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   In this paper, I investigate the Riemann integral when the range of the function on 

which the integral is defined is a Banach space and I tried to apply the known theories 

to other integrals when the range is a Banach space, and I found that they are fulfilled 

in the Riemann integral when the conditions are met in the function for us to integrate 

it by Riemann. 

 

 

1.Introduction  

      The Riemann integral consider the first integral To provide an accurate definition to a function over 

an interval, this is what some consider to be a major weakness of this integral because it is limited to the 

field of the function being a closed interval, and this is what necessitated the need for the emergence of 

other integrals such as the Lebesgue integral and others. Riemann integration has been applied to many 

applications such as calculus, as it is a specific integration to calculate such applications and 

mathematical operations. 

    In [3] He introduced a detailed definition to what mean that the bounded function on a closed interval 

to be Riemann integral, in [7] dealt with the same definition but extensively. In [2] We note that the 

researcher put another definition for functions whose range is a Banach space and this new concept still 

maintains thegproperties of the classical Riemannhintegral.  

    In this paper, I show that it is possible to apply the Riemann integral to any other integral with the 

same properties without the need to define the measure in a single case when the function is bounded, 

meaning its domain is a closed interval. 

2.Fundamental Concepts 

   In this section the important and basic concepts are given to expression all the results that need it 

later on.  

Definition 2.1,[2]: 

(1) When the norm of 𝔵 in a Banach space 𝔅 is ‖𝔵‖,The closed umnit baall of 𝔅 over a field 𝕃 =

ℝ 𝑜𝑟 ℂ  will denoted by 𝒞𝔅 = {𝔵 ∈ 𝔅: ‖𝔵‖ ≤ 1}. 

(2) The dual of 𝔅 which denoted by 𝔅∗: 𝔅 → 𝕃 be a continuous and Banach space and the norm of 

any element 𝔵∗in 𝔅∗ defined by ‖𝔵∗‖𝔅∗ = sup
‖𝔵‖≤1

| 𝔵∗(𝔵)|. 
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Remark 2.2 [1]:  

(1) ℛℯ 〈𝔵, 𝔵∗〉 ≤ 𝔠 < 𝒹 ≤ ℛℯ〈𝔵, 𝓎∗〉, where 𝔵 be an elemen on a convex closed set in 𝔅, 𝓎 in a 

convex compact set 𝒯 in 𝔅 and real number 𝔠 < 𝒹. 

(2) For any element 𝓎∗ belong to 𝔉∗  where 𝔉 be a closed in 𝔅 there exist 𝔵∗ in 𝔅∗ such that 𝔵∗|𝔉 =

𝓎∗ and ‖𝔵∗‖‖𝓎∗‖ then for any 𝔵 in 𝔅 we get ‖𝔵‖𝔅∗ = s𝔲p
‖𝔵∗‖≤1

| 𝔵∗(𝔵)|. 

Definition 2.3 [7]: 

   The Riemann integral on the continuous then bounded funcftion 𝑔 on [𝔠,d] is a real number under the 

area of graph 𝒽 = 𝑔(𝔫) for 𝔠 ≤ 𝔫 ≤ 𝑑, when we integration 𝑔 on [𝔠, 𝔫] where 𝔫 be an endpoint we will 

get a function on 𝔫  

Definition 2.4, [3]:  

  The upiper and 𝔩owe𝔯 Rieimann integral on bounded function  g: [c, d] → 𝔅 which is continuous on 

𝕀= [c, d] with supremum and infimum of 𝑔 are well defned and exist then we will defined the upper 

and lower Riemann integral on 𝑔  by 𝒰(𝑔) = inf
𝕀𝑛

∑ sup
𝕀𝑖

|𝕀𝑖|𝑛
𝑖=1 , where 𝕀𝑖 be the endpoints of the 

interval [c, d], ℒ(𝑔) = 𝑠𝑢𝑝
𝕀𝑛

∑ 𝑖𝑛𝑓
𝕀𝑖

|𝕀𝑖|
𝑛
𝑖=1 . 

   We will denoted to the 𝔲pper Riemann integral by 𝒰(𝑔) = ℛ𝑐
𝑑̅̅ ̅̅ (𝑔) and the 𝔩ower Riemann integral 

on 𝑔  as ℛ𝑐
𝑑(𝑔). 

Remarks 2.5, [5]:  

  If 𝑔: [𝑐, 𝑑] → ℬ  be a  b𝔬unded f𝔲nction on a compact interval [𝑐, 𝑑] be a Riemann integrable if 

ℛ𝑐
𝑑̅̅ ̅̅ (𝑔) = ℛ𝑐

𝑑(𝑔). 

Theorem 2.6,[7]: 

   Let 𝑔: [𝑐, 𝑑] → 𝔅  be a Riemann integ𝔯ab𝔩e, then we have the following properties, 

(1) ℛ𝑐
𝑑(𝒾𝑔) = 𝒾ℛ𝑐

𝑑(𝑔), where 𝒾 ∈ 𝔅. 

(2) If 𝑔 ≤ ℎ then ℛ𝑐
𝑑(𝑔) ≤ ℛ𝑐

𝑑(ℎ) 

Theorem 2.7,[4]: 

  Let 𝑔: [𝑐, 𝑑] → 𝔅  beva Riemannhintegrable and 𝒾 ∈ 𝔅 then 𝒾𝑔 be a Riemann integrable and 

ℛ𝑐
𝑑(𝒾𝑔) = 𝒾ℛ𝑐

𝑑(𝑔). 

Theorem 2.8,[1]: 

   If 𝑔, ℎ: [𝑐, 𝑑] → 𝔅  are Riemanntintegrable then 𝑔 + ℎ be a Riemann integrable, and ℛ𝑐
𝑑(𝑔 + ℎ) =

ℛ𝑐
𝑑(𝑔) + ℛ𝑐

𝑑(ℎ). 

 

Theorem 2.9,[2]: 
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   Let 𝑔: [𝑐, 𝑑] → 𝔅 dbe a Riemann integrable, thenn |𝑔| be a Riemann integrable and |ℛ𝑐
𝑑(𝑔)| ≤

ℛ𝑐
𝑑(|𝑔|). 

Theorem 2.10,[1]: 

  Let u𝑔: [𝑐, 𝑑] → 𝔅  be ha continuous function on [𝑐, 𝑑], and 𝑐 < 𝒾 < 𝑑 then 𝑔 be a Riemann jhintegrable 

if and  juonly if its Riemann integuirable on [𝑐, 𝒾][𝒾, 𝑑] then  ℛ𝑐
𝑑(𝑔) = ℛ𝑐

𝒾(𝑔) +  ℛ𝒾
𝑑(𝑔) ℛ𝑐

𝑑(𝑔). 

Remark 2.11,[6,5]: 

(1) The symbol 𝒞[𝑐,𝑑] denotes the indicator or characteristic function of [𝑐, 𝑑] such that  

𝒞[𝑐,𝑑](𝔶) = {
1,     𝔶 ∈ [𝑐, 𝑑]
0,      𝔶 ∉ [𝑐, 𝑑]

 

(2) If 𝑔: [𝑐, 𝑑] → 𝔅  be a Riemiiann integriuable. We will denoted to the quivalence class of 

𝑔 by [𝑔] suoch thrat [𝑔] = {ℎ: ℛ𝑐
𝑑(|𝑔 − ℎ|) = 0}, where 𝑔 be a continuous function. 

(3) We will denoted to the norm on 𝑔 by ‖𝑔‖ such thatfd  ‖𝑔‖ = ℛ𝑐
𝑑(|𝒞[𝑐,𝑑]|). 

3. Main results 

Definition 3.1:  

  A funuyction 𝑔: [𝑐, 𝑑] → 𝔅 is a Riemajunn integrakble on [𝑐, 𝑑]  if thihere is a sequence of bounded 

functions 𝑔𝑛: [𝑐, 𝑑] → 𝔅 such that  lim
𝑛→∞

ℛ𝑐
𝑑(‖𝑔𝑛 − 𝑔‖) = 0 if afnd gonly if  lim

𝑛→∞
𝑔𝑛 = 𝑔 a.e. 

Remark 3.2: 

(1) From the above definition, If 𝑔 is Riejumann inteuigrable and 𝑔 = ∑ 𝒞𝕀℩

𝑛
℩=1 𝜘℩ then ℛ𝑐

𝑑  (𝑔) =

∑ ℛ𝑐
𝑑(𝒞𝕀℩

)𝑛
℩=1 𝜘℩. And the limit ℛ𝑐

𝑑 (𝑔) = lim
𝑛→∞

ℛ𝑐
𝑑  (𝑔𝑛). 

(2) If ℴ :[𝑐, 𝑑] → 𝔅 be a Riehumann integranble on[𝑐, 𝑑], then for allv𝓍∗ in 𝔅∗ we conclude 

〈ℛ𝑐
𝑑(ℴ), 𝜘∗〉 = ℛ𝑐

𝑑〈ℴ, 𝜘∗〉. 

Theorem 3.3: 

   A bohundred funjctinon 𝑔: [𝑐, 𝑑] → 𝔅 is Riemsann ibntegrable if annd onaly if ℛ𝑐
𝑑(‖𝑔‖) < ∞ then we have 

‖ℛ𝑐
𝑑(𝑔)‖ ≤ ℛ𝑐

𝑑(‖𝑔‖). 

Proof: 

  Aiissume thmat 𝑔 is a Riemsann ibntegrable thren for 𝓃 > 𝑜 we have ℛ𝑐
𝑑(‖𝑔‖) ≤ ℛ𝑐

𝑑(‖𝑔 − 𝑔𝑛‖) +

ℛ𝑐
𝑑(‖𝑔‖) < ∞. In the other side let 𝑔 be a continuous function such that ℛ𝑐

𝑑(‖𝑔‖) < ∞, let ℎ𝑛 be a 

ctontinuous fuinction subch that lim
𝑛→∞

 ℎ𝑛 = 𝑔 a.e. anrd define 𝑔𝑛 = 1{‖ℎ𝑛‖≤2‖𝑔‖}ℎ𝑛, since 𝑔𝑛 is continuous 

then we hiave lim
𝑛→∞

𝑔𝑛 = 𝑔 a.e. then ‖𝑔𝑛‖ ≤ 2‖𝑔‖ pointwise, then lim
𝑛→∞

ℛ𝑐
𝑑(‖𝑔𝑛 − 𝑔‖) = 0,  
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Retmark 3.4: 

(1) Irf 𝑔: [𝑐, 𝑑] → 𝔅 be a Riemsann ibntegrable then for every partition 𝔑 of [𝑐, 𝑑] and for all 𝔷 ⊆ 𝔑 

the truncation 1𝔷𝑔: [𝑐, 𝑑] → 𝔅 is a Riemann integrable, and 𝑔|𝔷: 𝔑 → 𝔅 is Riemann integrable 

and we have ℛ𝑐
𝑑(1𝔷𝑔) = ℛ𝔷(𝑔|𝔷), all inegrals denoted by ℛ𝔷(𝑔). 

(2) If 𝔙 ⊆  𝔅 denoted 𝒸ℴ𝓃𝓋(𝔙) to the convex hull of 𝔙 such that 𝒸ℴ𝓃𝓋(𝔙) = {∑ 𝓍𝑖ℌ𝑖: 𝓍𝑖 ∈𝑛
𝑖=1

𝔙, ℌ𝑖 ≥ 0, ∑ ℌ𝑖 = 1𝑛
𝑖=1 }. 

Theorem 3.5: 

    If 𝑔: [𝑐, 𝑑] → 𝔅 bue a Riemsann ibntegrable and ℛ𝑐
𝑑(1𝔷) = 1, then ℛ𝔷(𝑔) ∈ 𝒸ℴ𝓃𝓋{𝑔(𝔶): 𝔶 ⊆ 𝒻}. 

Proof : 

   Let 𝔴 ∈ 𝔅 be a strictly separated from 𝔙⊆𝔅, 𝔴∗ ∈ 𝔅∗ if there is any element 𝔨>0 so 

|ℛ𝔢〈𝔴, 𝔴∗〉 − ℛ𝔢〈𝓊, 𝔴∗〉| ≥ 𝔨, 𝓊∈𝔙 where 𝔙 is a  strictly separated from 𝔙 

If 𝔙 is convex and 𝔴∉ �̅� then there is 𝔴∗ ∈ 𝔅∗ be a  strictly separates 𝔴 from 𝔙. 

For 𝔴∗ ∈ 𝔅∗, suppose  𝒰(𝔴∗) = 𝑖𝑛𝑓{ℛ𝔢〈𝑔(𝔶), 𝔴∗〉: 𝔶 ⊆ 𝒻} = −∞, ℒ(𝔴∗) = 𝑠𝑢𝑝{ℛ𝔢〈𝑔(𝔶), 𝔴∗〉: 𝔶 ⊆

𝒻} = ∞, since ℛ𝑐
𝑑(1𝔷) = 1, ℛ𝔢〈ℛ𝒻(𝑔), 𝔴∗〉 = ℛ𝔢〈𝑔, 𝔴∗〉 ∈ [𝒰(𝔴∗), ℒ(𝔴∗)]> 

Theorem 3.6: 

  Let 𝑔𝑛: [𝑐, 𝑑] → 𝔅 be a sequences of bounded funyctions, each of them is a Riemann integral. Suppose 

that there ids a function 𝑔: [𝑐, 𝑑] → 𝔅 and a Riemann integral funcvtion h: [𝑐, 𝑑] → ℝ such that: 

(1) lim
𝑛→∞

𝑔𝑛 = 𝑔 a.e. 

(2) ‖𝑔𝑛‖ ≤ |𝑔| a.e. 

then 𝑔 is a Riemann integrable and we have lim
𝑛→∞

ℛ𝑐
𝑑(‖𝑔𝑛 − 𝑔‖) = 0 then we get  lim

𝑛→∞
ℛ𝑐

𝑑(𝑔𝑛) =

ℛ𝑐
𝑑(𝑔). 

Proof: 

  We haive ‖𝑔𝑛 − 𝑔‖ ≤ 2|𝑔| a.e. by  scalar dominated convergence theorem and by the udefinitrion of 

Riemsann ibntegral let 𝐾: 𝔅 → 𝔑 be a bounded linear operator and 𝔑 be a banach space which is distinct 

from 𝔅, thyen 𝑘𝑔: [𝑎, 𝑏] → 𝔅 is ibounided linear operator Riemann i tntegrayble and 𝐾ℛ𝑐
𝑑(𝑔) = ℛ𝑐

𝑑(𝐾𝑔). 

   Define a linear operator K on a linear subspace 𝒩(K) of 𝔅 which have a valued in a nother banach 

space 𝔒, if its have the graph 𝔊(K)= {(𝔳, 𝐾𝔳): 𝔳 ∈ 𝒩(𝐾)} then we said to be closed since  𝔊(K) be a 

ctlosed subsypace of 𝔅×𝔒, if 𝔇 is closed then 𝒩(𝐾)be a banach space with respect to ‖𝔳‖𝒩(𝐾) = ‖𝔳‖ +

‖𝐾𝔳‖ and 𝐾 bey a bounded operator and K:𝔊(K)→𝔅. 

Finally we conclude that if 𝐾: 𝔅 → 𝔒 is closed operator with domain 𝒩(𝐾) = 𝔅, then 𝐾 is bounded. 
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Theorem 3.7: 

    Let 𝑔: [𝑎, 𝑏] → 𝔅  be a Riemann interable and 𝐾 be a closed linear operator have a domain 𝒩(𝐾) in 

𝔅 with values in a banach space 𝔒. If the values of 𝑔 in 𝒩(𝐾) a.e. and a.e. defined function 

𝐾𝑔: [𝑎, 𝑏] → 𝔒 is Riemann interable. Then ℛ𝑐
𝑑(𝑔) ∈ 𝑁(𝐾). 

Proof: 

    Let 𝔅1, 𝔅2 are banach space and 𝑔1: [𝑎, 𝑏] → 𝔅1, 𝑔2: [𝑎, 𝑏] → 𝔅2 are Riemann interable , 𝑔 =
(𝑔1, 𝑔2): [𝑎, 𝑏]→𝔅1 × 𝔅2 is Riemann interable and  ℛ𝑐

𝑑(𝑔) = ( ℛ𝑐
𝑑(𝑔1), ℛ𝑐

𝑑(𝑔2)). By the previous 

note the function ℎ: [𝑎, 𝑏] → 𝔅 × 𝔒, ℎ(𝔴) = (𝑔(𝔴), 𝐾𝑔(𝔴)), is Riemann interable, h has a values in 

𝔊(K), we have ℛ𝑐
𝑑(ℎ(𝔴)𝑑𝔴) = (ℛ𝑐

𝑑(𝑔(𝔴)𝑑𝔴), ℛ𝑐
𝑑(𝐾𝑔(𝔴)𝑑𝔴)). 

Theorem 3.8: 

  If 1 < 𝓅 < ∞, 𝓅 is fixed and 𝑔: [𝑐, 𝑑] → 𝔅  satisfies 〈𝑔, 𝔰∗〉 ∈ ℒ 𝓅([𝑎, 𝑏]) for all 𝔰∗ ∈ 𝔅∗, there exist a 

unique 𝔰𝑔 ∈ 𝔅∗ such that 〈𝔰𝑔, 𝔰∗〉 = ℛ𝑐
𝑑(〈𝑔, 𝔰∗〉). 

Proof: 

  Let the linear mapping ℳ: 𝔅∗ → ℒ 𝓅([𝑎, 𝑏]), ℳ𝔰∗ = 〈𝑔, 𝔰∗〉 which is bounded graph since its closed. 

Put 𝕀𝑛 = {‖𝔵𝑖‖ ≤ 𝑛, 𝑖 = 0,1,2, . . , 𝑛} then by 3.3, ℛ𝕀𝑛
(𝑔)  exists as a Riemann interable in 𝔅. 

For any 𝔰∗ ∈ 𝔅∗ and 𝓃 ≥ 𝔥 we have, 

|〈ℛ𝕀𝑛
𝕀𝔶

⁄
(𝑔(𝔰), 𝔰∗〉| ≤ (ℛ𝑐

𝑑 (𝒞𝕀𝑛
𝕀𝔶

⁄
))

1
ℊ⁄

(ℛ𝑐
𝑑(|〈𝑔, 𝔰∗〉|𝓅)(𝔰))

1
𝓅⁄

≤ (ℛ𝑐
𝑑 (𝒞𝕀𝑛

𝕀𝔶
⁄

))

1
ℊ⁄

‖ℳ‖‖𝔰∗‖. 

\By taking the supremum over all 𝔰∗ ∈ 𝔅∗ and since ‖𝔰∗‖ ≤ 1 we get 

lim
𝔶,𝓃→∞

𝑠𝑢𝑝 ‖ℛ𝕀𝑛
𝕀𝔶

⁄
(𝑔)‖ ≤ 𝑙𝑖𝑚

𝔶,𝓃→∞
((ℛ𝑐

𝑑 (𝒞𝕀𝑛
𝕀𝔶

⁄
))

1
ℊ⁄

) ‖ℳ‖ = 0, the limit of 𝔰𝑔 = lim
𝑛→∞

(ℛ𝕀𝑛
(𝑔)) exist 

in 𝔅, and 〈𝔰𝑔, 𝔰∗〉 = 𝑙𝑖𝑚
𝑛→∞

(ℛ𝕀𝑛
(〈𝑔, 𝔰∗〉) = ℛ𝑐

𝑑(〈𝑔, 𝔰∗〉) for all 𝔰∗ ∈ 𝔅∗. 

Definition (The Riemann space 𝓛𝓹([𝒄, 𝒅];  𝕭)), 3.9: 

(1) For 1 ≤ 𝓅 < ∞ we define ℒ 𝓅([𝑐, 𝑑];  𝔅) as a linyear srpatce of eyquivatlence clasises of a bounded 

frunctmion 𝑔: [𝑐, 𝑑] → 𝔅  sucih thiat ℛ𝑐
𝑑(‖𝑔‖𝔭) < ∞ having the norm ‖𝑔‖ℒ 𝓅([𝑐,𝑑]; 𝔅) =

(ℛ𝑐
𝑑(‖𝑔‖𝔭))

1
𝓅⁄

. 

(2) The spyacue ℒ∞([𝑐, 𝑑];  𝔅) of alvl equivalence class of a continuous funcjtions 𝑔: [𝑐, 𝑑] → 𝔅 such 

that there is an element 𝔬 ≥ 0 such that ℛ𝑐
𝑑(𝒞‖𝑔‖>𝔬) = 0 with the norm ‖𝑔‖ℒ∞([𝑐,𝑑]; 𝔅) =

inf{ℛ𝑐
𝑑(𝒞‖𝑔‖>𝔬) = 0}. 
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Remark 3.10: 

(1) The spxace ℒ 𝓅([𝑐, 𝑑];  𝔅) , ℒ∞([𝑐, 𝑑];  𝔅) be af Banach spaces. 

(2) The elements of ℒ1([𝑐, 𝑑];  𝔅) be an equivalence classes of Riemann integrable functions. 

4. Conclusion 

   The result of this paper initiated was the definition of the Riemann integral when its values in a Banach 

space, our results show us that the previously known Riemann properties have not changed also show 

that it is possible to apply the Riemann integral to any other integral defined in a Banach space with the 

same properties in a single case when the domain of our function is a closed interval. 
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