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  In this paper, we introduce a new definitions of Separation Axiom Using 

definitions F_open, F_closed FΤ0_space,  FΤ1_ space and  FΤ2_ space which we 

called R_space,  FΤ3_ space,  FN_space , FΤ4_space, and 

definitions F_separation, F_ connected,   F′_connected, F′′_connected,  F_ 

disconnected Spaces. Then we set the characteristics for each definition and 

demonstrated the interconnection between the definitions. We also demonstrated 

the genetic and partial characteristics in each definition. 

 

1. Introduction  

In the topological space X, a subset B of a space X is said to be a regularly-closed, called also closed 

domain if B =  cl(int(B)). A subset B of X is said to be a regularly-open, called also open domain if 

B =  int(cl(B)), An open (resp., closed) subset B of a topological space (X, T ) is called F_open 

(resp.,F_closed) set if cl(B)\B (resp. , B\int(B)) is finite set [6].They introduce a new type of semi-

open sets  which they call Sg-open sets[2]. An open (resp., closed) subset B of a topological space 

(X, T ) is called C −open (resp.,C-closed) set if cl(B)\B (resp. , B\int(B)) is a countable set[3], they 

introduce a new definitions of Separation Axiom which we call  FT0 _space, FT1 _space, FT2_space[4], 

In section 3, the first paragraph We defined FR_ space, FΤ3_space and we have developed theorems 

showing the relationship between FR_space, FΤ3_space and  FT0 _space, FT1 _space, FT2_space, in the 

second part we defined  FN_space, and  FΤ4_space, in the third part we defined F_separation, 

F_connected, F′_connected, F′′_connected, F_ disconnected Spaces and we have developed theorems 

that show the equivalence between the previous definition,  We give some examples related to the 

separation axioms and I have proved theorems that refer to the topics that I defined in this research 

proved some topological and genetic characteristics. 

2. Preliminaries  

Definition(2.1)[6]: Let(X,τ) be topological space and A open subset  of (X,τ), then the cl(A)\A is finite 

set and is denoted by F_open . 

Definition(2.2)[6]: Let(X,τ) be topological space and  A be closed  subset of (X,τ), then the A\int(A) 

is finite set and is denoted by F_closed .  

Remark(2.3)[6]: Let (X,τ)  is  topological space , and U ⊆ X .  

(1)Let  U is F_ open, the complement of U is F_closed . 
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 (2) Let U is  F_closed, the complement of U is  F_open .  

Definition(2.4)[6]: (X, τ)is a topological space, a point in X, a F_open nieghbourhood of X is a V 

F_open subset of X, which is containing a . 

Theorem(2.5 )[6]: A topological space(X, τ), then 

(i)  every union finite  F_closed subset of  X is  F_closed . 

(ii) every union finite  F_open subset of  X is  F_open. 

(iii) every intersection finite  F_closed subset of  X is  F_closed. 

Definition(2.6)[6]: Let (X, τ)be a topological space, and V ⊆ X the intersection of all F_closed 

containing V is called F_closure, denoted by  V
F
. 

Theorem(2.7)[6]: Let A be a subset of the topological space, (X,τ) then  A ⊆ A̅  ⊆ A 
F
. 

Corollary(2.8)[6]: If U is F_open set and U ∩ V = ∅  , then U ∩ V 
F

= ∅ In particular, if  U and V are 

disjoint F _open set then, U ∩ V 
F

= ∅  =(U) 
F
∩ V . 

Definition(2.9)[6]: Let (X, τ)be a topological space, and V ⊆ X, A point z ∈ X  is called F_limit points    

of  V if and only if for any F_open set U containing x ,we have (U\{z}) ∩ V ≠ ∅. 

Remark(2.10)[6]: The set of all F_limit points of V is called the F_derived set and denoted by dF(K). 

Theorem(2.11)[6]: If (X, τ) a topological space, and H, U ⊆ X , Then .  

(i)d(H) ⊂ dF(H), d(H) is the derived set of H . 

(ii) H ⊆ U, then dF(H) ⊆ dF(U). 

(iii) dF(H) ∪ dF(U) = dF(H ∪ U) and dF(H ∩ U) ⊂ dF(H) ∩ dF(U ).  

Theorem(2.12)[6]: Let (X, τ)be a topological space, and H, U ⊆ X ,Then .  

(i) (∅) 
F
= ∅ . 

(ii) H ⊆ H 
F
. 

(iii)  If H ⊆ U , then H 
F
⊆ U 

F
. 

(iv) If  (H ∪ U) 
F

= (H) 
F
∪ (U) 

F
  ) . 

(v)  H
F̅̅̅̅ F

= H
F
. 
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Definition(2.13)[6]: g: ( X, τ) ⟶ (Y, τ̀)a function g is called F_continuous if g−1(H) is F_ open set in 

X  for every open set H in Y. 

Definition(2.14)[6]: g: ( X, τ) ⟶ (Y, τ̀)a function g is called F_open if g(H) is a F_open set in Y for 

every open sets H in X. 

Definition(2.15)[6]: g: ( X, τ) ⟶ (Y, τ̀) a function g is called F_closed if g(H) is a F_closed set in Y 

for every closed sets H in X. 

Definition(2.16)[6]: g: (X, T)( Y, τ̀) a function g is called F_ hmoeomrphism if and only if  h 

and h−1 are F_continuous, onto and one to one . 

Theorem(2.17)[4]: Let (Y, Ty) be F_open subspace of (Y, T) if U F_open set in X then (U ∩ Y) F_open 

set in Y 

Definition(2.18)[4]: If (X, τ) be a topological space, then X is called FT0_ space if and only for each 

x, y ∈ X such that x ≠ y and there exists V is F_open set, [x ∈ V and y ∉ V]or[x ∉ Vand y ∈ V]. 

Definition(2.19)[4]:Let (X, τ)be topological space is defined  FT1_space if and only if for each x, y ∈ X 

such that x ≠ y, there exists U, V is F_open set such that, [x ∈ U ∧  y ∉ U and  y ∈  V ∧  x ∉  V] 

Definition(2.20)[4]: Let (X, τ)topological space is called a FT2_space if for each pair distinct points 

a, b ∈ X, the exist F_ open sets U, V  and a ≠ b such that [a ∈ U , b ∈ V , and U ∩  V =  ∅ ]. 

Definition(2.21)[1]: Let (X, τ) be a topological  space and A, B ⊆ X such that A ≠ ∅ , B ≠ ∅  and E ⊆

X, then we said that A, B  form a separation for E if  

1) E = A ∪ B             2) A ∩ B = A ∩ B = ∅  

3. The Main Results 

3.1 𝐅_ Regular Space. 

Definition(3.1.1): Let (X, τ) be a topological space, then the space(X, τ)is called a F_regular space if 

and only if for each F_closed set G ⊂ X and each point x ∉ G, there exist F_open sets Uand V such that 

x ∈ U, G ⊂ V, and  U ∩ V = ∅ and denoted by FR_space. 

Lemma(3.1.2): Every FR_space is not FT0_ space. X =  {a, b, c}, τ =  {∅, X, {a} {b, c}}, a ≠ b, there 

exists U = {a} is F_open set. a ∈ U, b ∉  U, a ≠ c, and c ∉ U, b ≠ c, there is not exist U is F_open set. 

such that [b ∈ U ∧  c ∉ U] ∨ [b ∉ U ∧  c ∈ ], so (X, τ) not FT0_space.[ FR_space ⇏ FT0_space] 

Theorem(3.1.3): Let (X, τ) be FR_space then for each x ∈ X and each F_open set W containing x, 

there exists an F_open set U such that x ∈ U ⊆ U̅F ⊆ W. 

Proof: suppose that X is FR_space. Let x ∈ W is F_open, x ∈  W ⇒ x ∉ X –W X is FR_space. There 

exists U, V are F_open, U ∩ V = ∅, (x ∈ U ˄ X –  W ⊆ V) U ∩ V = ∅, U ⊆  X – V we have U ⊆  X –  V 

and X –  V ⊆  W,  Then U 
F

⊆ X –  V 
F
 [since  A ⊆ B ⇒ A 

F
⊆ B 

F
 ]  
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 then U 
F

⊆ X − V  since [ X − V F-closed , X − V = X –  V 
F
 ], Then U 

F
⊆ X − V }, ThenU 

F
⊆ X −

V ∧ X − V ⊆ W, Then U 
F

⊆ W, x ∈ U ⊆ U 
F

⊆ W (since A ⊆ A 
F
). 

Theorem(3.1.4):The property of  being a FR_space is a topological property. 

Proof: Let X is FR _space, since h: (X, τ) →  (Y , τˋ)there exists h one to one, onto and F_ continuous, h 

is F_open let y ∈ Y and G, F_closed in Y ; y ∉ G, h onto function there exist  x ∈ X ; h(x) = y, h F_ 

continuous ⇒   h−1 (G) isF_ closed in X;  x ∈ h−1 (G) since (h(x) = y ∉ G), X is FR_space there exists 

U, V is F_open set U ∩ V = ∅,  [x ∈ U ⋀h−1 (G) ⊆ V ], h F_open,  then h (U), h(V) is F_ open in W, h 

one to one and h onto [h (x)  ∈  h (U) ∧ h(h−1(G)] ⊆ h(V) ⇒ y ∈ h(U) ∧ G ⊆ h(V)(since y = h(x) ∧

h(h−1(G) = G), U ∩ V = ∅ ⇒ [h (U) ∩ h(V) =   h (U ∩ V) = h(∅) = ∅, so X is FR_space. 

Example(3.1.5): Let  h: (R, D) ⟶ (R, τcof);  h(x) = X for each x ∈  R, h is F_continuous function 

since the domain (R, D) is discrete topology and his onto and in general (X, D) is FR_ space, but in 

general (X, τcof)is not FR_ space. 

Definition(3.1.6): Let (X, τ) be a topological space, then the space (X, τ) is called FT3_space  if and 

only if its F_regular and FT1_space,  FT3_space =  FT1_space + FR_space. 

Example(3.1.7):The space (X, D) is FT3_space since its  FT1_space and FR_space .  

Example(3.1.8): Let X = {1,2,3}, τ = {∅, X, {1}, {2,3}}, The space ( X, τ) is not  FT3_space since its 

not   FT1_space  and FR_ space.   

Example(3.1.9): The usual topological space( R, τu)  is FT3_space since its itsFT1_space 

and FR_space.  

Example(3.1.10): The space ( X,I) X   contains more then one element is not FT3_space since its 

not FT1_space  and not FR_space. 

Theorem(3.1.11): The property of being a FT3_space is a hereditary property . 

Proof :since the property FT1_space and FR_space are a hereditary property then FT3_space is a 

hereditary property . 

Theorem(3.1.12): The property of being a FT3_space is a topological property. 

 Proof: Since the property FT1_space and FR_space  are a topological property, then a FT3_space is a 

topological property. 

Remark(3.1.13): The F_continuous image of FT3_space is not necessarily FT3_space 

if h: (X, τ)( Y, τ′) is  F_continuous ,onto function and  X is FT3_space  then Y  is not necessarily 

FT3_space. 
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Example(3.1.14): Let h: (R, D)( R, I); h(x) = x for each  x ∈ R, h is F_ continuous function since 

the domin (R, D) is discrete topology  and h is onto and in general 

(X, D) is FT3_spase (R, D)is FT3_spase but ( X, I) not FT3_spase.  

Theorem(3.1.15): Let (X, τ) be FT3_spase then X is a FT2_spase. 

Proof: Suppose that X is a FT3_spase.Let x, y ∈ X ;  x ≠ y, X is a FT1spase ⇒ {y}  F_closed set  ⇒ x ∉

{y} since  x ≠ y X is a FR_spase ⇒ there exists U, V are F_open set, U ∩ V = ∅ , (x ⇒ U ⋀  {y} ⊆ V ) ⇒

( x ∈ U ⋀y ∉ V )so (X, τ)is a FT2_spase. 

Remark (3.1.16): From above the theorem we have  

  FT3_space ↚⃗⃗⃗  FT2_spase ↚⃗⃗⃗ FT1_spase ↚⃗⃗⃗ FT0_spase  

3.2  𝐅_𝐍𝐨𝐫𝐦𝐚𝐥 𝐬𝐩𝐚𝐜𝐞     

Definition(3.2.1): Let (X, τ)be a topological space, then the space (X, τ) is called F_Normal space   and 

denoted by FN_space  if and only if for each pair of F_closed disjoint subsets G and E of X, there exist 

F_open sets U and V such that G ⊆ U, E ⊆ V and U ∩ V = ∅, (G ⊆ U ⋀  E ⊆ V). 

 Example(3.2.2): Let X =  {1, 2, 3} and τ =  {X, ∅, {1}}. Show that (X, τ) is FN _space, the family of 

F_closed sets  {X, ∅, {2, 3}}, take every two F_ closed sets there intersection is empty as follows take, 

X, ∅ is F_ closed; X ∩ ∅ = ∅, there exest U = ∅ ∧ V = X is F_ open; U ∩ V = ∅, (∅ ⊆ U ∧ X ⊆ V), take 

 ∅, {2, 3} is F_ closed; {2, 3} ∩ ∅ = ∅, there exest U = ∅ ∧ V = X is F_ open; U ∩ V = ∅, (∅ ⊆ U ∧

{2, 3} ⊆ V). So (X, τ) is FN_ space.  

Notes that this space not FT0 _space, not FT1 _ space, not FT2_ space, not FR _ space, andnot FT3 _ 

space. 

Remark(3.2.3): FNspace ⇏ FRspace, then 

            (FN_space ⇏  FT1_spase) ⋀ (FN_space ⇏  FT2_spase) 

 (F R _space ⇏ FN _space) ⋀ ( FT1 _space ⇏ FN _space) ⋀ (T2_space ⇏ N _space). 

Remark(3.2.4): (FT0_spase ⇏  FN_space)⋀ (FN_space ⇏ FT0_spase). 

Example(3.2.5): The space (R, τcof) is FT0_ space and not FN_ space, since there is twononempty 

disjoint F_closed sets, but there is no two nonempty disjoint F_open set. Notes that too (R, τcof)is 

FT1_space and not FN _space. 

Example(3.2.6): The space (R, I) is not FT0 _ space, since R is the only F_ open set contains elements 

and its contains all elements. But (R, I) is RN_ space since the F_closed sets are 

G =  R and E = ∅ only, and R ∩ ∅ = ∅  and the F_open sets are R and ∅ and R ⊆ R  and ∅ ⊆ ∅. 

Example(3.2.7): The space (X, D) is FN _space, since every sets her is F_ open and F_closed then: If  

V,E is F_closed, V ∩ E = ∅, then V, E is F_open; V ⊆ V ⋀ E ⊆ E. 
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Theorem(3.2.8): The property of being a N_space is a topological property. 

Proof: Let(X, τ) ≅ (Y , τˋ)and suppose that X is FN_space, to prove Y is FN_space, there 

exist h: (X, τ)(Y, τˋ) h is one to one and his F_continuous and F_open, let G, E is F _closed in Y : G ∩

E = ∅ , h  F_continuous  h−1(G), h−1(E) F_closed in X and  h−1(G) ∩ h−1(E) = h−1(G ∩ E) =

h−1(∅) = ∅ (the function h is F_ continuous if and only if  the inverse image of every F_closed set in 

codomain is F_closed in domain ), X is FN_space, there exist U, V are F_open G ∩ E = ∅, (h−1(G) ⊆

U⋀h−1(E) ⊆ V  h is F_open, h(U), h(V) is F_open in Y , h is onto, h(h−1(G)) ⊆ h(U)⋀h(h−1(E)) ⊆

h(V), G ⊆ h(U)⋀E ⊆ h(v), G ⊆ h(U)⋀E ⊆ h(V) , U ∩ V = ∅  then h(U) ∩ h(V) = h(U) ∩ h(V) =

h(U ∩ V) = h(∅) = ∅ , so  Y is N – space. 

Theorem(3.2.9): The space (X, τ) is F_normal (FN_space)then for each F_closed subset G ⊆ X and 

F_open set W containing G, there exists an F_open set U such that G ⊆ U ⊆ U 
F
. 

Proof: Suppose that X is FN – space and G ⊆ X, Let W is F_open; G ⊆ W ⟹ G ∩ X − W = ∅  

 X is FN – space ⟹ there exists U, V are F_open , U ∩ V = ∅; (G ⊆ U⋀X − W ⊆ V), ⟹ 

 𝑋 − 𝑉 ⊆ 𝑊, 𝑈 ∩ 𝑉 = ∅ ⟹ 𝑈 ⊆ 𝑋 − 𝑉 ⟹ 𝑈 
𝐹

⊆ 𝑋 − 𝑉 
𝐹

⟹ 𝑈 
𝐹

⊆ 𝑋 − 𝑉 ⟹ 𝐺 ⊆ 𝑈⋀𝑈 ⊆ 𝑈 
𝐹

⊆

𝑋 − 𝑉⋀𝑋 − 𝑉 ⊆ 𝑊 ⟹ 𝐺 ⊆ 𝑈 ⊆ 𝑈 
𝐹

⊆ 𝑊. 

Theorem(3.2.10): A 𝐹_closed subs𝑝ace of 𝐹𝑁_space is 𝐹𝑁_space. 

Proof :Let (𝑋, 𝜏)be 𝐹𝑁_space and (𝑊, 𝜏𝑊) 𝐹_closed subs𝑝ace of 𝑋, to prove (𝑊, 𝜏𝑊) 𝐹𝑁_space Let 

𝐺𝑊, 𝐸𝑊 are 𝐹_closed sets in 𝑊; 𝐺𝑊 ∩ 𝐸𝑊 = ∅ ,there exists 𝐺, 𝐸 are 𝐹_closed, 𝐺𝑊 = 𝐺 ∩ 𝐸 ∧ 𝐸𝑊 =

𝐸 ∩ 𝑊,𝐺 ∩ 𝐸 = ∅, si𝑛ce 𝑋 is 𝐹𝑁_spa𝑐e there exists 𝑈, 𝑉 𝐹_open 𝑈 ∩ 𝑉 = ∅, (𝐺 ⊆ 𝑈 ∧ 𝐸 ⊆ 𝑉)then 

𝑈 ∩ 𝑊 ∧ 𝑉 ∩ 𝑊 𝐹_open in 𝑊 (By theorem 2.17) (𝑈 ∩ 𝑊) ∩ (𝑉 ∩ 𝑊) = (𝑈 ∩ 𝑉) ∩ 𝑊 = ∅ ∩ 𝑊 = ∅ 

,since 𝐺𝑊 = 𝐺 ∩ 𝑊 then  𝐺𝑊 ⊆ 𝐺 ∧ 𝐺𝑊 ⊆ 𝑊 then  𝐺𝑊 ⊆ 𝑈 ∧ 𝐺𝑊 ⊆ 𝑊 ⇒ 𝐺𝑊 ⊆ 𝑈 ∩ 𝑊 since 𝐸𝑊 =

𝐸 ∩ 𝑊 𝑡ℎ𝑒𝑛 𝐸𝑊 ⊆ 𝐸 ∧ 𝐸𝑊 ⊆ 𝑊 𝑡ℎ𝑒𝑛 𝐸𝑊 ⊆ 𝑉 ∧ 𝐸𝑊 ⊆ 𝑊 ⇒ 𝐸𝑊 ⊆ 𝑉 ∩ 𝑊, so (𝑊, 𝜏𝑊) 𝐹𝑁_space.  

Definition(3.2.11): Let (𝑋, 𝜏)be a topological space, Then the space (𝑋, 𝜏)is call𝑒d a 𝐹𝑇4_space if and 

only if 𝐹_normal and 𝐹𝑇1_space.  

𝐹𝑇4 _𝑠𝑝𝑎𝑐𝑒 =  𝐹𝑇1_𝑠𝑝𝑎𝑐𝑒 +  𝐹𝑁_𝑠𝑝𝑎𝑐𝑒 

Example(3.2.12): Let 𝑋 =  {1, 2, 3} and 𝜏 =  {𝑋, 𝜏, {1}, {2, 3}} Then the space (𝑋, 𝜏) is not 

𝐹𝑇4_space, since its 𝐹𝑁 _ space but not 𝐹𝑇1 _ space. 

Remark(3.2.13): If X is finite space, then (𝑋, 𝐷) is 𝐹𝑇4 – space iff  𝜏 =  𝐷, (because if 𝑋 is finite 

space, then its 𝐹𝑇1 _ space iff 𝜏 = 𝐷 and if 𝜏 = 𝐷, then 𝑋 is 𝐹𝑁 _ space). 

Example(3.2.14):The space (𝑋, 𝐷) is 𝐹𝑇4  _ space, since its 𝐹𝑇1   _ space and 𝑁 _ space. 

Example(3.2.15): The space (𝑋, 𝐼); 𝑋  𝐹_contains more than one element is not 𝐹𝑇4 _ space, since its 

not 𝐹𝑇1 _space. 

Remark(3.2.16): The property of bei𝑛g a 𝐹𝑇4_space is not a he𝑟editary pr𝑜perty, since 

the𝐹_normality is not a hereditary property. 
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Example(3.2.17): The space (𝑋, 𝜏𝑐𝑜𝑓) is not 𝐹𝑇4 _ space, since its 𝐹𝑇1 _ space but not 𝐹𝑁_space. 

Theorem(3.2.18):The prop𝑒rty of bei𝑛g  𝐹𝑇4_space is a top𝑜logical prop𝑒rty. 

Proof: Since the property 𝐹𝑇1 _ space and 𝐹𝑁 _spa𝑐e are a topological property, Then 𝐹𝑇4 _ space is 

a topological pr𝑜perty. 

Theorem(3.2.19): A 𝐹_closed subspace of 𝐹𝑇4 _ space is 𝐹𝑇4 _ space. 

Proof : Let (𝑋, 𝜏) 𝐹𝑇4 _ space and 𝑊  𝐹_closed set in 𝑋, to prove 𝑊 is 𝐹𝑇4_ space, 𝑋 is 𝐹𝑇1 _ space , 

𝑊 is 𝐹𝑇1 _ space (since 𝐹𝑇1is hereditary property), 𝑊 is 𝐹_closed in 𝑋 and 𝑋 is 𝐹𝑁_space , 𝑊 is 𝐹𝑁 

_ space (by theorem3.2.10 ) 𝑊 is 𝐹𝑇4 _ space.  

Theorem(3.2.20): Every 𝐹𝑇4 _space is 𝐹𝑅 _space. 

Proof: Let (𝑋, 𝜏)be 𝐹𝑇4 _ space, 𝑋 is 𝐹𝑇1 _ space and 𝐹𝑁 _ space , Let 𝑥 ∈ 𝑋 and 𝐺 𝐹_ closed set in 

𝑋 ; 𝑥 ∉  𝐺,  {𝑥}is 𝐹_close  (since 𝑋 is 𝐹𝑇1_ space then {𝑥} 𝐹_closed for each 𝑥 ∈  𝑋}, {𝑥} ∩ 𝐺 = ∅, 𝑋 

is 𝐹𝑁 _space, there exists  𝑈, 𝑉 𝐹_open, 𝑋 ∩ 𝑉 = ∅, ({𝑥} ⊆ 𝑈 ∧ 𝐺 ⊆ 𝑉), 𝑥 ∈ 𝑈 ∧ 𝐺 ⊆ 𝑉 , 𝑋 is 

𝐹𝑅_space.  

Cor𝒐llary(3.2.21): Ev𝑒ry 𝐹𝑇4 _spac𝑒 is 𝐹𝑇3 _space. 

Proof: Every 𝐹𝑇4 _ space is 𝐹𝑅 _space, every 𝐹𝑇4_space is 𝐹𝑇1_space and 𝐹𝑁_space we have, 𝑋 is 

𝐹𝑇1_space 𝐹𝑅_spac𝑒, so 𝑋 is 𝐹𝑇3_ space.  

Remark(3.2.22): Every 𝐹𝑇4_𝑠pace is 𝐹𝑇2_ 𝑠pace si𝑛ce ev𝑒ry 𝐹𝑇4_𝑠pace is 𝐹𝑇3_𝑠pace and ev𝑒ry 

𝐹𝑇3_space is 𝐹𝑇2_space so that : 

𝐹𝑇4 _space  ↚⃗⃗⃗  𝐹𝑇3_space  ↚⃗⃗⃗  𝐹𝑇2_space  ↚⃗⃗⃗  𝐹𝑇1_space  ↚⃗⃗⃗  𝐹𝑇0_space 

Remark(3.2.23)  𝐹𝑁_𝑠p𝑎ce +𝐹𝑇1_𝑠pace  ⟹ 𝐹𝑇3_𝑠pace, and 𝐹𝑁_𝑠pace +𝐹𝑇1_𝑠pace  ⇒ 𝐹𝑅_ 𝑠pace. 

3.3 On 𝑭_connected 

Definition(3.3.1): Let (𝑋, 𝜏) be a topological  space and 𝐴, 𝐵 ⊆ 𝑋 such that 𝐴 ≠ ∅, 𝐵 ≠ ∅ and 𝐸 ⊆ 𝑋, 

then we said that 𝐴, 𝐵  form a separation for 𝐸 if  

1) 𝐸 = 𝐴 ∪ 𝐵             2) �̅� ∩ 𝐵 = 𝐴 ∩ �̅� = ∅  

Definition(3.3.2): Let (𝑋, 𝜏) be a topological space, we said that 𝑋 is connected if 𝑋 has no separation. 

Theorem (3.3.3 ): Let (𝑋, 𝜏) be a topological  space, then (𝑋, 𝜏) is connected. (𝑋, 𝜏)is connected 

space. 

1) 𝑡ℎ𝑒 only sets which are open and closed in 𝑋 are ∅, 𝑋 . 

2) 𝑋 is not a union of two nonempty disjoint open sets. 
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Definition(3.3.4): Let (𝑋, 𝜏) be a topological  space and 𝐴, 𝐵 ⊆ 𝑋 such that 𝐴 ≠ ∅ , 𝐵 ≠ ∅  and 𝐸 ⊆

𝑋, then we said that 𝐴, 𝐵  form a 𝐹_separation for 𝐸 if 1) 𝐸 = 𝐴 ∪ 𝐵             2) 𝐴 
𝐹
∩ 𝐵 = 𝐴 ∩ 𝐵 

𝐹
= ∅  

Definition(3.3.5): A topological space (𝑋, 𝜏) is called 𝐹_connected if 𝑋 is not a union of two 

nonempty disjoint 𝐹_open sets. 

Theorem(3.3.6): Let  (𝑋, 𝜏 ) be a topological space, Then the following are equivalent   

1) (𝑋, 𝜏 )  is connected space. 

2) (𝑋, 𝜏 ) is F_connected space. 

Proof: 𝟏 → 𝟐 

Let (𝑋, 𝜏 ) be connected space, Suppose (𝑋, 𝜏 ) is not 𝐹_connected.Then there exists 𝐴, 𝐵 𝐹_open sets 

such that 𝐴 ∩ 𝐵 = ∅  and 𝑋 = 𝐴 ∪ 𝐵, Then 𝐴, 𝐵 are open sets such that 𝐴 ∩ 𝐵 = ∅  and 𝑋 = 𝐴 ∪ 𝐵. 

Therefore (𝑋, 𝜏 ) is not connected space which is a contradiction, Hence (𝑋, 𝜏 ) is 𝐹_counected space.  

(2→ 𝟏)Let (𝑋, 𝜏 ) is 𝐹_counected space and suppose (𝑋, 𝜏 )is not connected space, then ∃ 𝐴, 𝐵 open 

sets such that 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∪ 𝐵 = 𝑋. therefore 𝐴, 𝐵 are 𝐹_open sets, ( every open, closed set is 

𝐹_open). Hence ∃ 𝐴, 𝐵 𝐹_open sets such that 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∪ 𝐵 = 𝑋 .Thus (𝑋, 𝜏 )is not  connected 

space which is a contradiction .Then  (𝑋, 𝜏 ) is counected space.  

Definition(3.3.7): A topological space (𝑋, 𝜏) is called 𝐹′_connected if the only 𝐹_open and 𝐹_closed 

at the same time in 𝑋 are ∅, 𝑋 . 

Theorem(3.3.8): Let (𝑋, 𝜏 ) be a topological space. Then the following are equivalent.  

1) (𝑋, 𝜏 )  is connected space. 

2) (𝑋, 𝜏 ) is 𝐹′-connected space . 

Proof: 𝟏 → 𝟐 Let (𝑋, 𝜏 ) be connected space. Suppose (𝑋, 𝜏 ) is not 𝐹′_connected. Then ∃ 𝐴  𝐹-open 

and 𝐹_closed set ∋ 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝐴 ≠ 𝑋. Then ∃ 𝐴  open and closed set ∋ 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝐴 ≠ 𝑋. Then 

(𝑋, 𝜏 ) is not connected space space which is a contradiction. Then  (𝑋, 𝜏 ) is 𝐹′_counected space. 

Proof  2→ 𝟏 Let  (𝑋, 𝜏 ) is 𝐹′-counected space and suppose (𝑋, 𝜏 )is not  connected space. then ∃ 𝐴 

open and closed set such that 𝐴 ≠ ∅ and 𝐴 ≠ 𝑋. let 𝐵 = 𝑋 − 𝐴. Then 𝐵 is open and closed set. Hence 

𝐴, 𝐵 and F_open sets. Therefor 𝐴  is 𝐹_open and 𝐹_closed set ∋  𝐴 ≠ ∅ and 𝐴 ≠ 𝑋 .Therefor  (𝑋, 𝜏 ) is 

not  𝐹′_connected space. which is a contradiction .Then  (𝑋, 𝜏 ) is counected space. 

Definition(3.3.9): A topological space (𝑋, 𝜏) is called 𝐹′′_connected if 𝑋 has no F_separation . 

Theorem(3.3.10): Let  (𝑋, 𝜏 ) be a topological space.Then the following are equivalent  

 (i)(𝑋, 𝜏 )  is connected space . 

(ii)(𝑋, 𝜏 ) is 𝐹′′_connected space . 
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Proof:𝟏 → 𝟐 Let (𝑋, 𝜏 ) be connected space. Suppose (𝑋, 𝜏 ) is not 𝐹′′_connected space. Then 

∃ 𝐴, 𝐵 ∋ 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝐵 ≠ ∅, 𝑋 = 𝐴 ∪ 𝐵 𝑎𝑛𝑑 𝐴
𝐹

∩ 𝐵 = 𝐴 ∩ 𝐵
𝐹

= ∅. Then  𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 = ∅ 

Therefor  (𝑋, 𝜏 ) is not connected space. which is a contradiction. Hence (𝑋, 𝜏 ) is 𝐹′′_connected space 

. 

Proof: 2→ 𝟏 Let  (𝑋, 𝜏 ) is 𝐹′′_connected space .Suppose (𝑋, 𝜏 )is not  connected space. then ∃ 𝐴 open 

and closed set such that 𝐴 ≠ ∅ and 𝐴 ≠ 𝑋. let 𝐵 = 𝑋 − 𝐴. Then 𝑋 = 𝐴 ∪ 𝐵 𝑎𝑛𝑑 𝐴 ≠ ∅, 𝐵 ≠ ∅. 

Therefor 𝐴, 𝐵 are 𝐹_closed sets.Hence 𝐴
𝐹

= 𝐴 and 𝐵
𝐹

= 𝐵. Then 𝐴
𝐹

= 𝐴 = 𝑋 − 𝐵. Hence 𝐴
𝐹
∩ 𝐵 =

∅ . Then 𝐵
𝐹

= 𝐵 = 𝑋 − 𝐴. Hence 𝐵
𝐹
∩ 𝐴 = ∅. Therefor 𝐴 and 𝐵 from 𝐹_separation space for 𝑋, Then 

(𝑋, 𝜏 ) is not 𝐹′′_connected space. which is a contradiction. Therefor (𝑋, 𝜏 ) is  connected space .  

Theorem(3.3.11): Let 𝐴 be connected sets and 𝐻,𝐾 are 𝐹_separated sets. if 𝐴 ⊆ 𝐻 ∪ 𝐾, then either 

𝐴 ⊆ 𝐻. 

Proof: Let A be connected set and H, K be F_separated sets. then 𝐻 ≠ ∅,𝐾 ≠ ∅ 𝑎𝑛𝑑 𝐻
𝐹
∩ 𝐾 = 𝐻 ∩

𝐾
𝐹

= ∅.  Let 𝐴 ⊆ 𝐻 ∪ 𝐾.Suppose  𝐴1 = 𝐴 ∩ 𝐻 ≠ ∅,  𝐴2 = 𝐴 ∩ 𝐾 ≠ ∅. Then 𝐴 = 𝐴1 ∪ 𝐴2, 𝐴1 ≠

∅, 𝐴2 ≠ ∅. 𝐴1 ⊆ 𝐻 ⟶ 𝐴1

𝐹
⊆ 𝐻

𝐹
⟶ 𝐴1

𝐹
∩ 𝐴2 ⊆ 𝐻

𝐹
∩ 𝐴2 ⊆ 𝐻

𝐹
∩ 𝐾.  

Since 𝐻
𝐹
∩ 𝐻 = ∅, 𝑡ℎ𝑒𝑛 𝐴1

𝐹
∩ 𝐴2 = ∅. 𝐴2 ⊆ 𝐾 ⟶ 𝐴2

𝐹
⊆ 𝐾

𝐹
⟶ 𝐴2

𝐹
∩ 𝐴1 ⊆ 𝐾

𝐹
∩ 𝐴1 ⊆ 𝐾

𝐹
∩ 𝐻, 

Since 𝐾
𝐹
∩ 𝐻 = ∅, 𝑡ℎ𝑒𝑛 𝐴2

𝐹
∩ 𝐴1 = ∅.Then 𝐴2, 𝐴1 from a 𝐹_ separation for 𝐴. which is a 

contradiction since A connected set .Then either 𝐴 ⊆ 𝐻 𝑜𝑟 𝐴 ⊆ 𝐾. 

Theorem (3.3.12): If 𝐴 is connected set, then 𝐴
𝐹
is connected . 

Proof : Let 𝐴 be connected set. Suppose 𝐴
𝐹
is not connected. Then ∃ 𝐻, 𝐾 from a F_separation for 𝐴

𝐹
. 

Hence 𝐻 ≠ ∅,𝐾 ≠ ∅, 𝐴
𝐹

= 𝐻 ∪ 𝐾, and 𝐻
𝐹
∩ 𝐾 = 𝐻 ∩ 𝐾

𝐹
= ∅ , Since 𝐴 ⊆ 𝐴

𝐹
, Then 𝐴 ⊆ 𝐻 ∪ 𝐾. 

Then by theorem(3.2.11), either 𝐴 ⊆ 𝐻 𝑜𝑟𝐴 ⊆ 𝐾. If 𝐴 ⊆ 𝐻, then 𝐴
𝐹

⊆ 𝐻, hence 𝐴
𝐹
∩ 𝐾 ⊆ 𝐻

𝐹
∩ 𝐾. 

Since 𝐻
𝐹
∩ 𝐾 = ∅, then𝐴

𝐹
∩ 𝐾 = ∅. Therefore 𝐾 = ∅ which is a contradiction. By the same way get  

a contradiction if 𝐴 ⊆ 𝐾.therefore 𝐴
𝐹
is connected. 

 Definition(3.3.13): The space (𝑋, 𝜏 ) is  𝐹_disconnected space if and only if there exist two 𝐹_open 

set disjoint nonempty sets 𝐴 and 𝐵 such that 𝐴 ∪ 𝐵 = 𝑋, and 𝐴 ∩ 𝐵 = ∅, 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝐵 ≠ ∅. 

Example(3.3.14): Let  𝑋 =  {1, 2, 3} and  𝜏 =  {𝑋, ∅, {1}, {2, 3}}, the 𝐹_open set{1}, {2,3} and 𝑋 =

{1} ∪ {2,3} and {1} ∩ {2,3} = ∅, {1}, {2,3} ≠ ∅, So 𝑋 𝐹_disconnected. 

 Remark(3.3.15): In discrete topological 𝜏 =  {𝑋, ∅} 𝑋 is not union of two nonempty disjoint 𝐹_open 

sets, then 𝑋 is 𝐹_connected.  

Remark(3.3.16): Let (𝑋, 𝑇𝐷)be discrete topological let 𝐴 be open subset of 𝑋. 𝑏(𝐴) = 𝐴 − 𝐴𝑜 = 𝐴 −

𝐴 = ∅ is finite then 𝐴 is 𝐹_open set . 

Remark(3.3.17): In discrete topological every open set is 𝐹-open . 
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Remark(3.3.18): Let (𝑋, 𝐷) is 𝐹_disconnected if 𝑋 contains more than one element, since there exists 

𝐴 ; ∅ ≠ 𝐴 ⊈ 𝑋. 𝑋 = 𝐴 ∪ 𝐴𝑐 , 𝐴, 𝐴𝑐 𝐹-open sets 𝐴 ∩ 𝐴𝑐 = ∅ and 𝐴 ≠ ∅, 𝐴𝑐 ≠ ∅ since (𝐴 ≠ 𝑋) . 

Example(3.3.19): Let (𝑋, 𝜏𝑐𝑜𝑓)be is 𝐹_connected space, if 𝑋 is infinite set since there are not exist 

nonempty disjoint open sets. 

Remark(3.3.20): If (X, 𝜏 ) is topological space and (𝑊, 𝜏𝑤) is a subspace of 𝑋, then the space 𝑊 being 

𝐹_disconnected or 𝐹_connected not directly relation by 𝑋 and the open sets in 𝑋, but dependent on the 

𝐹_open sets in 𝑊, its dependent on 𝜏𝑤 ; so that  𝑊 is 𝐹_connected space if and only if there exist two 

𝐹_open disjoint nonempty sets 𝐴 and 𝐵 in 𝑊 such that 𝐴 ∪ 𝐵 = 𝑊. 

Remark(3.3.21): If (X, 𝜏 ) is topological space and (𝑊, 𝜏𝑤) is a subspace of 𝑋, then the space 𝑊 being 

𝐹_disconnected or 𝐹_connected not directly relation by 𝑋 and the 𝐹_open sets in 𝑋, but dependent on 

the 𝐹_open sets in 𝑊, its dependent on 𝜏𝑤 ; so that  𝑊 is 𝐹_connected space if and only if there exist 

two 𝐹_open disjoint nonempty sets 𝐴 and 𝐵 in 𝑊 such that 𝑊 = 𝐴 ∪ 𝐵, 𝑊is 𝐹_disconnected ⟺ 𝐴 ∪

𝐵 = 𝑊, 𝐴, 𝐵 𝐹_open in 𝑊, 𝐴 ∩ 𝐵 = ∅; 𝐴 ≠ ∅, 𝐵 ≠ ∅  The space (𝑊, 𝜏𝑤) is 𝐹_connected if and only 

if its not 𝐹_disconnected 𝑊 𝐹_connected if and only if 𝑊 ≠ 𝐴 ∪ 𝐵; 𝐴, 𝐵 𝐹_open in 𝑊;  𝐴 ∩ 𝐵 =

∅; 𝐴 ≠ ∅, 𝐵 ≠ ∅.  

Remark(3.3.22): The property of being a 𝐹_connected space is not a hereditary property and the 

following example show that: 

Example(3.3.23): Let 𝑋 = {1, 2, 3} and 𝜏 =  {𝑋, ∅ , {1, 2}, {1, 3}, {1}} and  𝑊 ⊆  𝑋 ; 𝑊 = {2,3}.Is 

𝑊 is 𝐹_connected space. 𝜏𝑤 = {𝑊 ∩ 𝑈;𝑈 open in 𝑋} = {𝑊, ∅, {2}, {3}}. Notes that 𝜏𝑤 = 𝐷, then 𝑊 is 

𝐹_disconnected space but not 𝐹_connected space, since :𝑊 = {2} ∪ {3} and {2}, {3} 𝐹_open in 𝑊 

and {2} ∩ {3} = ∅  and {2} ≠ ∅, {3} ≠ ∅, Notes that 𝑋 is 𝐹_connected space but not 𝐹_disconnected, 

while it's have 𝐹_disconnected subspace. 

Remark(3.3.24): If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜏̀)is F_ continuous and onto function and 𝑌 is F_connected space 

then, then X not necessary  F_ connected space and the following example show that : 

Example(3.3.25): Let 𝑓: (𝑅, 𝐷) → (𝑅, 𝐼); 𝑓(𝑥) = 𝑥 for each 𝑥 ∈ 𝑅 clear that 𝑓 is F_ continuous and 

onto function and (𝑅, 𝐼) is F_ connected, but (𝑅, 𝐷)  is not F_ connected. 

Theorem(3.3.26): Let ((𝑋, 𝜏)be a topological space if W is connected and 𝐹- open subsets of 𝑋 and 

𝑋 = 𝐴 ∪ 𝐵 such that A,B 𝐹-open and 𝐴 ∩ 𝐵 = ∅ and 𝐴 ≠ ∅, 𝐵 ≠ ∅  then 𝑊 ⊆ 𝐴 𝑜𝑟 𝑊 ⊆ 𝐵. 

Proof: Suppose that 𝑊 ⊈ 𝐴 𝑎𝑛𝑑 𝑊 ⊈ 𝐵 ⟹ 𝑊 ∩ 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝑊 ∩ 𝐵 ≠ ∅;  𝐴, 𝐵 𝑖𝑠 𝐹_open in 𝑋 ⟹

𝑊 ∩ 𝐴,𝑊 ∩ 𝐵 is 𝐹_open in 𝑊; 𝑊 ∩ 𝐴 ≠ ∅ (𝑠𝑖𝑛𝑐𝑒 𝑖𝑓 𝑊 ∩ 𝐴 = ∅ → 𝑊 ⊆ 𝐵),𝑊 ∩ 𝐵 ≠

∅ (𝑠𝑖𝑛𝑐𝑒 𝑖𝑓 𝑊 ∩ 𝐴 = ∅ → 𝑊 ⊆ 𝐴), (𝑊 ∩ 𝐴) ∩ (𝑊 ∩ 𝐵) = 𝑊 ∩ (𝐴 ∩ 𝐵) = 𝑊 ∩ ∅ = ∅, then 

𝑊 𝑖𝑠 𝐹_disconnected (C !! contradiction !! ); so 𝑊 ⊆ 𝐴 ∨ 𝑊 ⊆ 𝐵. 
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