

topologies. 

  A soft Banach algebra is a mathematical structure that combines elements of both Banach algebras and 

fuzzy sets. In a traditional Banach algebra, operations like addition and multiplication are defined in a 

precise, deterministic manner. Soft Banach algebras, on the other hand, introduce a degree of fuzziness or 

uncertainty in these operations. 

In a soft Banach algebra, elements are associated with fuzzy sets, which assign degrees of membership to 

points in a given set. The operations of addition and multiplication are then extended to operate on these 

fuzzy sets in a way that respects the underlying algebraic structure. 
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  This concept finds applications in areas where uncertainty or imprecision play a significant role, such as 

in fuzzy mathematics, decision making, and optimization problems. Soft Banach algebras provide a 

framework to model and analyze situations where exact values are not always available or applicable. 

2. Soft Algebras 

The concept of soft set theory has been initiated by Molodtsov in 1999 as a general mathematical tool 

for modeling uncertainties. He also pointed out several application of this theory solving many practical 

problems in economics, engineering, social sciences, medical sciences etc. 

Throughout the lecture, let X  be an initial universe set and E  be the set of parameters. ( )P X  denote 

the power set of  X  and A E . 

Definition (2.1) 

A pair ( , )F A  denoted by AF  is called a soft set over X , where F  is a function  given by : ( )F A P X .  In 

other words the soft set over X  is a parameterized family of subsets of the universal set X .  For a particular 

e A , ( )F e  may be considered the set of e  - approximate elements of the soft set ( , )F A and if e A , then 

( )F e  , i.e. ( , ) { ( ) ( ) : }AF F A F e P X e A     

The set of all soft sets over X  is denoted by ( )S X , and called  soft Power Set. 

Definition (2.2) 

 A soft set AF  over X  is said to be  

1. Null soft set, denoted by   if  ( )F e   for any e A . 

2. Absolute soft set, denoted by X  if ( )F e X  for any e A . 

3.  Non null  soft set if there is at least e A  such that ( )A e  . 

Definition (2.3) 

 Let , ( )A BF G S X  . we say that 

1. AF and BG are soft equal (or AF  soft equals BG ),which we write as A BF G , if  A B   

    and  ( ) ( )F e G e  for all e A  . 

2. AF  is a  soft subset of BG , and  denoted by A BF G  if  A B and ( ) ( )F e G e  for all e A .  

Hence A BF G iff A BF G  and B AG F  

3. AF  is a  soft proper subset of  BG , and  denoted by  A BF G if  A B  and  ( ) ( )F e G e  for  

   all e A . 
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Definition (2.4) 

A soft set AF  over X  is called  

1.A soft point   and its denoted by 
{( , ( ))}x

ep e F e
, if exactly one e A  , ( ) { }F e x   

    for some x X and ( )F y   for all |{ }y A e . 

2. A singleton soft set if there is x X  such that ( ) { }F e x  for all e A .  

Definition (2.5)  

Let ( )AF S X . An element x X is said to be belongs to the soft set AF  over X , denoted by Ax F  if 

( )x F e for all e A . In other words , we say that Ax F  read as x   belongs to the soft set AF  

whenever ( )x F e  for all e A  . 

Note that for any x X , Ax F ,  if ( )x F e  for some e A . 

Definition (2.6)  

Let X  be a nonempty set and A  be a nonempty parameter set.  

1. The function : A X  is said to be a soft element of X  .  

2. A soft element   of is said to belongs to a soft set B of X , which is denoted by B ̃ , if 

( ) ( )e B e   for all e B if ̃ .  

Definition (2.7) 

Let be the set of real numbers and ( ) be the collection of all nonempty bounded subsets of and A  

taken as a set of parameters. The function : ( )F A is called a soft real set. It is denoted by ( , )F A  or 

AF  

1. A soft real set AF  is said to be nonnegative soft real set if ( )F e  is a subset of the set of  

   nonnegative  real numbers for each e E . 

2. Let ( )E  denotes the set of all soft real sets .Also ( )E   denote the set of all nonnegative  

    soft real sets. 

If specifically AF  is a singleton soft set, then identifying AF  with the corresponding soft element, it will be 

called a soft real number and denoted r , s , t  etc. hence ( )E  denote the set of all sort real numbers.  

0,1  are the soft real numbers where 0( ) 0e  ,1( ) 1e  for all e E , respectively. 
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Definition (2.8)  

Let , ( )A BF G S X  

1. The union of  AF
 and BG

over X , denoted by A BF G
is the soft set CH

where C A B   and  

    for all e C  , 

( ), |

( ) ( ), |

( ) ( ),

F e e A B

H e G e e B A

F e G e e A B




 
     . 

      and is written as A B CF G H 
. 

2. The intersection  of AF
 and BG

over X , denoted by A BF G
is the soft set CH

where C A B    

     and for all e C  , ( ) ( ) ( )H e F e G e  , and is written as A B CF G H 
. 

Definition (2.9)  

Let X  be a linear  space over a field F  and let A  be a parameter set. Let AF  and AG  be two soft set over 

X  and F . Define  

1. ( )( ) { : ( ), ( )}F G e x y x F e y G e      for all e A  

2. ( )( ) { : ( )}F e x x F e    for all e A  

If 1 2, , , nF F F  are n  soft sets over ( , )X A , then 

1 2 1 2( , )( ) { : ( ), 2,3, , }n n iF F F e x x x x F e i n         for all e A  

Example (2.10)  

Consider the Euclidian n -dimensional space n over . Let {1,2,3, , }A n  be the set of 

parameters. Let : ( )nF A P be defined as follows : 

( ) { :nF i t i  -th co – ordinate of t  is 0} , 1,2, ,i n . 

Then F  is a soft linear space or soft linear space of n over . 

Theorem (2.11) 

( )A B A BF G F G      for all soft sets  AF  and AG  over X  and F . 

Proof :  

( ( ))( ) { : ( ))( )} { ( ) : ( ), ( )} { : ( ), ( )}F G e z z F G e x y x F e y G e x y x F e y G e                 
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( ))( ) { : ( )( ), ( )( )} { : ( ), ( )}F G e x y x F e y G e x y x F e y G e                      

Hence the result follows. 

Theorem (2.12) 

 Let AF  be a soft set over X  

1. If x X , then Ax F  is a soft set over X  defined as follows : 

( )( ) { : ( )}x F e x y y F e     for all e A  

2. If M X , then AM F  is a soft set over X  defined as follows : 

( )A A

x M

M F x F


   , i.e. ( )( ) { : ( )}x F e x y y F e     for all e A  

Definition (2.13)  

Let X be a linear space over a field F  and let A  be the parameter set . A soft set AF  over X  is said to be a 

soft linear space or soft vector space of X  over F  if ( )F e is a subspace  of X  for all e A .  

Definition (2.14) 

Let X  be a linear  space over a field F . Let x X and AF  be a 

A soft set AG  over X  is said to be  a soft subspace of a soft linear space AF of X  over F  if  

1. A AG F , i.e. ( ) ( )A AG e F e  for all e A . 

2. AG  is a soft linear space of X  over F , i.e. ( )G e is a subspace  of X  for all e A . 

Theorem (2.15)  

A soft subset AG  of a soft linear space AF of X  over F  is a soft subspace of AF  iff A A AG G G    

for all ,  F . 

Proof : 

            Let AF  be a soft linear space of X  over F  

       Suppose that AG  is  a soft subspace of AF , then ( )G e is a subspace  of X  for all e A . 

Let e A , then ( )( ) { : ( ), ( )} { : , ( )}G G e x y x G e y G e x y x y G e                 

Since , ( )x y G e and ,  F , then ( )x y G e   , so  ( )( ) ( )G G e G e    

Hence A A AG G G    for all ,  F . 
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Conversely, let the given condition hold. 

For e A   let , ( )x y G e and ,  F  , then ( )( ) { : , ( )}G G e x y x y G e        

Since A A AG G G    for all ,  F , i.e. ( )( ) ( )G G e G e   , so { : , ( )} ( )x y x y G e G e     

Hence ( )x y G e    for all , ( )x y G e and ,  F ,i.e. ( )G e is a subspace  of X  for all e A . 

Since AG  is a soft subset AF , i.e. ( ) ( )A AG e F e  for all e A . 

Therefore AG  is  a soft subspace of AF . 

Corollary (2.16) 

If AG  and AH  are soft subspaces of AF  of X  over F , then A AG H  and AF  are soft subspaces of 

AF  of X  over F . 

 

Corollary (2.17) 

If { }iG  baa family of soft subspace of AF  of X  over F , then i

i J

G


 is a soft subspace of AF  of X  over F . 

Definition (2.18)  

Let X be an algebra over a field F  and let A  be the parameter set. A soft set AF  over X  is said to be 

a soft algebra of X  over F  if ( )F e is a subalgebra of X  for all e A .  

 

It is very easy to see that in a soft algebra the soft elements satisfy the properties : 

1. ( ) ( )x y z x yz   

2. ( )x y z x y xz    and  ( )x y z xz yz    

3. ( ) ( ) ( )x y x y x y      where for all , , Ax y z F  and for any soft scalar   ,  

( )( ) ( ) ( )x y e x e y e  and ( )( ) ( ) ( )x e e x e   for all e A   

Definition (2.19)  

Let AF  be a soft algebra of  X  over F   

1. AF  is called a commutative soft algebra if x y yx  for all  , Ax y F  

2. A soft  element   Ae F  is called the soft identity of AF  if xe ex x   for all  Ax F  
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3. A soft  element   Ax F  is said to be invertible if it has inverse in AF , i.e.  if there exists a  

   soft element Ay F  such that x y yx e   and the y  is called the inverse  of x ̃, denoted by  

    
1

x


 . Otherwise 
1

x


̃ is said to be non-invertible soft element of AF . 

3. Soft Normed Spaces  

Let X  be a linear space over a field F , X  is also our initial universe set and A  be a nonempty set of parameters. 

Let X  be the absolute soft linear space, i.e., ( )X e X , for all e A . We use the notation , ,x y z  to denote soft 

vectors of a soft linear space and , ,r s t  to denote soft real numbers whereas , ,r s t  will denote a particular type 

of soft real numbers such that ( )r e r , for all e A  etc. For example 0  is the soft real number such that 

0( ) 0e  , for all e A . Note that, in general, r is not related to r . 

Definition (3.1) 

Let X  be the absolute soft linear space . The function : ( ) ( )SE X A    is said to be a soft norm on the 

soft linear space X , if  satisfies the following conditions : 

1. 0x   for all x X  

2. 0x   iff 0x   

3. r x r x   for all x X  and for every soft scalar r , 

4. x y x y    for all ,x y X  

The soft linear space X  with a soft norm  on X  is said to be a soft normed linear space and is 

denoted by ( , , )X A  or ( , )X  . 

Example (3.2) 

Let ( )A  be the set of all soft real numbers. Then the function : ( ) ( )A A     which is defined by 

x x , for all ( )x A , where  x  denotes the modulus of soft real numbers, is a soft norm on ( )A and 

since ( ( ))SS A  , thus ( , , )A  or ( , ) is a soft normed  space. With the same argument 

( ( ))SS A   is also a soft normed space. 

Example (3.3)  

Let X  be a normed space. In this case, for every ( )ex SV X , ex e x   is a soft norm. 
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Proof :  

              1. Let ( )ex SV X , then 0ex e x    

        2. Let ( )ex SV X , then 0ex   iff 0e x  , iff 0e  and 0x   iff 0ex   

3. Let ( )ex SV X  and for every soft scalar r , then  

( ) ( )e ere
r x r x re r x r r x r x          

4. Let , ( )e e
x y SV X , then  

( )
( ) ( ) ( )e ee e e e

x y x y e e x y e e x y e x e y x y  
                   . 

Theorem (3.4)  

Every parametrized family of crisp norms{ : }
e

e A  on a crisp linear space X  can be considered as a soft 

norm on the soft linear space X .  

Proof :  

     Let X  be the absolute soft linear space over a field F , A  be a nonempty set of parameters. Let{ : }
e

e A   

be a family of crisp norms on the linear space X . Let  x X , then ( )x e X , for every e A . Let us define a 

function : ( )X A    by ( ) ( )
e

x e x e  for all x X , for all e A . 

Then  is a soft norm on X  . 

To verify it we now verify the conditions 1,2,3 and 4 for soft norm. 

1. We have ( ) ( ) 0
e

x e x e   for all e A , for all x X , then 0x   for all x X  

2.Let x X , then 0x   iff ( )x e   for all e A  iff ( )
e

x e   for all e A  iff ( )x e   for all  

   e A  iff   0x   

3. Let x X  and r soft scalar, then ( ) ( )( ) ( ) ( )( )
e e

r x e r x e r x e r x e      for all e A , so 

    r x r x   for all x X  and for every soft scalar r , 

4. Let ,x y X , then ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
e e e

x y e x e y e x e y e x e y e x y e          for all  
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   e A , so  x y x y    for all ,x y X  

     is a soft norm on X  and consequently ( , )X   is a soft normed space. 

Theorem (3.5)  

Every crisp norm 
X

 on a crisp linear space X  can be extended to a soft norm on the soft linear space X . 

Proof : 

   First we construct the absolute soft vector space X  using a nonempty set of parameters A . 

Let us define a function : ( ) ( )SE X A    by ( ) ( )
X

x e x e  for all x X , for all e A . 

Then using the same procedure as theorem (5.3), it can be easily proved that   is a soft norm on X  . 

This soft norm is generated using the crisp norm 
X

  and it is said to be the soft norm generated by 

X
 . 

Theorem (3.6)  

Let ( , , )X A  is a soft normed space , then 

1. for any x X  and e A , then ( ) 0x e   iff ( )x e  , for any x X  and e A . 

2. { ( ) : ( ) }x e x e x  is a singleton set , for each x X  and e A  

3. for each e A , define :
e

X    be the function such that for each x X , ( )
e

x x e ,  

    where x X  such that ( )x e x . Then for each e A  , 
e

  is a norm on X . 

Proof :  

          1. Let us consider a soft scalar  such that ( ) 1e    , if  e e  , ( ) 0e    if e e  .  

Then ( )( )x e   for e e  ,  ( )( ) ( )x e x e  for e e .  We have x x  .  

    This shows that ( ) 0x e   iff x   , iff ( )x e   . 

2. Let ,x y X , we have x x y y x y y           x y x y    .  
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Similarly y x x y    . So x y x y   . Now if ,x y X  such that ( ) ( )x e y e  then 

( ) ( ) ( ) 0x e y e x y e    (by 1) since ( )( ) ( ) ( ) 0x y e x e y e    . i.e. ( ) ( )x e y e ,  

 which proves (2).  

3. Since for e A , { ( ) : ( ) }x e x e x   is a singleton set, the function :
e

X    is well defined. Hence 

from soft norm axioms, it follows that 
e

  is a norm on X . . 

Theorem (3.7) Decomposition Theorem 

Let ( , )X   is a soft normed space satisfies the following  condition  

5N  :  For x X  and e A , the set { ( ) : ( ) }x e x e x  is a singleton set  and if for each e A , :
e

X    

be a function such that for each x X , ( )
e

x x e , where x X  such that ( )x e x . Then for each e A  , 

e
  is a norm on X . 

Proof :  

        Clearly :
e

X    is a rule that assign a vector  of X  to a nonnegative crisp real number  for 

all e A . Now the well defined property of  
e

 , for all e A  is follows from the  condition 5N   and 

the soft norm axioms gives the norm conditions of  
e

 , for all e A . Thus the soft norm satisfying 

5N  gives a parameterized family of crisp norms.  

Theorem (3.8)  

Let ( , , )X A  be a soft normed  space. Let us define : ( )d X X A     by ( , )d x y x y  ,  for all 

,x y X . Then d  is a soft metric on X  . 

Proof :  

1. Let ,x y X , then ( , ) 0d x y x y    

2. Let ,x y X , then ( , ) 0 0 0d x y x y x y x y            

3. Let ,x y X , then ( , ) ( , )d x y x y y x d y x      

4. Let , ,x y z X  , then ( ) ( )x z x y y z x y y z         , so ( , ) ( , ) ( , )d x z d x y d y z   

d  is a soft metric on X , d  is said to be the soft metric induced by the soft norm  . From the above 

theorem it also follows that every soft normed space is also a soft metric space. 
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Theorem (3.9) Translation invariance  

 A soft metric d  induced by a soft norm   on a normed linear space ( , )X   satisfies 

1. ( , ) ( , )d x z y z d x y   , for all , ,x y z X  

2. ( , ) ( , )d r x r y r d x y    , for all ,x y X and for every soft scalar r . 

Proof :  

          We have,  

( , ) ( ) ( ) ( , )d x z y z x z y z x y d x y          and 

( , ) ( ) ( , )d r x r y r x r y r x y r x y r d x y             

Theorem (3.10) 

Let : ( )d X X A    be a soft metric. X  is a soft normed space iff  the following conditions : 

1. ( , ) ( , )d x z y z d x y   , for all , ,x y z X  

2. ( , ) ( , )d r x r y r d x y    , for all ,x y X and for every soft scalar r . 

satisfied. 

Proof : 

            If ( , )d x y x y  , from theorem(3.9) , we have  then 

( , ) ( , )d x z y z d x y    and ( , ) ( , )d r x r y r d x y     

 Suppose that the conditions of the theorem are satisfied . 

Taking ( ,0)x d x for every x X  we have 

1.Let  x X , then ( ,0) 0x d x    

2. Let  x X , then 0 ( ,0) 0 0x d x x      

3. Let x X  and for every soft scalar r , then  

( ,0) ( , 0) ( ,0)r x d r x d r x r r d x r x         

4.  Let ,x y X , then   
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( ,0) ( , ) ( ,0) (0, ) 1x y d x y d x y d x d y x y x y              

Definition (3.11) 

Let ( , )X   be a soft normed space and ( , )Y A  be a non-null member of ( )S X . Then the function 

: ( ) ( )
Y

SE Y A    given by  
Y

x x  for all x Y  is a soft norm on Y .  

This norm 
Y

  is known as the relative norm induced on Y   by   . The soft normed space  ( , , )
Y

Y A is 

called a normed subspace or simply a subspace of the soft normed space ( , , )X A . 

Definition (3.12) 

Let ( , , )X A  be a soft normed space and 0r   be a soft real number. We define the followings ; 

( , ) { : } ( )a r x x a r SE X     , ( , ) { : } ( )a r x x a r SE X      and 

( , ) { : } ( )S a r x x a r SE X     

( , )a r , ( , )a r  and ( , )S a r  are respectively called an open ball, a closed ball and a sphere with centre at a  

and radius r . ( ( , ))SS a r , ( ( , ))SS a r  and ( ( , ))SS S a r  are respectively called a soft open ball, a soft closed 

ball and a soft sphere with centre at x  and radius r . 

Definition (3.13) 

A sequence of soft elements { }nx in a soft normed space ( , , )X A is said to be convergent in ( , , )X A  if 

there is a soft element x X such that 0nx x   as n  . This means for every 0  , chosen arbitrarily, 

there exists a natural number ( )k k  , such that  0 nx x      , whenever  n k . i.e., n k   ( , )x x  . 

We denote this by  nx x  as n   or  by  

lim n
n

x x


 ,  x  is said to be the limit of the sequence nx as n  . 

Example (3.14)  

Let us consider the set  of all real numbers endowed with the usual norm  . Let ( , )  or  ( , , )A be 

the soft norm generated by the crisp norm  , where A  is the nonempty set of parameters. Let AY  such 

that ( ) (0,1]Y e   in the real line,  for all e A . Let us choose a sequence { }nx of soft elements of  AY  where 

˜
1

( )nx e
n

  for all n , for all e A . Then there is Ax Y  such that nx x  in ( , , )
Y

Y A . However the 
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sequence { }
n

y of soft elements of AY  where  
1

( )
2

n
y e   for all n , for all e A . is convergent in 

( , , )Y A  and converges to 
1

2
 . 

Theorem (3.15)  

Limit of a sequence in a soft normed space, if exists is unique. 

Proof :  

        If possible let there exists a sequence { }nx of soft elements in a soft normed space ( , , )X A  such 

that lim n
n

x x


 , lim n
n

x y


 , where  x y . Then there is at least one e A  such that ( ) 0x y e  . We 

consider a positive real number e satisfying 
1

0 ( )
2

e x y e   . 

Let 0   with ( ) ee  . Since nx x , nx y  

Corresponding to 0  , there exist natural numbers 1 1( )k k  , 2 2 ( )k k   such that 1n k  

( , )nx x      ( )n n ex x x x e        , in particular. 

Also, 2n k   ( , )nx y     ( )n n ex y x y e       , in particular. 

Hence for all 1 2max{ , }n k k k  , ( ) ( ) ( ) 2n n ex y x y e x x e x y e            

So, 
1

( )
2

e x y e   . This contradicts our hypothesis. Hence the result follows. 

Definition (3.16) 

 A sequence { }nx of soft elements in ( , , )X A is said to be bounded if the set { : , }n mx x n m   of soft real 

numbers is bounded, i.e., the there exist 0k   such that n mx x k   for all ,n m  

Definition (3.17)  

A sequence { }nx of soft elements in a soft normed space ( , , )X A is said to be a Cauchy sequence in 

X  if corresponding to every 0  , there exist k such that n mx x k   , for all ,n m k ,  i.e., 

0n mx x    as ,n m   

Theorem (3.18)  

Every convergent sequence in a soft normed linear space is Cauchy and every Cauchy sequence is 

bounded. 
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Proof : 

        Let { }nx be a convergent sequence of soft elements with limit x (say) in ( , )X   

 Then corresponding to each 0  , there exists k  such that ( , )
2

nx x


  i.e., 
2

nx x


    for all 

n k .Then for ,n m k , 
2 2

n m n mx x x x x x
 

        . Hence { }nx  is 

a Cauchy sequence. 

Next let { }nx  be a Cauchy sequence of soft elements in ( , )X  . Then there exists k  such that 

1n mx x  , for all ,n m k . Take M  with ( ) max{ ( ) :1 , }n m
M e x y e n m k     for all e A . 

Then for 1 n k   and m k , 1n n km k m
x y x y x y M        . 

Thus, 1n m
x y M    for all ,n m  and consequently the sequence is bounded. 

Definition (3.19)  

 A soft subset AY  with ( )Y e   for all e A , in a soft normed space ( , , )X A  is said to be bounded 

if there exists a soft real number k such that x k  for all Ax Y . 

Definition (3.20)  

A soft normed space ( , , )X A  is said to be complete if every Cauchy sequence in X  converges to a 

soft element of X  i.e., every complete soft normed space is called a soft Banach’s Space. 

Theorem (3.21)  

Let ( , , )X A  be a soft normed space. Then 

1. If nx x  and n
y y  then n n

x y x y   . 

2. If nx x  and n   then n nx x    ., where { }n is a sequence of soft scalars. 

3. If { }nx  and { }
n

y are Cauchy sequences in X  and { }n is a Cauchy sequence of soft scalars,  

   then { }n n
x y  and { }n nx  are also Cauchy sequences in X  . 

Proof : 
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        1. Since nx x  and 
n

y y  , for 0   , there exist a positive integers 1 2,k k  such that 

2
nx x


   for all 1n k  and  

2
n

y y


   for all 2n k  . Let 1 2max{ , }k k k , then both the above 

relations hold for n k . Then  

( ) ( ) ( ) ( )
2 2

n n nn n n
x y x y x x y y x x y y

 
               for n k . 

n n
x y x y    . 

2.  Since nx x  and n   we get, for 0  , , there exist a positive integers k  such that 

nx x    for all n k   

Now, n n nx x x x x x x x        , for all n k  nx x    for all n k  

Thus the sequence { }nx  is bounded. 

Now, 

( ) ( ) ( ) ( )

(

n n n n n n n n n n n n

n n n

x x x x x x x x x x x x

x x x

           

  

                      

   
 

(n n n n nx x x x x             

Since nx x  and n   we get, 0n     and 0nx x   as n  . 

Now using above we get,  0n nx x      . Hence  n nx x    . 

3. Let If { }nx  and { }
n

y be Cauchy sequences in X  ,then for 0  , , there exist a positive integers 

1 2,k k  such that 
2

n mx x


   for all 1n k  and 
2

n m
y y


   for all 2n k  

Let 1 2max{ , }k k k , then both the above relations hold for ,n m k . 

Now, ( ) ( ) ( ) ( )
2 2

n m n m n mn m n m n m
x y x y x x y y x x y y

 
               for ,n m k . 

{ }n n
x y   is a Cauchy sequences in X  . 

Since { }nx is a Cauchy sequences in X  , for 0   , there exist a positive integers k  such that 

n mx x    for all ,n m k . 



      Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024   pages: 44-68 
 

59 
 

Taking in particular 1n m  , 1mx    for all ,n m k  , so { }nx  is bounded. 

Now { }n  is bounded too. 

Then, ( ) ( )n n m m n n n m n m m m n n m n m mx x x x x x x x x                          

( ) 0n n m m n n m n m mx x x x x             as n   

{ }n nx   are also Cauchy sequences in X . 

Theorem (3.22) 

If AM  is a soft subspace in a soft normed space ( , , )X A , then the closure of AM , AM  is also a soft 

subspace. 

Proof :  

           Let , Ax y M , we must show that any linear combination of  ,x y belongs to AM  . 

Since , Ax y M , corresponding to 0  , there exists soft elements 1 2, Ax y M  such that  

1x x   ,    
1

y y    

 For soft scalars , 0   , 

1 1 11 1 1
( ) ( ) ( ) ( ) ( )x y x y x x y y x x y y                                (say), 

The above inequality shows that  1 1
x y   belongs to the open ball ( , )x y    . As 1 1

x y   

and 0   are arbitrary, it follows that Ax y M   . Hence AM   is a soft subspace of X  . 

Definition (3.23) 

A soft linear space X  is said to be of finite dimensional if there is a finite set of linearly independent 

soft vectors in X  which also generates X  . 

Theorem(3.24) 

Let 1 2, , , nx x x  be a linearly independent set of soft vectors in a soft linear space X  . Then there is a soft 

real number 0c  such that for every set of soft scalars 1 2, , , n    we have 

1 1 2 2 1 2( )n n nx x x c                
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Proof : 

            The theorem will be proved if we can prove 

1 1 2 2 1 2( ) ( )( )n n nx x x e c e                for all e A  

i.e., 1 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ( )( ( ) ( ) ( ) ))n n n
e

e x e e x e e x e c e e e e                for all e A . 

Now, 1 2, , , nx x x  being soft vectors in ˇ X  , 1 2( ), ( ), , ( )nx e x e x e  are vectors in X  and 1 2, , , n    

being soft scalars 1 2( ), ( ), , ( )ne e e    are scalars.  

Then using the property of normed linear space ( , )
e

X   we get a real number ec , such that the above 

relation holds for ( ) ec e c , for all e A . 

Theorem (3.25)   

Every Cauchy sequence in ( )A  with finite  parameter set A  is convergent, i.e., the set of all soft real 

numbers with its usual modulus soft norm as defined in Example (5.2) with finite parameter set A , is a 

soft Banach space. 

Proof :  

        Let{ }nx  be any arbitrary Cauchy sequence in ( )A . Then corresponding to every 0  , there exist 

k  such that n mx x   | for all ,n m k , i.e., ( ) ( )n mx x e e  | for all ,n m k , i.e. 

( ) ( ) ( )n mx e x e e  | for all ,n m k . Then { ( )}nx e is a Cauchy sequence of ordinary real numbers  

for each e A . By the Completeness of  and finiteness of A , it follows that { ( )}nx e  is convergent 

for each e A . Let ( )n ex e x , for each e A .  

Consider the soft element x  defined by ( ) ex e x , for each e A . Then x  is a soft real number and it 

follows that the sequence { }nx  of soft real numbers is convergent and it converges to the soft real 

number x . Hence ( )A is a soft Banach space. 

Theorem (3.26)  

Every finite dimensional soft normed linear space over a finite parameter set A  is complete. 

Proof :  

     Let X  be a finite dimensional soft normed linear space over a finite parameter set A . Let { }
m

y  be any 

arbitrary Cauchy sequence in X  . We show that { }
m

y  converges to some soft element y X . Suppose 

that the dimension of  X  is n , and let 1 2{ , , , }nx x x be a basis for X  . Then each m
y has a unique 

representation 
( ) ( ) ( )

1 1 2 2

m m m

n nm
y x x x         . 
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Because { }
m

y is a Cauchy sequence, for 0   arbitrary there exist a positive integer k  such that 

m r
y y    for ,m r k . From theorem(4.5.23), it follows that there exists 0c  such that 

( ) ( ) ( ) ( )

1 1

( )
n n

m r m r

j j j j jm r

j j

y y x c    
 

       , for ,m r k  . 

Consequently, 
( ) ( ) ( ) ( )

1

n
m r m r

j j j j

j

c
c


   



     

shows that each of the n  sequences 
( ) (1) (2) (3)

{ , , , }
m

j j j n    , 1,2, ,j n  is Cauchy in ( )A  and A  

is finite, converges to j , (say), 1,2, ,j n . 

We now define the soft element 1 1 2 2 n ny x x x         which is clearly a soft element of X  . 

Moreover, since 
( )m

j j   as m  and 1,2, ,j n ;  we have  

( ) ( )

1 1

( ) 0
n n

m m

j j j j j jm

j j

y y x c x   
 

       as m  . i.e. m
y y  as m  . 

4. Soft Banach Algebras 

Definition (4.1)  

A soft algebra AF  of X  over F  is called a soft Banach algebra if AF  is a soft Banach space with 

respect to a soft norm that satisfies the inequality x y x y  and if AF  contains an identity e ̃ such 

that xe ex x   with 1e  .  

Theorem (4.2) 

 AF  is a soft Banach algebra iff ( )F e  is a Banach algebra for all e A . 

Proof :  

          follows from the definition of soft algebra and the following theorem . 

soft normed space ( , )X  is soft complete iff  ( , )
e

X   is complete  for all e A  where 
e

  defined 

as  ( )
e

x x e  for each x X , where x X  such that ( )x e x  

Theorem (4.3) 

In a soft Banach algebra AF , if nx x  and n
y y ̃ then n n

x y x y ̃.  

   i.e., multiplication in a soft Banach algebra is continuous.  
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 Proof :  

   Since nx x  and 
n

y y  in AF  . So ( ) ( )nx e x e  and ( ) ( )
n

y e y e  for all e A  in ( ( ), )
e

F e   

Now since ( )F e  is Banach algebra for all e A   (by theorem 6.2) and in Banach algebra 

multiplication is continuous so, ( ) ( ) ( ) ( )n n
x e y e x e y e  for all e A ,  which proves that  n n

x y x y . 

Theorem (4.4) 

Every parameterized family of crisp Banach algebras on a crisp linear space X can be considered as a soft 

Banach algebra on the soft vector space X ̃.  

Proof :  

      Let { : }
e

e A   be a family of crisp norms on the linear space X  such that ( , )
e

X    

are Banach algebra for e A .  Now let us define a function : ( )X A    by ( ) ( )
e

x e x e  for all x X , 

for all e A . Then  is a soft norm on X  . 

Now to show that ( , )X   is a soft Banach algebra we have to show that x y x y  for all ,x y X and 

( , )X   is complete. 

Now ( ) ( ) ( ) ( ) ( ) ( ) ( )
e e e

x y e x e y e x e y e x e y e   for all e A , which shows that x y x y . 

Now let { }nx be a Cauchy sequence in X  . Then for any 0  there exists a soft natural number k such 

that ( )
2

n p nx x e


    for all ( )n k e ,for all e A , then ( ) ( ) ( )
2

n p nx e x e e


    for all e A , i.e. 

{ ( )}nx e  is a Cauchy sequence in ( , )
e

X   for all e A .  

Since ( , )
e

X  are Banach algebra for all e A , so there exist ex such that ( )n ex e x  algebra for all 

e A .  Hence there must exist some ( ( ))ek k e  such that ( ) ( )
2

n ex e x e


   for all e A . 

Now ( ) ( ) ( ) ( ) ( ) ( )
e

e
n n n ke k e

e e
x x e x e x x e x e x x e e         for all ( )n k e ,for all e A ,  

where  ( ) ex e x . This shows that ( , )X   is a soft Banach space. Hence ( , )X   is a soft Banach 

algebra. 
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Definition (4.5)  

Let AF  be a soft algebra of  X  over F  .  A soft  element   Ax F  is said to be invertible if it has inverse 

in AF , i.e.  if there exists a soft element Ay F  such that x y yx e   and the y  is called the inverse  

of x ̃, denoted by  
1

x


. Otherwise 
1

x


̃ is said to be non-invertible soft element of AF . 

Remark  

 Clearly e  is invertible. If x  is invertible, then we can verify that the inverse is unique. because if 

yx e xz   Then ( ) ( )y ye y xz yx z ez z     . 

Further, if x   and y  are both invertible then x y  is invertible and 
1 11( )x y y x
   . 

For 
1 1 1 1 1 1

( )( ) ( ) ( )x y y x x y y x x e x xx e
     

     and similarly 
1 1

( )( )y x x y e
 

 . 

Definition (4.6) 

 Let ( , )G   be a group and AF  be a soft set over G. Then AF  is said to be a soft group over G if ( )F e is 

a subgroup of ( , )G   for all e A . 

Theorem (4.7) 

Let ( , )G   be a group and AF   be a soft set over G . If for any , Ax y F  

1. Ax y F    2. 
1

Ax F


 , 

where ( ) ( ) ( )x y e x e y e    and 
1 1( ) ( ( ))x e x e
  . Then AF  is a soft group over G . 

Proof :  

           Proof is obvious.  

Remark  

This shows that in a soft algebra, the soft set generated by the all invertible elements is a soft group 

with respect to the composition defined as in theorem. 

Definition (4.8)  

A series 
1

n

n

x




 of soft elements is said to be soft convergent if the partial sum of the series 
1

k

k n

n

s x


  is 

soft convergent. 
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Theorem (4.9)  

Let AF  be a soft Banach algebra. If Ax F satisfies 1x  , then ( )e x  is invertible and 

1

1

( )
n

n

e x e x






   . 

Proof :  

         Since AF  is soft algebra, so we have 
jj

x x  for any positive integer  j , so that the infinite 

series 
1

n

n

x




 is soft convergent because. So the sequence of partial sum 
1

k

k n

n

s x


  is a soft Cauchy 

sequence since 
k p k p

nn

n k n k

x x
 

 

  . 

Since AF  is soft complete so 
1

n

n

x




  is soft convergent. Now let 
1

n

n

s e x




   . 

Now it is only we have to show that 1( )s e x   . 

We have 
2 2 1

( )( ) ( )( )
n n n

e x e x x x e x x x e x e x


              

Now again since 1x   so 
1

0
n

x


  as n  . Therefore letting n   in and remembering that 

multiplication in F  is continuous we get, ( ) ( )c x s s c x c     

 So that 1( )s e x   . This proves the proposition.         

Corollary (4.10)  

Let AF  be a soft Banach algebra. If  Ax F  and 1e x  ,  Then 
1

x


̃ exists and 
1

1

( )n

n

x e e x






   .  

Corollary (4.11)  

Let AF  be a soft Banach algebra. Let Ax F  and   be a soft scalar such that x  .  

Then 1( )e x    exists and  
11

1

( )
n n

n

e x x 


 



   
0

( )x e  

Proof :  

        Ay F  be such that
1

y


exists in AF  and   be a soft scalar such that ( ) 0e  , for all e A . Then 

it is clear that 
1 11( )y y 
   . 
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Having noted this we can write 
1

( )e x e x  


   and now we show that 
1 1( )e x
  exists.  

We have 
1 1 1

( ) 1e e x x x  
  

      by hypothesis. So, By Corollary(6.10) 
1 1( )e x
    exists and 

hence 1( )e x   exists. For the infinite series representation, using the theorem (6.9)  

we have 

1 1 1 1 1 1 11 1

1 1 1

( ) ( ) ( ( ( )) ( ( ))
n nn n

n n n

e x e x e e e x e x x       
  

        

  

             

This proves the corollary. 

Theorem (4.12)  

Let AF  be a soft Banach algebra. The soft set S  generated by the set of all invertible soft elements of 

AF  is a soft open subset in AF . 

Proof : 

           0x S . We have to show that 0x  is a soft interior point of AF . Consider the open sphere 0
1

0

1
( , )S x

x


 

with centre at 0x  and radius 
1

0

1

x


 . Every soft element x  of this sphere satisfies the inequality 0
1

0

1
x x

x


 

. 

Let 
1

0y x x


  and z e y   then we have
1 1 1

0 0 0 0 0 1z y e x x x x x x x
  

       . 

 So by theorem(6.9), e z  is invertible i.e. y  is invertible. Hence y S .. Now 0x S , y S  and   so by 

Remark , 0x y S . But 
1

0 0 0x y x x y x


  . So any x  satisfying the inequality 0
1

0

1
x x

x


   belongs to S . 

This shows that S  is a soft open subset of AF . 

Corollary (4.13)  

The soft set ( )cP S  of AF   is soft closed subset of AF . 

Definition (4.14)  

A function T  from a soft normed space AF   onto AF  is said to be continuous If for any sequence { }nx , nx x  

implies ( ) ( )nT x T x  .  
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Theorem (4.15)   

In a soft Banach algebra AF  , the function 
1

x x


 ̃ of S  onto S  is continuous. 

Proof :  

          Let 0x S  and let { }nx  be a sequence of soft elements in S such that 0nx x  . 

 To prove 
1

x x


  is continuous, it is enough to show that 
1 1

0nx x
 

  

Now  : 
1 1 1 1 1 1

0 0 0 0 0( )n n n n nx x x x x x x x x x
     

      

Since 0nx x  , for any given 0  ; there exists N  such that for all ( )n N e , 

0
1

0

1
( ) ( )

2
nx x e e

x


   where we have taken 
1

0

1

2 x



  

Now  
1 1 1

0 0 0 0( )n n ne x x x x x x x x
  

      , we get 
1

0

1 1
( )

22
ne x x e



     for all ( )n N e . 

So by Corollary(4.10) , 
1

0 nx x


 is invertible and its inverse is given by   

1 1 11
0 0 0

1

( ) ( )n
n n n

n

x x x x e e x x


  



     

Thus 
1 1

0 0
1

1 0

1
1 2

1

n

n n

n n

x x e x x
e x x


 




    
 

    This gives 
1

0 2nx x


   so that we have 

1 1 1 1 1 1

0 0 0 0 02n n nx x x x x x x x
     

    

we get :  
1 1 1

0 0 0( ) 2 ( ) ( ) 0n nx x e x e x x e
  

     as n  . 

This proves that 
1 1

0nx x
 

 . So the function 
1

x x


  of S  onto S is continuous.  

Corollary (4.16) 

 In a soft Banach algebra AF , the function 
1

x x


  of  S  onto S  is continuous. 
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Definition (4.17)  

Let AF  be a soft Banach algebra. A soft element Ax F  is called a soft topological divisor of zero if 

there exists a sequence { }nx in AF  , 1nx   for 1,2,3,n  and such that either 0nxx    or  

0nx x  . 

Theorem (4.18) 

The soft set Z  is a soft subset of  P , where Z  denotes the set of  all soft topological divisors of zero. 

Proof :  

          Let  z Z . The there exists a sequence { }nz such that 1nz  for 1,2,3,n   and either  

0nzz    or  0nz z    as n  . Suppose that 0nzz  . 

If possible, let z P . Then 1( )z e   exists for some e . Now as multiplication is continuous operation, we 

should have 1 1( ) ( ) ( ) ( ) 0( ) 0n nz e z e zz z e e     as n  . 

This contradicts the fact that 1nz  for 1,2,3,n   . Hence Z  is a soft subset of P .  

Definition (4.19)  

Let ( , )X  be a soft normed space and ( )Y S X . A soft element x X  is called a soft boundary elements of 

Y  if there exist two sequence { }nx and { }
n

y  of soft elements in Y and cY  respectively such that nx x  and 

n
y x . 

Theorem (4.20)   

The boundary of P is a soft subset of Z. 

Proof : 

          Let z  be a boundary point of  P . So there exist two sequences of soft elements nr  in S  and ns  in P  

such that nr z  and ns z . 

Since P  is soft closed so z P  Now let us write  
1 1

( )n n nr z e r z r
 

    . The sequence 
1

{ ( )}nr e


 

given above is unbounded  for all e A . If not, then there exists some e A  and ( )n e  such that  

1

( ) 1nr z e e


   for all ( )n n e , for all e A . So that by Corollary(6.11), 
1

{ ( )}nr z e


 is regular and hence 

1

( ) ( )( )( )n nz e r e r z e


  is regular, contradicting z P . Hence 
1

{ ( )}nr e


 is unbounded for all e A .  so that 

1

nr


 . 
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Now let us define  

1

1

n
n

n

r
z

r




 . From the definition of nz , we have 1nz  . 

Further 

1 1 1

1 1 1

( )n n n n
n

n n n

zr e zr e e z r r
zz

r r r

  

  

   
    

But  

1

1 1

( )
( )

n n
n n

n n

e z r r e
z r z

r r



 

 
   ,  we get 

1
( )n n n

n

e
zz z r z

r


    

 we see that 0nzz   as n  . Hence z  is a topological divisor of zero.  

5.  Conclusion 

In this paper underscores the significance of soft Banach Algebras as a powerful mathematical tool for 

investigating algebraic phenomena within diverse applied contexts. 
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