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Estimating Image Blur Using Discrete Multiwavelet Transform
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Abstract:

In this paper, a multiwavelet based method is proposed to estimate the blur in an
image using information contained in the image itself. We look at the sharpness of the
sharpest edges in the blurred image, which contain information about the blurring.
Specifically, a smoothness measure, the Lipschitz exponent, is computed for these
sharpest edges. A relation between the variance of a gaussian point spread function and
the magnitude of the Lipschitz exponent is shown, which is only dependent on the blur in
the image and not on the image contents. This allows us to estimate the variance of the
blur directly from the image itself;
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1 Introduction: degraded data gfx)). Sometimes

Blurring of edges in an image however, this blur contains extra

occurs in many different fields. Image information. For example, it can provide

blur is modelled as [1]: information about the settings of the
glx,yl = (Ax fi{x.y) camera.

(1) When dealing with autofocus

with g(x,)) the blurred image, ffx,») the
unknown sharp image and A(x,y) the point
spread function (PSF), The symbol (*)
represents the convolution operator, and
models the image blur, It is in fact the
response of the imaging system to an

cameras, one expects to find a sharp
image, because all natural images contain
sharp edges since an object in front of a
background produce sharp edges. When
an image is out of focus, the sharpness of
. : the sharpest edges that are still present in
ideal point source. the image gives us information about how

This blur is often unwanted and much an out-of-focus camera needs to be
has to be compensated for (this is image adjusted

restoration, and is applied in astronomy,
medical imaging, microscopy, ...). In that
case, the estimation of the blur is needed
to restore the ideal image fixy) from

Blurred edges can also provide
information about the 3D nature of the
scene itself. In those applications, depth is
estimated from focus/defocus [1,2].
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Again, we assume that all objects
in front of a background have sharp
edges. But only objects in the focal plane
are imaged with sharp edges. For objects
not in the focal plane these sharp edges
will be blurred proportionally to their
distance from the focal plane, thus
providing some depth information about
the image.

In this paper, a method is
proposed to estimate the PSF in an image
by looking how sharp the sharpest edges
in a blurred image still are, in order to
find information about the PSF. It
estimates in particular the variance oy of
a Gaussian PSF from information
contained in the image itself [3]:

1w
v 2Ok
.o<(2)

Our method can estimate the
image blur with an accuracy of about
10%. Other techniques for blur estimation
using Gaussian PSF's  [3,4] use
derivatives of the Gaussian PSF to
determine the variance of the Gaussian
blur. We present an alternative method,
which doesn’t use derivatives, but a
measure of the smoothness of the image
at a certain position.

This method can also be extended
to Gaussian PSF’s that are not axially
symmetrical and even to PSF’s that aren’t
even gaussian, For out-of-focus blur, a
uniform circular PSF is used [5,6]. Our
method requires only minor modifications
to adapt to this kind of PSF, as will be
shown in the paper.

PSF(x,)) =

2 Multiwavelets:

As in the scalar wavelet case, the
theory of multiwavelets is based on the
idea of multiresolution analysis (MRA).

The difference is that
multiwavelets have several scaling
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functions. The standard multiresolution
has one scaling function @(t) [7].
i. The translates @(t — k) are linearly
independent and produce a basis
of the subspace V,,
ii. The dilates @(2' t-k) generate
subspaces Vj, j eZ, such that:
v VageYWweVyeVje....
L ...(3)
¥, = (R v, =10}
Jo j—=
There is one wavelet w(t). Its
translates w(t — k) produce a
basis of the “detail” subspace
Wo to give V:
ViV @ Wy .(4)
For multiwavelets, the notion of
MRA is the same except that now a basis
for Vy is generated by translates of N
scaling functions @,(t — k), @:(t - k), ...,
Ox(t = k). The vector @(t) = [D(t), ...,
Ou(),]", will satisfy a matrix dilation
equation (analogous to the scalar case)

iil.

D) =Y ClRIOQRt=k)  ...(5)

The coefficients C[k] are N by N
matrices instead of scalars. Associated
with these scaling functions are N
wavelets wi(t), ..., wx(t), satisfying the
matrix wavelet equation:

..(6)

Again, W)= [wi(t), ..., wn(D)] T is a
vector and the D[k] are N by N matrices
[71.

3 The Proposed Method Principle:

The proposed method for blur
estimation is based on estimating the
sharpness of the sharpest edges in the
image. To analyze edges in the image, we
calculate the Lipschitz exponent in all

W(e) =Y. DIkID(2 - k)
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points where a change in intensity is
found either in the horizontal or vertical
direction.

The Lipschitz exponent (some-
times referred to as Holder exponent) is a
measure of how smooth the image is in a
certain point. In fact, it is an extension of
how many times the image is
differentiable in a certain point. For
example, a signal that is differentiable
once, has Lipschitz exponent 1, a step
function has Lipschitz 0 and a dirac
impulse Lipschitz -1. In the multiwavelet
domain, it is possible to calculate the
Lipschitz exponent in a certain point in
the image from the evolution of the
modulus maxima of the multiwavelet
coefficients corresponding to that point
through successive scales. Mallat has
shown in [8-10] how Lipschitz regularity
van be calculated for a one-dimensional
signal.

Consider the cone of influence for
a point v. The cone of influence in v (fig.
1} are the points (u,s} in scale-place space
that are within the support of the
multiwavelet v, ; at position v and scale s.

Now, if the signal is uniformly
Lipschitz «in the neighbourhood of a
certain point v, then a constant 4 exists
such that all multiwavelet coefficients
within the cone of influence around v in
the scale-place space satisfy the condition

max( |7 fiun,s5)]) =4 527172,

7

. log, Maxdwf(u,s)b = g
log, A+{a+1/2)log, s %)
Here, W|ffu,s| represents the

modulus of the multiwavelet transforms
of fix) at resolution scale s. The Lipschitz
regularity in at v is given by the
maximum slope of log:|¥ ffv.sx)| as a
function of loges along the lines of
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modulus maxima that converge towards v
within the cone of influence.

4 Practical considerations:

The multiwavelet decomposition
of the image is calculated, and by
following the modulus maxima of the
multiwavelet coefficients corresponding
to a certain point in the image through
different resolution scales, the Lipschitz
exponent in that point is calculated by
fitting an exponential curve to the
modulus maxima versus the scale, as
described earlier [8-10]. A problem in
this approach is that even minor intensity
variations i smooth regions result in
Lipschitz exponents that correspond with
sharp edges. An example is shown in fig.
(2). In the mirror region at the right of the
famous 'Lena’ image, we can see what
causes this effect. When magnified and
with enhanced contrast, we see the
intensity variations, even in apparently
smooth regions.

The problem is to distinguish
sharp transitions which a small amplitude
from smooth transitions. This disturbs our
estimation of the blurring of the image.
However, transitions  with  small
amplitude are not likely to belong to
dominant image features.

Because we work in  the
multiwavelet domain, we restrict our
analysis to features that produce a
gradient above a certain threshold. This
gradient is  extracted from the
multiwavelet detail coefficients in the
highest resolution scale. The threshold
was determined empirically so that major
image features were visible. Empirically,
this thresholds corresponds with 30/oy; .

From the Lipschitz exponents thus
found along the significant edges in the
image, a histogram is made. For this
histogram, we divided the range of
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Lipschitz exponents in intervals with a
width of 0.1. Because we restricted the
lipschitz exponents to those
corresponding with transitions with large
amplitude, we already filtered out the
sharpest transitions with large amplitude
in the image.

When we make a histogram of
these Lipschitz exponents, we expect a
single peak corresponding with the
smoothness of the sharpest edges. When
we have synthetic test images with large
constant regions and step edges, we only
have one kind of transitions, namely those
step edges. When these edges are blurred,
we obtain a histogram with one peak,
corresponding with the sharpness of the
blurred edges. This is illustrated in fig.
(3). In reality, we have a certain
distribution around this peak, from which
we want to estimate the blur.

Both the position of the maximum
in the histogram and the center of gravity
(CG) of the histogram are related to the
blur in the image, but from experiments,
the CG was the most reliable parameter.
Let Ny be the number of transitions along
significant edges in the image with
Lipschitz exponent ¢y, then CG is:
XV O

Co =
Zir Ni (9

5 System Implementation:

We studied a test set of eight
images, taken from the Kodak website
[11] and were taken with digital cameras.
From these images, square regions were
selected to reduce computation time. In
each experiment, an image from this set
was blurred with a gaussian PSF with oy
varying between | and 5. Each time, the
Lipschitz exponents were calculated
among the edges in the blurred image.

For control purposes, they were
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plotted in a Lipschitz representation
image, where intensity is associated with
the magnitude of the Lipschitz exponent.
We made the histogram and calculated
the CG the histogram.

An example of such an
experiment for blurring with a Gaussian
PSF with variance oy _ 3 is shown in fig.
(4). In fig. 4(a) the original image is
shown, in fig. 4(b) we see the blurred
image with ox=3. In fig. 4(c), a
representation is made of which
exponents contribute to the histogram in
fig. 4(d). In this representation, the
Lipschitz exponent is plotted with black
points comresponding to the sharpest
transitions in the image; the smoother the
transition, the lighter color was used.
When fig. 4(c) is compared to fig. 4(a),
one can verify that the considered
Lipschitz exponents are indeed located
among the sharpest edges with large
amplitude in the image, though not all
edges are found in 4(c) and not all dark
points in 4(c) are edges. In our method,
this is not a problem, since they are only
used for gathering statistics.

We calculated the Lipschitz
exponent that corresponds to CG of the
histogram, and determined the average
CGaoyy over the whole set of test images
blurred with the same o, . To these data
(051 CGoypy, an exponential curve was
fitted (fig. 5) experimentally, where the
standard deviation over the experiments is
shown as a vertical error bar. The fitting
was:

Obi = a explb CGgq,; ) (10)

in addition, for the parameters the fitting
produced a=0.6645 and b=2.6142.

If we compare the estimated o to
the input ¢ with which the images were
originally blurred, we obtain the graph in
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fig. (6). In this graph, we can see that the
estimations for oy are accurate to about
10%. When we plot for all the images in
all blurring experiments the estimated
sigma versus the input sigma, we see that
all the curves are parallel,  This
suggests that in some images, there was
already some initial blur (see top set of
curves in fig. (7)). When this offset is
subtracted from all curves, the standard
deviation is a lot smaller (lower set of
curves in fig. (7)). So what we estimate is
the total effect of the blur that was already
present in the original digital image, and
the synthetic blur from the experiment,

When we applied this method to
estimate the blur in blurred images for
which no blur information was available,
it was possible to use this estimation in a
classical restoration scheme, and good
restoration results were obtained. In fig,
(7), a confocal microscope image of a cell
nucleus of Arabidopsis Thaliana is
shown.

The left image shows the raw
microscope image, the right image shows
the image, restored with the well known
Richardson-Lucy restoration algorithm
[12], using the raw image and our
estimate of the PSF as inputs. As
reference image, we manually restored
the image with a synthetically generated
Gaussian PSF, with oy varying between |
and 15. The image that was restored best,
was the one with the same oy as the one
estimated with our method.

We also tried to estimate the PSF
in case of out-of-focus blur, This kind of
blur is encountered in auto focus
applications, and is modeled by a uniform
circular PSF [35, 6].

PSExr ) — { A £ Vm iz
' ¢ elsewhere

w(11)

[-2
2
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with d the diameter of the focal spot, and
K a factor, chosen such that the norm of
the PSF is 1.0. In most autofocus
applications, one does not estimate the
PSF of the blurring, but one only tries to
determine if an image is in focus or not.
Nevertheless, it is possible to retrieve
more information about the blurring, and
to use it to adjust the focus more
accurately. We repeated the same
experiment as before, but this time with
synthetic out-of-focus blur. In this case,
relation 6 is not valid anymore. For out-
of-focus blur, a polynomial provided a
good fit to the data;

Vigrali =
19.7¢c6® - 19.1¢6° + 17.3¢ca — 2.3
(12)
Using this relation, we can

estimate rjeq . In fig. (8) a comparison is
given between the input blur and the
estimated blur, The error bars show the
standard deviation over the test set of
images used before.

6 Conclusions:

In the experiments, we see that the
CG of the histogram of Lipschitz
exponents calculated among the edges in
the image is a reliable parameter to
estimate o of gaussian blur.

However, the standard deviation
on the estimate increases as o increases.
The tests were performed only for vertical
edges in the image. Applying the
algorithm to horizontal edges is similar,
and will allow us to study Gaussian PSF's
that are not circular symmetrical (with o,
# Oy).
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Figure 1. Cone of influence for a point v.

Figure 2. Lena image and detail (mirror) which shows small intensity variations that
disturb the blur estimation.

(a) synthene mmage (b} Lipschutz lustogram

Figure 3. Blur estimation on synthetic image,
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Figure 5. The graph that shows the fitted relation between the estimated & and CG of
the histogram of Lipschitz exponents.
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Figure 6. Verification: the estimated oy in function of the input o 4 are on a perfect
line.
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Figure 7. Lllustration of the offset effect when comparing the different images. The top
set of curves is without subtracting the offset; the bottom set is after subtraction.
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Figure 8. Blur estimation used in restoration of a real image,
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Figure 9. Focus estimation vs real size of the focal spot.



