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In a previous research, we generalized the integration by using the given measure
space (X, T, M), and 6: X — W be a measurable function, where W is an ordered
Banach algebra [15].

In this research, we have covered one of the fundamental applications for the
integration theory which is Radon-Nikodym theorem which by itself is considered
essential in the theory of modern probability and other parts of analysis. Several cases
for this result have been considered before proceeding into the general theory and the
first step in the development of the general Radon-Nikodym theorem is Jordan Hahn
decomposition theorem.

In this paper, we consider the above W a space with identity element e.

1. Introduction

Here mathematics, Radon-Nikodym theorem is a result in the theory of measure which expresses the
relation between two defined measures on the same measurable space [1,5,13]. The derivative of Radon-
Nikodym theorem has an important application in the theory of probability so that it leads to the function
of probability density of a random variable [7,8]. This theorem has been named after Johnn Radon, who
proved the theorem of a special case when the fundamental space is R in 1913, and Otto Nikodym, who
proved the general case in 1930 [14]. In 1936, Hans Freudenthal has further generalized the Radon-
Nikodym theorem by proving the Freudenthal spectral theorem as a result in the theory of Riesz space,
which contains Radon-Nikodym theorem as a special case [6,9,10]. In this research, we have generalized
Radon-Nikodym theorem in Banach algebra space with taking in consideration some of necessary

changes.

2. General Set Functions

We remember that Banach algebra measure is a set function M : ' — W that satisfies M (A) >
0 forall AinT and M (Up=1 Ay) = Xnzy M (A,,) so that {A,} is a sequence of disjoint sets in T

Definition 2.1

Let (X, ') be ameasurable space. A set function M : ' — W is called a signed Banach algebra measure
onT,if M(UpziAn) = Xaz1 M (An) Whenever {A,} is a sequence of disjoint setsin T.

e Every Banach algebra measure is signed Banach algebra measure and the opposite is not true.
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Definition 2.2

Let A be a signed Banach algebra measure on the measurable space (X,I"). A set A € T is said to be a
positive set (with respect to A) if A(B) > 0 for each measurable subset B of A. Similarly, a set A is called
anegative set (with respect to A) if A(B) < 0 for each measurable subset B of A. A set that is both positive
and negative (with respect to ) is called null set, i.e. a measurable set is called a null set iff each
measurable subset of it has A measure zero.

Remark 2.3

The distinction between a null set and a set whose measure is zero, is that every null set’s measure must
be zero and a set whose measure is zero could be a union of two sets whose measure are not zero but are
negative of each ether.

Theorem 2.4

Let A be a signed Banach algebra measure on the measurable space (X,I'),and A be a measurable set.
e A is positive iff for every measurable set B, A N B is measurable and A(ANB) > 0

e Ais negative iff for every measurable set B, A N B is measurable and A(ANB) < 0

Proof:

e Assume A is positive and let B is a measurable set is measurable set. Since A is measurable set =
A N Bis measurable set. Since A is positive set, AN B € A and A N B measurable = A(ANB) >
0.

Conversely, let AN B is measurable and A(A N B) > 0 for every measurable set B.

Let C beameasurableandC S A = C=ANC = AMC) =AANC) >0 m

Theorem 2.5

Let A be a signed Banach algebra measure on the measurable space (X,T')

e Each measurable subset of a positive (rsp. negative) set is positive (rsp. negative).
e The union of countable positive (rsp. negative) sets is positive (rsp. negative).
Proof:

e Let A be a measurable subset of a positive set B, and C be a measurable subset of A = C < B, since
B is positive = A(C) > 0 = Ais positive.

o Let{A,} beasequence of positive sets, A = Uj=, A,and B be a measurable subset of A .

PutB, = BNA, n AS_; n..A{ = B, is measurable subset of A, and so A(B,, ) > 0. Since the
B, are disjointand B = Up-, B, ,we have A(B) = >, A(B,) > 0 = A is positive =
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Theorem (Hahn-Decomposition) 2.6

Let A be a B signed Banach algebra measure on the measurable space (X,T). There is a positive set
A and a negative set B with

ANB=¢, AUB=X.
Proof:
Let v = sup {A(A): A is positive set with respect A}. Since ¢ is positive ,then v > 0.

Let {A,} be a sequence of positive sets such that v = lim A(A, ), Set A = Up=; A, , by using part (2)
of theorem (2.4), we have A is positive ,also A(A) < P2

Since A|A, € A = AA|AL) =0 and A(A) = A(AL) + AAIAL) = A(AL),s0 A(A) 2v =0 <
AA) =v = AA) =0.

Let B = A°,to prove B is negative, let C be a positive setand C € B,thenANC=¢dandAUC
positive set

= vEAMAUC) =AA)+AC)=v+A(C) = A(C) =0, Since 0 < v, then B does not contain
positive subset with a positive measurement, and therefore, does not positively measurements subsets,
S0 B is negative set m

Remarks 2.7

e The Hahn decomposition is not unique.

e The Hahn decomposition A, B give two measures At and A~ defined by A*(C) =
AMANC), A" (C)=-ABnO),
Notice that A*(B) = 0 and A~ (A) = 0. Clearly A = At — A~

3. Radon-Nikodym theorem

Radon-Nikodym theorem is among the most important results in real analysis. Regarding its
applications, it includes the dual space of L?, conditional expectation and the change of measure in
stochastic analysis. In the beginning of proving Radon-Nikodym theorem in Banach algebra space, we
will mention couple of basic definitions regarding this topic.

Definition 3.1

Let M and A be two measures on a measurable space (X, I'). We say that M is singular with respect to
A (written M L A) ifthereare A, BeTwithANB=0,AUB=Xand M(A) =0,A(B) =0

Remarks 3.2

e If M and A are two Banach algebra measures on a measurable space (X, I"), then M L A if there is a
set A € T such that M'(A) = 0, A(A€) = 0.
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e M is singular with respect to A iff A is singular with respect to M, so we can say that M and A are
mutually singular.

e Let M, A be two signed Banach algebra measures on the measurable space (X, '), we say that M and
A are mutually singular iff [M] L [A].

e If A is asigned Banach algebra measure on the measurable space (X, T'), then A™ 1 A~.

Example 3.3
Let X = R, I = B(R), M is Lebesgue measure, A = ij Cj qu ,Cj is non-negitive real number
ifA=Q = AMA°=0°)=0= 8qj(QC)=0 WVizl =2AMA) =0 =M LA.

Theorem (Jordan-Decomposition) 3.4

Let A be a signed Banach algebra measure on the measurable space (X,I"). There are two mutually
singular measures A* and A~ so that A = A* — A~. This decomposition is unique.

Proof:

Since A be a signed Banach algebra measure on the measurable space (X,I'), by using Hahn-
decomposition, there is a positive set A and a negative set Bwith AN B = @, A U B = X, defined A* and
A" by AT (C)=A(ANC), A (C)=—-ABNC)forall CeT.

AMB)=AANB)=A0@)=0,A"(A)=—-ABNA) =—-A@)=0= AT LA ,clearlyA =" — A~
n

Definition 3.5

Let M and A be two Banach algebra measures on a measurable space (X, I'). We say that M is absolute
continuous with respect to A (written M < A) if A(A) = 0 implies M'(A) = 0 forevery A€ T.

Example 3.6

e Let (X,T, M) be a measure space, and 6 > 0 be a measurable function. Define A(A) = fAedM for
all AeT.ThenA K M.

e LetX=N,T=P(N),M =#,0(n) =n"% AA) =X,ean * Then A K M, also M < A.

Example 3.7

In the following examples, we assume that X = [0,1],T = B(X)

e M represents the length measure on X, A is a Banach algebra measure that is set for every subset A
from X that it is twice the length of A, thenA <« M and M K 4.
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e M represents the length measure on X, 1 is a measure that is set for every subset A from X that it is
the number of points of the set {0.1, ---,0.9} that’s present in A, then A <« M, but M is not an
absolute continuous with respect to A .

o M = A+ 6, sothat A represents the length measure on X , and §, represents Dirac measurement

1, 0€eA

on 0, that is 6, (A) = {0’ OeA,thenA«M.

Remark 3.8

e Let M and A be two signed Banach algebra measures on the measurable space (X, I'). We say that M
is absolute continuous with respect to A (written M «< A) if for every A € T' with A(A) = 0, we have
M(A) = 0.

(Notethat M K A & MT KA andM~ <A & [M]<A)

e Two Banach algebra measures M and A on the measurable space (X, '), for which M « A and A <
M are called equivalent, in symbols M ~A,ie. M ~ A iff  M(A) =0 A(A)=0forall A€
I)

e If M and A are Banach algebra measures, then M <K M +A and A K M +A.

Theorem 3.9

Let A be a signed Banach algebra measure and M be a positive measure ,if A L M and A <K M,
then A = 0.

Proof:
SinceA L M = 3 Es.t. E is A-null (i.e. A(E) = 0),and E€ is M=-null (i.e. M'(E€) = 0).
Since A K M, we know E€ is A-null,so X = EUE® is A-null, thenA=0 m

Theorem 3.10

Let (X,I") be a measurable space and Mand A be two Banach algebra measures on I' so that 1 <« M,
then 6: X — W is a non-negative measurable function so that A(A) = [, 6 dM for each A € T. The

function 6 is unique a. e. [M], in other words, if n is another function that satisfies the same condition,
thenf =na.e..

Proof:

Let G be a family of the non-negative integrable 8 functions with respect to M so that [ L,0dM < A(N)
foreach A €T.

It’s clear that G # ¢ because it includes at least the zero-function. Then G is an ordered subset in the
order 8 < niff@ <na.e.[M].
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We assume that s = sup{fxe dM: 0 € G} < A(R), we will get the supremum element in G. Now, we

assume that 6,, 6, € G, we have to prove that max{6,, 6,} € G, which means that we have to prove that
Jymax{6,,6,}dM < A(A) foreach A €T.

Let A € T, we define A; = {x € A:0;(x) = 6,(x)}, Ay = {x € A:0;(x) < 6,(x)}, then
fA maX{Hl, 92} dM = fAl 61 dM + fAZ 92 dM < A(Al) + A(Az) = A(A), therefore maX{Ql, 02} € G .

Now, let {n,,} be a sequence of functions in G so that n,, — s, and let n,, = max{6,, 8, -+, 6,,}, then
M €EG.

As long as 6,, < n,, for all n values, then n,, is converge a.e. to n, thatisn, Tn a.e.
By using the monotone convergence theorem, we get fxﬂ dM =s

We have to prove that n is an upper bound for the set G; let h € G, if h < n,, a.e. for some of n values,
then h < na.e., andif h > n, a.e. for all n values, then h > 1 a.e.

Therefore, fx hdM = fxn dM = s, hence h = n a.e., so n is an upper bound for the set G.
Let A € T, then 0 < 1,1, T nly, therefore [, 1, dM = [y dM T [ Iy dM = [, ndM

As long as 7, € G, then [, n,, dM < A(A) for all n values, so [, n dM < A(A), therefore ) € G, hence

G is bounded from above, then by using Zorn’s lemma, it possesses a maximum element as 8, which
means there is a maximum element 6 € G.

Now, we have to prove that A(A) = [, 6 dM foreach A € T, let v(A) = A(A) — [, 6 dM for each A €
[, thenvisameasureonT'and v K M .

If v(X)+#0, then v(X) >0, therefore M(X) — [k]Jv(X) <0 for some k>0, by using
(corollary 2.1.3 in[1]), there is D €T so that M (AN D) — [kJv(ANnD) <0 and M (AN D) —
[klv(ANnD€) >0 foreach A €T.

If we assume that M'(D) = 0, then A(D) = 0 because 1 < M, therefore v(D) =0

Aslongas M(AND)—[klv(AnD) < 0and M(An D) — [k]v(An D) = 0 foreach A € T, then
ME®ND)—[klJlv(RND) <0and MR N D) — [kJv(R n D) = 0, therefore M (D) — [k]v(D) <
0 and M (D€) — [k]Jv(D€) > 0.

Aslongas M (D) = 0 and v(D) = 0, then M (R) — [k]v(R) = M (D) — [k]v(D€) = 0, but M (R) —
[kJv(X) < 0 and this is contradiction, therefore, M'(D) > 0 .

1
We define h(x) = {m x&€D , SO fAhdM :ﬁM(AnD) SKv(AnD)<v(A)=1(A) —
0 x&D

J, 6 dM, therefore [ hdM + [, 6 dM < A(A) = [,(h+6) dM < A(A),but h +n > 1 on the set
D with M (D) > 0, and this is a contradiction with 8 being the maximum, so v = 0, and the proof is
done m

We remember that o —Banach algebra measure is a set function M':I'— W so that for each Ain T;
there is a sequence {A,} of setsin'so that A € U, -1 A, .
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Corollary 3.11

Let (X, T') be a measurable space, M be a Banach algebra measure and A be a ¢ — Banach algebra
measure on I, so that 1 < M. Then 8: X — W is a non-negative measurable function so that A(A) =
fAH dM for each A € T. The function 8 is unique a.e. [M], in other words, if n is another function

that satisfies the same condition, then 8 =n a.e. .

Proof:

As long as A is a 0 — Banach algebra measure on I' and X € T, then {A,,} is a partition for the set X.
We define 4,,(4) = A(An A,) for each A € T, then 4,, is a Banach algebra measure on T for each n.

By using the proof (3.10), there is a non-negative measurable function which is 8,,: X — W so that
A(A) = [, 6, dM foreach A €T.

Therefore, A(A) = fAH dM foreachAeTlsothatd =,_,6, =

Corollary 3.12

Let (X,T") be a measurable space, M be a ¢ — Banach algebra measure and A be a Banach algebra
measure on I' so that A « M, then 6: X — W is a non-negative measurable function so that A(A) =
fA 0 dM for each A € T. The function 6 is unique a.e. [M] , in other words, if  is another function that

satisfies the same condition, then 8 =n a.e. .
Proof:

As long as M is a ¢ — Banach algebra measure on T and X € T, then {A,,} is a partition for the set X.
Through the using of the corollary (3.11), 6,,: A,, — W is a non-negative measurable function with

respectto Iy sothat A(ANA,) = fAnA 0, dM foreachAeT

This could be writtenas A(AN A,) = fA 6,, dM so that 8,,(¥) is considered as 0 for £ & A,,. Therefore,
AD) =T AMANA) =35, [, 6, dM = [, 6dM foreach A€ T, where 6 = 377, 6, m

Corollary (Radon-Nikodym theorem) 3.13

Let (X, I') be a measurable space, M be a ¢ — Banach algebra measure, and A be a signed Banach
algebra measure on T so that A <« M, then 8: X — W is a non-negative measurable function so that
A(A) = fAH dM for each A € T. The function @ is unique a.e.[M], in other words, if n is another

function that satisfies the same condition, then 8 = n a.e..
Proof:

We write 1 = At — A7, by using the result (5.11); 6,,60,: X — W are non-negative measurable
functions so that A*(A) = [, 6, dM, 17(A) = [, 8, dM foreach A € T, then A(A) = [, 6 dM for each
AeTlwheref =6, —6, m
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Note:

It’s necessary for M to be a 0 — Banach algebra in Radon-Nikodym theorem otherwise the fulfillment
of the theorem will not be achieved. Below, is an example that explains the un-achievement of Radon-
Nikodym theorem when M is not a ¢ — Banach algebralLet W = [0,1], I' = 8([0,1]) and M is a
counting measure, then M is not a ¢ — finite measure (because M is a counting measure and X is an
uncountable set).

If we assume that A is a Lebesgue measure on I' = £([0,1]), then 2 << M because if M (A) = 0, then
A = @ and therefore A(A) = 0.

Assume that Radon-Nikodym theorem is achieved, in other words, 8 is a measurable function so that
AA) = fA 6 dM foreach A € T. Use A = {£} and by using the equality mentioned above, we get 6(¢) =

0 for each £ € W, therefore it results in A = 0, which means that Lebesgue measure is zero, and this is
a contradiction.

Conclusion

The generalization of Jordan Hahn decomposition theorem to use it to prove the generalization of
Radon-Nikodym theorem with Banach algebra valued measure.
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