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The paper provides an overview of regression models commonly used in statistics and 

machine learning, emphasizing their importance in predicting and understanding 

relationships between variables across diverse datasets. The models covered include 

Linear Regression (LR), polynomial regression (PR), Decision Tree Regression (DTR), 

Neural Network Regression (NNR), Random Forest Regression, and Support Vector 

Regression (SVR), With the introduction of special models of regression models, they 

are Time Series Regression (TSR) and Spatial Linear Regression (SLR). Linear 

regression focuses on linear relationships, while polynomial regression captures 

nonlinear patterns by introducing polynomial terms. Decision trees and random forests, 

as ensemble methods, partition data recursively, while support vector regression uses 

support vector coefficients and kernel functions to handle nonlinear relationships. 

GRNN is a fast and efficient model in certain situations and may struggle with 

performance on large datasets, while it is more flexible and easy to customize, but 

requires intensive training to achieve outstanding results. Time series regression (TSR) 

is a powerful tool for modeling and forecasting time-dependent data while spatial linear 

regression (SLR) is a powerful extension of traditional linear regression that 

incorporates spatial relationships, enabling it to analyze and forecast spatial data. 

 

1.Introduction  

In statistics, a statistical model is a component of a mathematical model that incorporates a set of 
assumptions and primarily focuses on generating data similar to and synthesized from a larger sample 
[1]. Essentially, a statistical model serves as a process for generating data. The assumptions employed 
by a statistical model involve a combination of probability distributions, some of which adequately 
characterize the specific dataset. The inherent use of probability is a distinctive feature of statistical 
models. Regression, within statistical modeling, closely examines how a dependent variable is affected 
by varying an independent variable while keeping the other independent variables constant [2]. 
Regression Analysis, within the realm of statistical modeling, emerges as a technique designed to 
uncover relationships between various variables. Mathematicians and data scientists employ regression 
analysis for prediction and forecasting. The process entails selecting the appropriate model based on 
the provided dataset and subsequently utilizing that model for making predictions. An ideal model 
accurately captures all relationships. Consequently, a tool based on regression analysis can offer 
valuable insights to economists or managers. The diverse applications and advantages of Regression 
Analysis include: Prediction of the future: Regression Analysis, applied to a relevant dataset, can 
accurately predict various valuable pieces of information, such as Stock Prices, Medical Conditions, 
and even Public Sentiments. Support for major decisions and policies: Results derived from regression 
analysis provide a scientific foundation for decisions or policies, enhancing their reliability and 
likelihood of success [1]. Correction of errors in thinking or dispelling misconceptions: Discrepancies 
between the predictions of regression analysis and a decision or thought process can sometimes help 
rectify the fallacies in decision-making. Provision of a new perspective: The application of Regression 
Analysis to large datasets unleashes their potential to introduce new dimensions to a study. Nonlinear 
regression models are important tools for solving optimization problems [3].  Therefore, Regression 
Analysis stands out as a crucial tool for Data Scientists working with diverse datasets. To obtain 
accurate results from different types of datasets with varied relationships, various types of Regression 
Analysis models are employed. 
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2. Models  

Each model is characterized by its underlying principles, equations, and key parameters. The 

following provides a detailed overview of the selected models: 

 

2.1. Linear Regression 

Linear regression is the most simple regression analysis technique. It is the most commonly 

regression analysis mechanism in predictive analysis [4]. Linear regression shows the linear 

relationship between the independent variable (X-axis) and the dependent variable (Y-axis), 

consequently called linear regression. If there is a single input variable (x), such linear regression 

is called simple linear regression. And if there is more than one input variable, such linear 

regression is called multiple linear regression. The linear regression model gives a sloped 

straight line describing the relationship within the variables. 

 

 
Fig. 1. Linear Relationship between the dependent variable and independent variables.  

 

The above graph presents the linear relationship between the dependent variable and independent 

variables. When the value of x (independent variable) increases, the value of y (dependent 

variable) is likewise increasing. The red line is referred to as the best fit straight line. Based on 

the given data points, we try to plot a line that models the points the best. We determine the given 

data points that we plot in a way that best fits the variables, here regression shows a line or curve 

that passes through all the data points on a graph Regression shows a line or curve that passes 

through all the data points. Regression is mainly used for forecasting, modeling time series, and 

determining the relationships between variables in terms of effect and causation. Linear 

regression estimates the relationship between a dependent variable and an independent variable.  

 Positive Linear Relationship 

If the dependent variable expands on the Y-axis and the independent variable progress on X-axis, 

then such a relationship is termed a Positive linear relationship.  
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Fig. 3. Positive linear relationship  

 

 

 Negative Linear Relationship 

If the dependent variable decreases on the Y-axis and the independent variable increases on the X-axis, 

such a relationship is called a negative linear relationship. 

 

 

Fig. 4. Negative linear relationship  

The goal of the linear regression algorithm is to get the best values for 𝑏0 and 𝑏1 to find the best fit 

line. The best fit line should have the least error means the error between predicted values and actual 

values should be minimized. 

 

2.1.1. Simple linear regression 

 

The purpose of simple regression analysis is to evaluate the relative impact of a predictor variable 

on a particular outcome [5]. A very straightforward approach to predicting a quantitative response 

Y on the basis of a single predictor variable X. It assumes that there is an approximately linear 

relationship between X and Y. Mathematically, we can write this linear relationship as follows:  

 

𝑌 ≈  𝑏0  +  𝑏1𝑋                                                                                           (1) 
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You might read  “ ≈ ”  as “approximately modeled”. We sometimes describe (1) by saying that we 

are regressing Y to X (or Y to X). Y is Dependent Variable, x is  Independent Variable, 𝑏0 is  

intercept of the line, 𝑏1 is  Linear regression coefficient.  

 

𝑦 ̂  =  �̂�0  +  �̂�1 𝑥                                                                                             (2) 

 

where (𝑦 ̂)  refers to the prediction of Y on the basis of 𝑋 =  𝑥. Here we use the hat symbol ( ˆ ) , 
to indicate the estimated value of a parameter or to indicate the expected value of a response.  
 

2.1.1.1. Simple Linear Regression Algorithm 

 

Inputs 

 
A set of points  (𝑥𝑖, 𝑦𝑖)  where  𝑖 =  1, 2, . . . , 𝑛. 

Outputs: 

 
The equation of the straight line:  𝑦 = 𝑏1𝑥 +  𝑏0. 

Steps: 

 

1. Calculate the Mean 

Calculate the mean of both x and y. 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                                   (3) 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1                                   (4) 

2. Calculate the Slope 𝑏1 

 

Calculate the slope using the 

following formula: 

𝑏1 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

                       (5)                                            

3. Calculate the Intercept 

𝑏0 

Use the following formula to 

calculate the intercept: 

𝑏0 = �̅� − 𝑏1 × �̅�                            ( 6) 

4. Equation of the Line 

Based on the calculated values of m 

and c, the equation of the line will be 

(1) 

Usage: 
This algorithm can be used to predict future values of y based on input 

values of 𝑥. 
 

 

 

2.1.2. Multiple linear regression [6] 

Multiple linear regression extends simple linear regression to include more than one explanatory 

variable. It is one of the important regression models that models the linear relationship between 

more than one independent variable and one continuous dependent variable.  

In both cases, we still use the term 'linear' because we assume that the response variable is directly 

related to a linear combination of the explanatory variables. The equation for multiple linear regression 

has the same form as that for simple linear regression but has more terms: 

𝑦𝑖 =  𝑏0  +  𝑏1𝑥1𝑖  +  𝑏2𝑥2𝑖  + ⋯ +  𝑏𝑝𝑥𝑝𝑖 +  𝑒𝑖                                                                  (7) 
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As for the simple case,  𝑏0   is the constant – which will be the predicted value of 𝑦 when all 

explanatory variables are 0. In a model with  𝑝 explanatory variables, each explanatory variable has its 

own 𝑏_coefficient.  

 
Fig. 5. Multiple linear regression 

 

2.1.2.1. Multiple Linear Regression Algorithm 

Inputs 

 

A set of data containing multiple independent variables  𝑥1, 𝑥2, … , 𝑥𝑝 and a 

dependent variable 𝑦. 

Output 

 

Multilinear equation: 

𝑦 =  𝑏0  +  𝑏1𝑥1  +  𝑏2𝑥2  +  ⋯ +  𝑏𝑝𝑥𝑝                                            (8) 

Where  𝑏0 is the constant (intercept), and  𝑏1, 𝑏2 , ⋯ , 𝑏𝑝 are the regression 

coefficients of the independent variables. 

Steps 

 

1. Prepare the data 

Arrange the data so that it contains the 

independent variables  𝑥1 , 𝑥2 , ⋯ , 𝑥𝑝  

and the dependent variable 𝑦. 

2. Create the design matrix  

We create a design matrix X that has rows 

representing the samples and columns 

representing the independent variables. 

We add a column of fixed values (usually 

1) to represent the constant 𝑏0 .   

𝑋 = [

1 𝑥11 𝑥21 ⋯ 𝑥𝑛1

1 𝑥12 𝑥22 … 𝑥𝑛2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥1𝑝 𝑥2𝑝 ⋯ 𝑥𝑛𝑝

]      (9)                         

where  𝑛  is the number of samples. 

3. Calculating regression 

coefficients 

We use the following formula to calculate 

the regression coefficients b.  

𝑏 = (𝑋𝑇𝑋)−1𝑦𝑋𝑇                         (10) 

                                              

Where  𝑋𝑇  is the transposed matrix of  𝑋 

,  (𝑋𝑇𝑋)−1 is the inverse matrix of   𝑋𝑇𝑋.  

4. Building the regression Based on the calculated values of 𝑏1 and 
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equation 𝑏0, the equation of the line will be (1) 

Usage 

Once you have implemented this algorithm, you can use the multiple 

regression equation to predict future values of  𝑦  based on the input 

independent variables 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑝  

 

 

2.1.2.2. The most important Advantages and Disadvantages of the model 

 

Advantages Disadvantages 

1- Its ability to use more than one 

independent variable, which helps model 

complex relationships between variables and 

improves forecasting accuracy. 

1- Sensitivity to outliers It is sensitive to 

outliers that can significantly affect the final 

results. 

2- Easy to interpret each regression 

coefficient individually while holding the rest 

of the variables constant. 

2- It relies on several assumptions, such as 

linearity, homogeneity of variance, normal 

distribution of errors, and independence of 

errors.  

3- It can work effectively with large and 

complex data that contains many independent 

variables. 

3- If these assumptions are not met, the 

model may not be accurate. 

4- It can be used to predict continuous 

values, making it useful in many applications 

such as price forecasting, sales, and others. 

4- If there is a large overlap between the 

independent variables (i.e. if the variables are 

highly correlated with each other), this can 

lead to non-stationarity of the coefficients 

and thus make interpretation difficult. 

5- It can be used to test the importance of 

each independent variable and determine the 

extent of its effect on the dependent variable 

using p-values and fixed coefficients. 

5- This model assumes that the relationship 

between the independent variables and the 

dependent variable is linear. If the 

relationship is non-linear, it may fail to 

provide accurate predictions. 

 6- It can be difficult to deal with missing 

values in the data when using it and this may 

lead to distortion of the results. 
Table 1. Advantages of multiple linear regression 

 

2.2. Polynomial Regression 
 

Polynomial regression is a special case of multiple regression, with only one independent variable 

X. One-variable polynomial regression model can be expressed as [7] 

 

𝑦 =  𝑏0  +  𝑏1𝑥 +  𝑏2𝑥2  +  ⋯ +  𝑏𝑛𝑥𝑛                                                                               (11) 

 

In this model the original features are converted into polynomial features of the desired degree 

(2,3,..,n) and thus modeled using a linear model. 
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Fig. 6. Quadratic polynomial model 

 

 

Polynomial regression is a special case of multiple regression, with only one independent variable X. 

One-variable polynomial regression model can be expressed as  

 

𝑦𝑖 =  𝑏0  +  𝑏1𝑥1𝑖  +  𝑏2𝑥𝑖
2  +  ⋯ +  𝑏𝑝𝑥𝑖

𝑝 +  𝑒𝑖                                                                            (12) 

 

Where  𝑝  is the degree of the polynomial. The degree of the polynomial is the order of the model [8].  
 

2.2.1. Polynomial Regression Algorithm 

 

Inputs 

 

 A dataset containing an independent variable 𝑥 and a dependent 

variable 𝑦. 

 The desired degree of the polynomial regression d. 

Outputs 

 

The polynomial regression equation:  

 

𝑦𝑖 =  𝑏0  +  𝑏1𝑥 +  𝑏2𝑥2  +  ⋯ +  𝑏𝑑𝑥𝑑                                            (13) 

 

Where 𝑏0, 𝑏1, … , 𝑏𝑑 are the regression coefficients. 

Steps 

 

1. Prepare the Data 
Collect the data containing the independent 

variable 𝑥 and the dependent variable y. 

2. Transform the 

Independent Variable  

Expand the independent variable  𝑥 into a set of 

polynomial features up to the degree 𝑑. For 

example, if  𝑥  is your original variable, it will be 

transformed into: 

 

𝑋𝑝𝑜𝑙𝑦 = [ 1, 𝑥, 𝑥2, … , 𝑥𝑑]                (14) 

                                       

Where each row contains different powers of 𝑥 

from 𝑥0 (representing the intercept) to 𝑥𝑑. 

3. Create the Design 

Matrix 

Create the design matrix  𝑋𝑝𝑜𝑙𝑦  where rows 

represent the samples and columns represent the 

polynomial features. 

4. Calculate the 

Regression 

Coefficients 

Use the following formula to calculate the 

regression coefficients  𝑏: 

𝑏 = (𝑋𝑝𝑜𝑖𝑦
𝑇 𝑋𝑝𝑜𝑙𝑦)

−1
𝑋𝑝𝑜𝑖𝑦

𝑇  𝑦             (15) 
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Where  𝑋𝑝𝑜𝑖𝑦
𝑇   is the transpose of  𝑋𝑝𝑜𝑙𝑦, and 

(𝑋𝑝𝑜𝑖𝑦
𝑇 𝑋𝑝𝑜𝑙𝑦)

−1
   is the inverse of the matrix 

𝑋𝑝𝑜𝑖𝑦
𝑇 𝑋𝑝𝑜𝑙𝑦. 

5. Construct the 

Polynomial 

Regression Equation 

After calculating the coefficients 𝑏0, 𝑏1, … , 𝑏𝑑 the 

polynomial regression equation will be:  

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑑𝑥𝑑   (16)                 

Usage 
Once you implement this algorithm, you can use the polynomial regression 

equation to predict future values of  𝑦  based on the input value 𝑥. 

2.2.2. The most important Advantages and Disadvantages of the model 
 

Advantages Disadvantages 

1- Polynomial regression allows for 

modeling complex, non-linear relationships 

between the independent and dependent 

variables. By increasing the degree of the 

polynomial, the model can capture more 

intricate patterns in the data. 

1- As the degree of the polynomial increases, 

the model becomes more complex and may 

fit the training data too closely, leading to 

overfitting. This reduces the model's ability 

to generalize to new, unseen data. 

2- When data does not follow a linear trend, 

polynomial regression can provide a better fit 

compared to linear regression, resulting in 

more accurate predictions. 

2- Higher-degree polynomials require more 

computational resources and time to 

calculate, especially with large datasets or 

very high degrees. 

 

3- Although more complex than simple linear 

regression, polynomial regression still 

maintains some level of interpretability. The 

coefficients can indicate the influence of each 

polynomial term on the dependent variable. 

3- As the degree of the polynomial increases, 

the model becomes harder to interpret. 

Understanding the influence of higher-degree 

terms on the outcome can be challenging. 

4- Polynomial regression can be applied to a 

wide range of problems in various fields, 

such as economics, engineering, and natural 

sciences, where relationships between 

variables are non-linear. 

4- Polynomial regression is sensitive to 

outliers. A single outlier can significantly 

distort the curve, leading to inaccurate 

predictions. 

5- It is a straightforward extension of linear 

regression, allowing the same foundational 

methods to be applied to more complex data 

structures. 

5- Polynomial models can behave 

unpredictably outside the range of the 

training data. Extrapolating beyond the 

observed data can result in nonsensical 

predictions, especially with high-degree 

polynomials. 

 

 

6- When polynomial terms are added, 

especially in higher degrees, multicollinearity 

can become an issue, where independent 

variables (or their polynomial terms) are 

highly correlated with each other. This can 

lead to unstable coefficient estimates. 
Table 2. Advantages and Disadvantages of Polynomial Regression 
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2.3. Decision Tree Regression 
 

Decision Trees (D T) recursively split the data based on features, aiming to maximize information gain 

(classification) or variance reduction (regression) at each node. Decision Tree is a Supervised Machine 

Learning approach to solve classification and regression problems by continuously splitting data based 

on a certain parameter [9].  

 

 

2.3.1. Decision Tree Regression Algorithm 

 

Inputs 

 

 A dataset with features  𝑥1, 𝑥2, … , 𝑥𝑝  and a target variable y. 

 A splitting criterion, typically the reduction in variance (or another 

metric such as mean squared error). 

 A stopping criterion, like the maximum depth of the tree or minimum 

number of samples per leaf. 

Outputs 

 
A decision tree model that predicts the target variable y for a given input 𝑥. 

Steps: 

 

1. Initialization 
Collect the data containing the independent variable 

𝑥 and the dependent variable y. 

2. Splitting Criterion 

At each node, calculate the optimal split by 

considering all possible splits for each feature. The 

goal is to choose the split that minimizes the variance 

(or other error metric) in the target variable within 

the resulting subsets. 

Variance Reduction (Variance Minimization): 

For a given split 𝑆  that divides the dataset into two 

subsets  𝑆1  and 𝑆2, the variance before the split is: 

𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 =
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1                                   (17)                       

where n is the total number of samples,  𝑦𝑖  is the 

target value for the  𝑖𝑡ℎ sample, and  �̅�  is the mean 

of the target values. 

After the split, the variance for each subset is 

calculated as: 

𝑉𝑎𝑟(𝑆1) =
1

𝑛1
∑ (𝑦𝑖 − �̅�1)2𝑛

𝑖=1                               (18)                       

𝑉𝑎𝑟(𝑆2) =
1

𝑛2
∑ (𝑦𝑖 − �̅�2)2𝑛

𝑖=1                               (19)                         

where  𝑛1  and  𝑛2  are the number of samples in 

subsets  𝑆1  and 𝑆2 , and �̅�1  and �̅�2 are the means of 

the target values in those subsets. 

The total variance after the split is: 

𝑉𝑎𝑟𝑠𝑝𝑙𝑖𝑡 =
𝑛1

𝑛
𝑉𝑎𝑟(𝑆1) +

𝑛2

𝑛
 𝑉𝑎𝑟(𝑆2)                   (20)                       

The variance reduction (or reduction in mean squared 

error) achieved by the split is: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑎𝑟𝑠𝑝𝑙𝑖𝑡       (21)               
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Choose the split that maximizes this variance 

reduction. 

3. Recursive Splitting 

Recursively apply the splitting criterion to each 

subset, creating new nodes in the tree until a stopping 

criterion is met. Common stopping criteria include: 

Maximum depth of the tree. 

Minimum number of samples required to split a 

node. 

Minimum variance reduction required to perform a 

split. 

4. Stopping Condition 

If a stopping criterion is met, stop splitting and assign 

a predicted value to the leaf node. The predicted 

value is typically the mean of the target values in that 

node:   

�̂�𝑙𝑒𝑎𝑓 =
1

𝑛𝑙𝑒𝑎𝑓
∑ 𝑦𝑖 𝑖∈𝑙𝑒𝑎𝑓                                        (22)                        

Where  𝑛𝑙𝑒𝑎𝑓  is the number of samples in the leaf. 

5. Prediction 

To predict the target value for a new input  𝑥, 

traverse the tree starting  from the root, following the 

decisions at each node based on the input feature 

values, until reaching a leaf. The predicted value is 

the value associated with that leaf.   

Usage: 
Once you implement this algorithm, you can use the polynomial regression 

equation to predict future values of y based on the input value 𝑥. 

  

 

2.3.2. The most important Advantages and Disadvantages of the model 
 

Advantages Disadvantages 

1- Based on certain features, the decision tree 

is one of the easiest machine learning models 

to interpret and understand, as the path that 

the model follows to make a decision can be 

traced. 

1- If the depth of the tree or the size of the 

nodes is not controlled, the decision tree can 

lead to overfitting, which leads to poor 

performance when predicting new data. 

2- The decision tree can deal with non-linear 

relationships between the target variable and 

the features without the need for data 

transformation or complex models. 

2- The decision tree may be unstable, 

because small changes in the data may lead 

to the creation of a significantly different 

tree. 

3- The decision tree does not require initial 

data settings before using it, which makes it 

easy to use directly on raw data. 

3- In case of small data or data with many 

attributes, the decision tree may be inefficient 

and thus give inaccurate predictions. 

4- The decision tree has the ability to deal 

with quantitative and qualitative variables 

easily in the same model. 

4- If the relationship between the target 

variable and the attributes is linear, the 

decision tree will not be the optimal model 

for new predictions. 
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5- The decision tree is robust in dealing with 

data that contains missing values and does 

not require complex methods. 

5- Predictions in a decision tree are not 

smooth and the predictive values may change 

when moving from one node to another. 

6- The decision tree is less sensitive to 

outliers. 

 

 

7- Based on certain features, the decision tree 

is one of the easiest machine learning models 

to interpret and understand, as the path that 

the model follows to make a decision can be 

traced. 
Table 3. Advantages  and Disadvantages of Decision Tree Regression 

 

 

 

2.4.General Regression Neural Network(GRNN) and Neural Network Regression (NNR) 
  

GRNN is a single-pass learning algorithm with a perfectly parallel architecture. This algorithm 

provides a flexible transition from one value to another, even with sparse data in a multi-dimensional 

measurement space [10].  For each layer 𝑙 in the network (excluding the input layer): 

 

 𝑧𝑙 = 𝑊𝑙𝑎𝑙−1 + 𝑏𝑙                                                                                                      (23) 

 

Where  𝑧𝑙: weighted input , 𝑊𝑙 : weights, 𝑏𝑙: biases and  𝑎𝑙−1 : the output 

   

𝑎𝑙 = 𝑓𝑙(𝑧𝑙)                                                                                                                (24) 

 

Where 𝑓𝑙 activation function to obtain the outputs of layer 𝑙. Equations (23) and (24) are applied to all 

layers until the last layer. 

 

 

2.4.1.1. General Regression Neural Network (GRNN) Algorithm 

 

Inputs 

 

A dataset with features 𝑥1, 𝑥2, … , 𝑥𝑝  and a target variable  𝑦. 

A smoothing parameter 𝜎, which controls the width of the kernel function. 

Outputs A predicted value  �̂� for a new input vector 𝑥. 

Steps: 

 
1. Network Structure 

The GRNN consists of four layers: 

Input Layer: Each input feature  𝑥𝑖  is passed 

directly to the Pattern layer. 

Pattern Layer (or Radial Basis Layer): This layer 

calculates the distance between the input vector 𝑥 

and each training sample vector 𝑥𝑗. The output of 

each neuron in this layer is computed using the 

Gaussian kernel: 

𝐺𝑗(𝑥) = exp (
‖𝑥−𝑥𝑗‖

2

2𝜎2 )                                  (25) 

Where ‖𝑥 − 𝑥𝑗‖ is the Euclidean distance 
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between the input vector 𝑥 and the training 

sample 𝑥𝑗, and 𝜎  is the smoothing parameter. 

Summation Layer: This layer has two nodes: 

Node S: The weighted sum of the outputs from 

the Pattern layer, weighted by the target values:  

𝑆 = ∑ 𝑦𝑗𝐺𝑗(𝑥) 𝑛
𝑗=1                                           (26) 

Node D: The sum of the outputs from the Pattern 

layer:  

𝐷 = ∑ 𝐺𝑗(𝑥) 𝑛
𝑗=1                                              (27) 

Output Layer: The predicted value  �̂�  is 

computed as the ratio of the sums from the 

Summation layer:  

�̂� =
𝑆

𝐷
=

∑ 𝑦𝑗𝐺𝑗(𝑥) 𝑛
𝑗=1

∑ 𝐺𝑗(𝑥) 𝑛
𝑗=1

                                       (28) 

2. Training 

Unlike traditional neural networks, GRNN does 

not require iterative training. It simply stores the 

training data and computes the necessary values at 

prediction time. 

3. Prediction 

For a new input vector 𝑥, the GRNN calculates 

the predicted value  �̂� using the formula from the 

Output layer. The network automatically adjusts 

to new data by adding new training samples to its 

memory, making it inherently adaptable. 

4. Smoothing Parameter  𝜎 

The performance of GRNN is highly dependent 

on the choice of the smoothing parameter 𝜎. A 

small σ\sigmaσ leads to a model that closely 

follows the training data (risking overfitting), 

while a large 𝜎  produces a smoother, more 

generalized model. The optimal 𝜎  can be selected 

using cross-validation. 
 

 

 

2.4.2. Neural Network Regression (NNR) 
 

refers to a subfield of artificial intelligence that is similar to the brain, where computers have the 

option to understand things and make decisions in a human-like way [11]. It  is a neural network 

consisting of two or more layers, and NNR is used to predict time series [12] 

 

𝑦𝑡  =  𝑔(𝑦𝑡−1, 𝑦𝑡−2, . . . . 𝑦𝑡−𝑝)  +  𝑒𝑡                                                                             (29) 

 

where 𝑒𝑡 is the error at time 𝑡 . The sigmoid function is represented in the following form, knowing 

that it is a biased function:  

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  =  
1

1+𝑒−𝑦
                                                                                                 (30) 
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2.4.2.1.Neural Network Regression (NNR) Algorithm 

 

Inputs 

 

 A dataset with features  𝑥1, 𝑥2, … , 𝑥𝑝  and a target variable 𝑦. 

 Number of hidden layers and the number of neurons in each layer. 

 An activation function for the hidden layers, such as 𝑅𝑒𝐿𝑈, Sigmoid, or 

𝑇𝑎𝑛ℎ. 

 A loss function, such as Mean Squared Error (MSE). 

 An optimization algorithm, such as Gradient Descent or Adam. 

Outputs 

 

A trained neural network model that can predict the target variable 𝑦 for new 

input data. 

Steps: 

 

1. Initialize the Network 

Set up the network architecture by determining the 

number of input features, the number of hidden 

layers, and the number of neurons in each layer. 

Initialize the weights and biases of the network, 

often with small random values or using specific 

initialization methods like Xavier initialization 

2. Forward Propagation 

For a given input 𝑥, propagate the input through 

the network: 

Compute the linear combination of inputs and 

weights for each neuron in the hidden layers. 

Apply the activation function to the result. 

Repeat this process for each hidden layer, passing 

the output of one layer as the input to the next. 

Finally, compute the output of the network in the 

output layer (which typically does not use an 

activation function for regression). 

1. Compute the 

Loss 

Calculate the loss using a loss function like Mean 

Squared Error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                                  (31)                                      

Here, �̂�𝑖 is the predicted output, and  𝑦𝑖 is the 

actual target value. 

2. Backward 

Propagation 𝝈 

Compute the gradient of the loss function with 

respect to each weight and bias in the network 

using backpropagation: 

Calculate the derivative of the loss with respect to 

the output of the network. 

Propagate this error backward through the 

network, layer by layer, calculating the gradient 

with respect to the weights and biases. 

Use the chain rule to update the gradients for each 

layer. 

 
3. Update Weights and 

Biases 

Update the weights and biases of the network 

using an optimization algorithm such as Gradient 

Descent: 

 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖𝑗
                                      (32)                                            
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Here, 𝑤𝑖𝑗  represents the weights, η  is the learning 

rate, and  
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖𝑗
 is the gradient of the loss with 

respect to the weight. 

4. Iterate 

Repeat steps 2-5 for a specified number of 

iterations (epochs) or until the loss converges to a 

minimum value. 

5. Prediction 
Once the network is trained, use it to predict the 

target variable  𝑦 for new input data 𝑥. 

6. Evaluate the Model 

After training, evaluate the model's performance 

on a test dataset by calculating metrics like Mean 

Absolute Error (MAE), Root Mean Squared Error 

(RMSE), or 𝑅2. 

 

 

 

 

The most important differences between the properties of the generalized regression neural network 

(GRNN) and the neural network regression (NNR) 
 

Criteria 
General Regression Neural 

Network (GRNN) 

Neural Network Regression 

(NNR) 

1- Structure and Design 
Fixed four-layer structure (Input, 

Pattern, Summation, Output) 

Multilayer structure (Input, multiple 

Hidden layers, Output) 

2- Training Method 
No iterative training required; 

relies on storing data 

Requires iterative training to 

optimize weights using optimization 

algorithms 

3- Activation Functions 
Relies on Gaussian function as 

the kernel function 

Uses multiple activation functions 

like 𝑅𝑒𝐿𝑈, Sigmoid, and 𝑇𝑎𝑛ℎ 

4- Data Handling 
Treats each point in the training 

set individually 

Generalizes patterns across hidden 

layers 

4- Efficiency with Large 

Data 

May be slow due to storing and 

evaluating all data during 

prediction 

More efficient with large datasets 

due to its generalization capabilities 

5- Stability and 

Reliability 

Does not require training and 

relies on full data storage, making 

it stable 

Depends on the quality of training 

and can be unstable if not trained 

properly 

6- Customization 

Flexibility 

Limited flexibility, primarily 

depends on the smoothing 

parameter 𝜎 

Highly customizable by adjusting 

the number of hidden layers and 

neurons 

7- Performance with 

Non-linear Relationships 

Performs well with non-linear 

and complex relationships 

Can be effective with non-linear 

relationships if trained properly 

8- Generalization 
Can lead to overfitting in some 

cases 

Has strong generalization 

capabilities if trained well 

9- Sensitivity to Outliers Less sensitive to outliers 
Can be more sensitive to outliers if 

not handled properly 

10- Practical Application Suitable for problems requiring Suitable for problems requiring 
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quick results without intensive 

training 

customized models with strong 

generalization 
 

Table 4. Comparison Table between General Regression Neural Network (GRNN) and Neural Network Regression (NNR) 

 

 

2.5.Random Forest Regression (RFR) 
 

Random forest is a type of supervised learning algorithm that uses ensemble methods to solve both 

regression and classification problems [11]. 

It is a mixture of tree predictions {ℎ(𝑥, 𝛩𝑖), 𝑖 =  1, 2, . . . }, such that each tree depends on the values of 

the random vector { 𝛩𝑖} sampled independently and with the same distribution for all trees in the 

forest . [13], [14]. Under a given independent variable  , each Decision Trees gives an opinion on 

choosing the best outcome [14]. The generalization error of any Decision Trees ℎ(𝑥)  

 

ℎ(𝑥) = 𝐸𝑋;𝑌 (𝑌 − ℎ(𝑋))
2

                                                                                                                    (33) 

 

Where X  is input vector  and Y is output vector. The expected value of Random Forest Regression is 

equal to the average value of 𝑖 Decision Trees  ℎ(𝑥, 𝛩𝑘).  

  

 

2.5.1. Random Forest Regression Algorithm 

 

Inputs 

 

 A dataset D  consisting of  𝑛  observations (𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛) ,  

where 𝑋𝑖 = [𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑖𝑝]  represents the feature vector, and 𝑦𝑖 is the 

target variable. 

 The number of trees M  to grow in the forest. 

 The number of features m to consider when splitting a node in each tree 

(often √𝑝  or log(𝑝) . 

Outputs 

 
 A regression model that predicts the target variable �̂� for new input data. 

Steps: 

 

1. Bootstrapping 

For each tree 𝑇𝑏  where 𝑏 ∈ {1,2, … , 𝑀}, generate a 

bootstrap sample  𝐷𝑏  from the original dataset  D. 

This is done by sampling n observations from  D with 

replacement. 

2. Growing the Trees 

For each tree 𝑇𝑏 , grow a decision tree using the 

following process: 

1. Node Splitting: At each node, randomly select 

mmm features from the total  p features in the dataset. 

Evaluate all possible splits across these mmm features. 

Select the feature 𝑥𝑗 and split point  𝑠 that minimizes 

the impurity measure (such as variance) in the target 

variable y. 

Split the node into two child nodes based on the best 

split (𝑥𝑗 , 𝑠) . 

2. Stopping Criteria: 
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Continue splitting nodes until a stopping criterion is 

met, such as a maximum depth, minimum number of 

samples in a node, or no further improvement in 

impurity. 

3. Prediction for Each 

Tree 

For a new input vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑝],  pass  X 

down each tree 𝑇𝑏 in the forest to obtain a predicted 

value �̂�𝑏 . 

4. Aggregating the 

Predictions 

The final prediction �̂� is obtained by averaging the 

predictions from all trees:  

�̂� =
1

𝑀
∑ �̂�𝑏

𝑀
𝑏=1                                                           (34) 

This aggregation reduces the variance of the 

predictions, leading to a more stable and accurate 

model. 

Mathematical Details: 

Node Splitting Criterion: For each feature 𝑥𝑗 in the 

selected subset mmm, and for every possible split 

point 𝑠 , calculate the reduction in variance (or another 

impurity measure) from splitting the node:  

Reduction in Variance = 𝑉𝑎𝑟(𝑦) − (
𝑛𝐿

𝑛
𝑉𝑎𝑟(𝑦𝐿) +

𝑛𝑅

𝑛
𝑉𝑎𝑟(𝑦𝑅))                                                           (35) 

Where   𝑉𝑎𝑟(𝑦)  is the variance of the target variable 

in the parent node. 

𝑛𝐿  and 𝑛𝑅  are the number of observations in the left 

and right child nodes, respectively. 

𝑉𝑎𝑟(𝑦𝐿)) and 𝑉𝑎𝑟(𝑦𝑅) are the variances in the left 

and right child nodes. 

Out-of-Bag (OOB) Error Estimation: During the 

bootstrapping process, about one-third of the data is 

not included in each bootstrap sample. This data is 

called Out-of-Bag (OOB) data. 

The OOB error is calculated by averaging the 

prediction error of each tree on the OOB data. This 

provides an unbiased estimate of the model's 

performance. 
 

 

 

2.5.2. The most important Advantages and Disadvantages of the model 
 

Advantages Disadvantages 

1- By averaging the predictions of multiple 

decision trees, Random Forest significantly 

reduces the risk of overfitting compared to 

using a single decision tree. The randomness 

introduced in both the data sampling and 

1- Training a large number of decision trees 

and making predictions with them can be 

computationally expensive, especially with 

large datasets and high numbers of trees. This 

can lead to slower model training and 
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feature selection helps in achieving this 

robustness. 

prediction times. 

2- Random Forest can effectively handle 

datasets with a large number of features (high 

dimensionality). It automatically selects the 

most important features during the training 

process, making it well-suited for complex 

datasets. 

2- Random Forest models are less 

interpretable compared to single decision 

trees. Understanding the overall model and 

how individual decisions are made can be 

challenging due to the ensemble nature of the 

method. 

3- Random Forest generally provides high 

accuracy and good performance for a wide 

range of regression tasks. The ensemble 

approach ensures that the model is less 

sensitive to noise and anomalies in the data. 

3- Since Random Forest stores multiple 

decision trees, it can require a significant 

amount of memory, especially when dealing 

with large datasets and many trees. 

4- It provides an internal mechanism to rank 

the importance of different features. This is 

useful for understanding the model and for 

feature selection in other machine learning 

tasks. 

4- If the dataset is highly unbalanced, 

Random Forest can produce biased 

predictions towards the majority class. 

Special techniques like balancing the data or 

using weighted trees may be needed to 

address this issue. 

5- Random Forest can handle both 

categorical and continuous data. It is versatile 

and can be used for a variety of applications 

in regression and classification. 

5- While Random Forest is generally robust, 

excessive noise in the dataset can still lead to 

less accurate predictions, particularly if the 

noise is present in a significant portion of the 

data. 

6- Unlike many machine learning algorithms, 

Random Forest does not require the data to 

be scaled or normalized, making it easier to 

apply to raw datasets. 

6- The resulting Random Forest model can 

be quite large, making it difficult to deploy in 

resource-constrained environments or when 

storage and memory are limited. 
Table 5. Features of Random Forest Regression: Advantages and Disadvantages 

 

 

2.6.Support Vector Regression (SVR) 

The mathematical relationship representing the SVR model is as follows: 

For the linear case:  

 

𝑦 = 𝑤 ⋅ 𝑥 + 𝑏                                                                                                        (36) 

 

Where: 

 y is the target value. 

 w is the weight (coefficients) for features. 

 x is the feature vector. 

 b is the bias term. 

For the non-linear case, can use a kernel function to express the relationship in a more complex form. 

For instance, when using a Radial Basis Function (RBF) kernel, the relationship may look like this: 

 

𝑦 = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥)𝑁
𝑖=1 + 𝑏                                                                                           (37) 

 

Where: 
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 y is the target value. 

  𝛼𝑖 are the support vector coefficients. 

  𝐾(𝑥𝑖, 𝑥) is the kernel function that assesses similarity between data points. 

  b is the bias term. 

an analytical technique to investigate the relationship between one or more predictor variables and a 

real-valued (continuous) [15].  

The kernel function K introduces non-linearity. This algorithm aims to make the best decision 

boundary or line that can segregate − space into classes [16]. The supervised learning technique, 

Support Vector Regression, is used to predict discrete values [17].  

The choice of kernel function and the coefficients (𝛼𝑖and b) are adjusted during the training and 

optimization process to achieve the best possible fit with the available data. 

 

2.6.1. Support Vector Regression (SVR) Algorithm 
 

Inputs 

 

 A dataset   (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) , where 𝑋𝑖 ∈ 𝑅𝑝 represents the 

feature vector and 𝑦𝑖 ∈ 𝑅  is the target variable. 

 A kernel function  𝐾(𝑥𝑖, 𝑥𝑗)  such as linear, polynomial, or RBF (Radial 

Basis Function). 

 Regularization parameter C  that controls the trade-off  between achieving 

a low error on the training data and minimizing model complexity. 

 Epsilon  𝝐, which defines a margin of tolerance within which no penalty is 

given to errors. 

Output

s 

 

A regression function  𝑓(𝑥)  that predicts the target variable 𝑦  for new input data. 

Steps: 

 

1. Objective 

Function 

The goal of  SVR is to find a function  𝑓(𝑥)  that has at 

most 𝜖  deviation from the actual target values 𝑦𝑖 for all 

training data, while keeping the model as flat (simple) as 

possible. 

The function 𝑓(𝑥) can be defined as: 

𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏                                                  (38)                               

Where: 

w is the weight vector. 

𝜙(𝑥) is the feature mapping to a higher-dimensional 

space. 

𝑏  is the bias term. 

2. Minimization 

Problem 

The optimization problem for SVR is formulated as: 

min
𝑤,𝑏,𝜉𝑖 ,𝜉𝑖

∗
 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                    (39)                          

subject to: 

𝑦𝑖 − (𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≤ 𝝐 + 𝜉𝑖                                 (40)                                

(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝝐 + 𝜉𝑖
∗                                 (41)                            

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0                                                                 (42)                                      

Here: 

𝜉𝑖  and  𝜉𝑖
∗  are slack variables that represent the amount 

by which predictions are allowed to deviate from the 

ϵ\epsilonϵ margin. 
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The first term  
1

2
‖𝑤‖2  represents the model's complexity 

(flatness of the function), and the second term  

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)𝑛

𝑖=1   represents the penalty for errors that are 

outside the 𝜖  margin. 

3. Dual Formulation 

To solve the optimization problem, we typically use the 

dual formulation. The Lagrangian is introduced, leading 

to the dual problem: 

min
𝛼𝑖 ,𝛼𝑖

∗

1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑗=1 +𝑛
𝑖=1

𝜖 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 − ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1                          (43)                                               

subject to: 

∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 0                                                     (44)                                                                 

0 < 𝛼𝑖, 𝛼𝑖
∗ < 𝐶                                                            (45)                                              

Where  𝛼𝑖  and  𝛼𝑖
∗  are Lagrange multipliers, and 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)  is the kernel function that 

allows computation in the high-dimensional feature space 

without explicitly mapping the data to that space.  

4. Solution to the 

Dual Problem 

Once the dual problem is solved, the weight vector www 

can be expressed as: 

𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝜙(𝑥𝑖)

𝑛
𝑖=1                                             (46)                                      

The bias term 𝑏  can be computed using the support 

vectors (data points where 𝛼𝑖  or  𝛼𝑖
∗  is non-zero): 

𝑏 = 𝑦𝑘 − ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑘)𝑛

𝑖=1                                (47)                                      

Where  𝑥𝑘  is any support vector. 

5. Prediction 

The final regression function 𝑓(𝑋) is used to predict new 

data points: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥)𝑛

𝑖=1 + 𝑏                            (48)                              

The prediction is essentially a weighted sum of the kernel 

functions applied to the support vectors and the input data 

point 𝑥, plus the bias term 𝑏. 

 

 

2.6.2. The most important Advantages and Disadvantages of the model 

 

Advantages Disadvantages 

1- SVR employs regularization (controlled 

by the parameter  C ), which helps in 

controlling the complexity of the model and 

prevents overfitting, especially in high-

dimensional spaces. 

1- SVR requires careful tuning of 

Hyperparameter such as C , 𝜖 , and the kernel 

parameters (e.g., the gamma parameter in the 

RBF kernel). Poor choices can lead to 

suboptimal performance. 

2- SVR can handle non-linear relationships 

between features and the target variable using 

kernel functions. Common kernels include 

linear, polynomial, and RBF (Radial Basis 

Function), making SVR versatile for different 

types of data. 

2- SVR can be computationally expensive, 

especially with large datasets, as the 

complexity scales with the number of 

training examples. The training process 

involves solving a quadratic programming 

problem, which can be slow for large 
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datasets. 

3- Only a subset of the training data, known 

as support vectors, is used to define the 

decision boundary. This sparsity can make 

the model more efficient in terms of memory 

and computation, especially for large 

datasets. 

3- The performance of SVR heavily depends 

on the choice of the kernel function and its 

parameters. If the wrong kernel is chosen, the 

model may not capture the underlying data 

distribution effectively. 

4- SVR performs well in high-dimensional 

spaces, making it suitable for datasets with a 

large number of features. The kernel trick 

allows for efficient computation in these 

spaces without explicitly computing the high-

dimensional mappings. 

4- While the model's decision boundary is 

defined by support vectors, interpreting the 

overall model, especially when non-linear 

kernels are used, can be challenging. This 

makes SVR less transparent compared to 

simpler models like linear regression. 

5- The regularization parameter C  and the 𝜖  

margin allow for fine-tuning the model's 

complexity and the degree of tolerance to 

errors. This provides flexibility in managing 

the trade-off between bias and variance. 

5- SVR is sensitive to the scale of the data, 

often requiring feature scaling or 

normalization before training. This adds an 

extra preprocessing step, which may not be 

needed for other regression techniques. 

6- The 𝜖-insensitive loss function provides a 

margin of tolerance around the predictions, 

which can be interpreted as a measure of 

confidence in the predictions, useful in 

certain applications where prediction 

intervals are important. 

6- Although SVR uses only the support 

vectors for prediction, storing and processing 

these vectors can still require significant 

memory, particularly when the number of 

support vectors is large. 

Table 6.  Features of Support Vector Regression (SVR): Advantages and Disadvantages 

 

 

 

Some special Regression models in machine learning 

 

2.7.Time Series Regression(TSR) 

 

The TSR It is one of the statistical methods used to predict time series data to arrive at future data 

based on historical data records. It is called dynamic autoregressive 

 

𝑦𝑡 = 𝑏0 + ∑ 𝑏𝑗𝑥𝑗𝑡
𝑘
𝑗=1 + 𝑢𝑡                                                                                                (49) 

 

Time series analysis is typically suitable for investigations on relatively direct and short-term effects of 

exposures [18]. 

 

2.7.1. Time Series Regression (TSR) Algorithm 
 

Inputs 

 

 A time series dataset {𝑦1, 𝑦2, … , 𝑦𝑡}  where 𝑦𝑡 is the observed value at 

time 𝑡. 

 Lagged values of the series (past observations) and possibly other 

explanatory variables 𝑥𝑗𝑡  where 𝑗  indexes the explanatory variables, and  
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𝑡 indexes time. 

Outputs 

 

 A regression model that predicts future values 𝑦𝑡 + ℎ𝑦  for  ℎ steps ahead 

based on past values and explanatory variables. 

Steps: 

 

1. Regression Equation 

The basic TSR model can be written as: 

𝑦𝑡 = 𝑏0 + ∑ 𝑏𝑗𝑥𝑗𝑡
𝑘
𝑗=1 + 𝑢𝑡                                  (50)                                                      

where: 𝑦𝑡 is the dependent variable (time series 

value) at time 𝑡. 

𝑏0  is the intercept term. 

𝑥𝑗𝑡 represents the 𝑗 − 𝑡ℎ explanatory variable at time  

𝑡, which could include past values of 𝑦𝑡 (i.e., lagged 

values such as 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝  

𝑏𝑗 are the coefficients associated with each 

explanatory variable. 

𝑢𝑡 is the error  term or residual, assumed to be a 

white noise process with 𝐸(𝑢𝑡) = 0 and 𝑉𝑎𝑟(𝑢𝑡) =
𝜎2 . 

2. Autoregressive 

Component 

In the autoregressive (AR) part of the model, the 

current value of the series 𝑦𝑡 depends on its previous 

values (lags): 

𝑦𝑡 = 𝑏0 + ∑ 𝜙𝑗𝑦𝑡
𝑝
𝑗=1 + 𝑢𝑡                                    (51)                                                 

where: 

𝑝  is the order of the autoregressive model, indicating 

how many past values of  𝑦𝑡 are used in the 

regression. 

𝜙𝑗 are the autoregressive coefficients. 

3. General Model 

(Including Exogenous 

Variables) 

If we include exogenous variables 𝑋𝑡 =
[𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑘𝑡], the model becomes: 

𝑦𝑡 = 𝑏0 + ∑ 𝜙𝑗𝑦𝑡
𝑝
𝑗=1 + ∑ 𝑏𝑖𝑥𝑖𝑡

𝑘
𝑖=1 + 𝑢𝑡              (52)                                                      

This model is sometimes referred to as an ARX 

(Autoregressive with Exogenous inputs) model. 

4. Estimation of 

Coefficients 

The coefficients 𝑏𝑗 and 𝜙𝑗 are estimated using 

ordinary  least squares (OLS) or other methods such 

as maximum likelihood estimation (MLE). The 

objective is to minimize the sum of squared 

residuals: 

min
𝑏0𝑏𝑗𝜙𝑗

∑ (𝑦𝑡 − �̂�𝑡)2𝑇
𝑡=1                                    (53)                                                                           

where �̂�𝑡 is the predicted value of  𝑦𝑡  based on the 

model. 

 5. Prediction 

Once the model is estimated, future values  

𝑦𝑇+1, 𝑦𝑇+2, … , 𝑦𝑇+ℎ  can be predicted using the 

estimated coefficients and past observed data: 

�̂�𝑇+ℎ = �̂�0 + ∑ �̂�𝑗
𝑝
𝑗=1 𝑦𝑇+ℎ−𝑗 + ∑ �̂�𝑖𝑥𝑖,T+h

𝑘
𝑖=1      (54) 

where �̂�0, �̂�𝑗, �̂�𝑖  are the estimated coefficients. 
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6. Error Term Analysis 

The residuals 𝑢𝑡 are analyzed to check for 

autocorrelation (using the Durbin-Watson statistic or 

autocorrelation function), heteroscedasticity, and 

normality. This step is crucial to ensure that the 

model assumptions are not violated.  

7. Model Diagnostics 

and Selection 

AIC/BIC: Model selection criteria such as the 

Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC) can be used to select the 

best model in terms of predictive accuracy. 

Cross-Validation: Time series cross-validation can 

be used to assess model performance and prevent 

overfitting. 

 

 

 

 

2.7.2. The most important Advantages and Disadvantages of the model 

 

Advantages Disadvantages 

1- TSR models are specifically designed to 

capture the temporal dependencies in data, 

making them highly effective for time series 

forecasting where past values influence 

future values. 

1- TSR models often assume that the time 

series is stationary, meaning its statistical 

properties (mean, variance, autocorrelation) 

do not change over time. However, many 

real-world time series are non-stationary, 

requiring transformations like differencing, 

which can complicate the modeling process. 

2- TSR can incorporate exogenous variables 

(other relevant features or external factors) in 

addition to lagged values of the time series 

itself. This allows for more comprehensive 

modeling of factors that impact the time 

series. 

2- The performance of TSR heavily depends 

on the correct specification of the model, 

including the selection of the appropriate lag 

order, inclusion of relevant exogenous 

variables, and proper handling of seasonality. 

Incorrect specification can lead to poor 

forecasts. 

3- TSR offers flexibility in terms of model 

structure. It can be purely autoregressive 

(based solely on past values), include moving 

average components, or integrate exogenous 

inputs. This adaptability makes it suitable for 

a wide range of time series data types. 

3- If the model includes multiple lagged 

variables or exogenous inputs that are highly 

correlated with each other, multicollinearity 

can become an issue, leading to unstable 

estimates and reducing the interpretability of 

the model. 

4- The model parameters in TSR, such as 

coefficients for lagged values and exogenous 

variables, are interpretable. This allows for a 

better understanding of the relationship 

between past values and future predictions, 

as well as the impact of external variables. 

4- Adding too many lagged variables or 

exogenous inputs can lead to overfitting, 

where the model performs well on the 

training data but poorly on unseen data. This 

is particularly a concern when the dataset is 

small. 

5- When properly tuned and validated, TSR 

models can achieve high predictive accuracy, 

5- Traditional TSR models like 

autoregressive models are linear in nature. 
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particularly for time series with strong 

autoregressive properties. This makes them 

valuable for tasks like demand forecasting, 

financial time series prediction, and 

economic forecasting. 

They may struggle to capture complex non-

linear relationships in the data unless 

combined with non-linear methods, which 

can increase the model's complexity. 

6- TSR is grounded in well-established 

statistical methods, making it a robust 

approach with strong theoretical backing. It 

provides statistical measures like confidence 

intervals, which help in assessing the 

uncertainty in predictions. 

6- As the number of lagged terms and 

exogenous variables increases, the model can 

become computationally intensive, 

particularly for large datasets or when using 

higher-order models. 

 7- Time series data often have missing 

values, and TSR models may require 

additional preprocessing to handle these 

gaps, such as imputation methods or 

interpolation, which can introduce bias or 

errors if not done carefully. 
Table 7. Features of Time Series Regression (TSR): Advantages and Disadvantages 

 

 

2.8. Spatial Linear Regression(SLR) 

 Spatial linear regression models may be viewed as generalization of standard linear regression models 

such that spatial autocorrelation is allowed and accounted for explicitly by spatial models [19]. 

 

𝑦𝑖 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖
𝑘
𝑖=1 + 𝜖                                                                                                        (54) 

 

Spatial regression models, typically with a linear additive specification, in which the relationship 

among areal units is specified exogenously using weights that mimics the spatial structure and the 

spatial interaction pattern [20]. 

 

2.8.1. Spatial Linear Regression (SLR) Algorithm 
 

Inputs 

 

 Dependent Variable 𝑦𝑖The response variable observed at location iii. 

 Explanatory Variables 𝑥𝑖𝑗 : The independent variables (or covariates) 

associated with location 𝑖 . 
 Spatial Weight Matrix  𝑊: A matrix representing the spatial relationships  

between different locations. The elements 𝑤𝑖𝑗  indicate the degree of spatial 

influence between locations iii and 𝑗. 

Outputs 

 

A regression model that incorporates both the covariates and spatial dependencies 

to predict the dependent variable y . 

Steps: 

 

1. Basic Linear 

Regression Model 

The standard linear regression model without spatial 

considerations is: 

𝑦𝑖 = 𝑏0 + ∑ 𝑏𝑗𝑥𝑖𝑗
𝑘
𝑖=1 + 𝜖𝑖                                             (55) 

Where: 

𝑦𝑖 is the dependent variable at location  𝑖. 
𝑏0 is the intercept term. 
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𝑏𝑗 are the coefficients associated with  the explanatory 

variables 𝑥𝑖𝑗. 

𝜖𝑖 is the error term (residual) at location iii, assumed to be 

independent and identically distributed (𝑖. 𝑖. 𝑑. ) in 

standard regression. 

2. Incorporating 

Spatial 

Autocorrelation 

In SLR, we account for spatial autocorrelation by 

incorporating the spatial structure into the model. This can 

be done in several ways, including: 

Spatial Lag Model (SLM): 

𝑦𝑖 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑗 + 𝑏0 + ∑ 𝑏𝑗
𝑘
𝑗=1 𝑤𝑖𝑗                            (56) 

Here, 𝜌 is the spatial autoregressive coefficient, and 

∑ 𝑤𝑖𝑗𝑦𝑗𝑗  represents the spatially lagged dependent 

variable. This model assumes that the dependent variable 

at a location is influenced by the dependent variable at 

neighboring locations. 

Spatial Error Model (SEM): 

𝑦𝑖 = 𝑏0 + ∑ 𝑏𝑗
𝑘
𝑗=1 𝑥𝑖𝑗 + 𝑢𝑖                                         (57) 

Where the error term 𝑤𝑖𝑗    follows a spatial autoregressive 

process: 

𝑢𝑖 = 𝜆 ∑ 𝑤𝑖𝑗𝑢𝑗𝑗 + 𝜖𝑖                                                 (58) 

In this model, spatial autocorrelation is captured in the 

error term, with λ being the spatial error coefficient. 

3. Compute the Loss 

The spatial weight matrix W represents the spatial 

structure of the data. Elements 𝑤𝑖𝑗   define the spatial 

relationship between locations iii and j . For example, 𝑤𝑖𝑗   

could be 1 if locations 𝑖  and 𝑗 are neighbors, and 0 

otherwise. W  is typically row-normalized so that the 

weights sum to 1 for each location. 

4. Estimation of 

Parameters 

The parameters 𝛽𝑗 , 𝜌 , and 𝜆  are typically estimated using 

Maximum Likelihood Estimation (MLE) or Generalized 

Method of Moments (GMM). The likelihood function 

accounts for the spatial dependencies introduced  by the 

spatial lag or spatial error components. 

For the Spatial Lag Model (SLM), the log-likelihood 

function is: 

log 𝐿(𝛽, 𝜌) = −
𝑁

2
log 2𝜋𝜎2 + log|𝐼 − 𝜌𝑊| −

1

2𝜎2 𝑒′𝑒  (59) 

where 𝑒 = 𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽  is the vector of residuals. 

 

5. Model Diagnostics 

After estimating the parameters, it’s essential to check the 

residuals for any remaining spatial autocorrelation using 

tests like Moran's I. If significant spatial autocorrelation 

remains, the model may need further refinement. 

6. Prediction 

Once the model is fitted, predictions for the dependent 

variable at each location 𝑖  can be made using the 

estimated coefficients and the spatial structure: 
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�̂�𝑖 = �̂� ∑ 𝑤𝑖𝑗�̂�𝑗𝑗 + �̂�0 + ∑ �̂�𝑗
𝑘
𝑗=1 𝑥𝑖𝑗                               (60)                              

The spatial lag model incorporates the influence of 

neighboring locations directly into the prediction. 

 

 

2.8.2. The most important Advantages and Disadvantages of the model 

 

Advantages Disadvantages 

1- SLR explicitly incorporates spatial 

relationships between observations, which is 

essential for modeling geographic or spatial 

data where nearby locations may influence 

each other. This leads to more accurate and 

realistic models compared to traditional linear 

regression. 

1- Specifying an SLR model requires careful 

consideration of the spatial weight matrix and 

the form of spatial autocorrelation. Incorrect 

specification of these components can lead to 

biased or inefficient estimates. 

2- By including spatial dependencies, SLR 

often provides better predictive performance 

for spatial data than non-spatial models, 

especially in cases where spatial 

autocorrelation is strong. 

2- Estimating the parameters of an SLR model, 

especially with large datasets or complex 

spatial relationships, can be computationally 

demanding. This is due to the need to invert 

large matrices and solve complex likelihood 

functions. 

3- SLR can be adapted to different types of 

spatial data structures. For instance, it can 

include spatial lag models or spatial error 

models, depending on whether the spatial 

dependency is in the dependent variable or in 

the error term. 

3- SLR models often assume that the spatial 

relationship is stationary, meaning that the 

spatial dependency is consistent across the 

study area. However, in many real-world 

situations, spatial relationships can vary, 

requiring more sophisticated modeling 

techniques. 

4- The spatial parameters (e.g., spatial lag 

coefficient 𝜌 or spatial error coefficient 𝜆 ) 

provide insights into the strength and direction 

of spatial dependencies, making it easier to 

understand the spatial processes driving the 

data. 

4- The inclusion of spatial dependencies, 

especially in spatial lag models, can make the 

interpretation of the regression coefficients 

more complex, as the effect of explanatory 

variables is mediated by spatial interactions. 

5- Like standard linear regression, SLR allows 

the incorporation of multiple explanatory 

variables (exogenous factors), enabling a 

comprehensive analysis that includes both 

spatial and non-spatial factors. 

5- The choice of the spatial weight matrix  W 

(which defines how spatial units influence each 

other) is crucial. Different choices of  W can 

lead to different model results, making the 

model sensitive to the specification of spatial 

relationships. 

6- SLR models come with diagnostic tools 

(such as Moran's I for residuals) that help 

detect and correct for any remaining spatial 

autocorrelation, leading to more robust and 

reliable models. 

6- SLR models may struggle to handle non-

stationarity (where the relationship between 

variables changes across space) and 

heteroscedasticity (where the variance of errors 

varies across locations), which are common in 

spatial data. 

 7- Due to the inclusion of spatial terms and the 
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complexity of the model, there is a risk of 

overfitting, particularly when the model is 

applied to small datasets or when too many 

spatial lags or variables are included. 

 
Table 8. Features of Spatial Linear Regression (SLR): Advantages and Disadvantage 

 

 

3. Conclusion 

This review aids in understanding the strengths and weaknesses of various machine learning 

models. The choice of the most suitable model depends on the specific requirements of the predictive 

analytics task at hand. Future work involves exploring ensemble methods or hybrid approaches 

regression for enhanced predictive accuracy. 
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