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Abstract

The effect of transverse shear as well as bending on
deflection of tapered beams is considered with comparison to that of
prismatic beams. It is noticed that the deflection due to transverse
shear is usually small. An approximate solution is suggested for
deflection of tapered beams by assuming the taper beam as a
prismatic beam of uniform cross section equal to the smaller cross-
section of the taper beam {0 simplify the solution.

A simply supported taper beam with circular or square cross
section and loaded with uniformly distributed load is considered.
The suggested approximate solution gives 6% higher deflection ratio
with respect to that by exact integration.

The deflection ratio along a laper beam is presented by
curves in logarithmic scales for different taper ratios (1.5 to 10) due
to shear and bending. The deflection ratio due to the effect of
transverse shear alone is also presented. The logarithmic scale is
used for clearer presentation of the resulfs.

Both exact integration solution and approximate solution
are used. The suggested approximate solution by using the smaller
cross section area of a taper beam as an equivalent uniform area is
found to be useful to deal with taper beams of different cross
sectional shapes and also for beams under axial forces.
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Introduction boundary conditions at the
Present days, for economy member ends. The comparison
of materials together with between these deformations
enhancement of  analysis with and without the effect of
technique, the element transverse shear at different
structural strength demands tapering ratios (u = 1.5, 2, 3, 4,
special shapes for beams for 5,6, 7, 8, 9 and 10) and
preserving the aesthetic and different shape factors (m = 1,
architectural requirements. 2,2.1,22,23,24.2.5,2.6,3 and
These shapes exist in taper 4) are presented graphically
members. The  uniformly and numerically.
distributed load on simply
supported taper members will Deflection Curve
produce deformations due to When a beam is loaded, the
flexural (bending) and initially straight longitudinal
transverse shear effects. axis is deformed into a curve,
The objective of this study called the deflection curve of
is to obtain the total deflection the beam, which is produced
by double integration of the by combined bending and
second order differential shear deformations.

equation then applying the
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The slope of the deflection
curve is the first derivative of
the deflection function w =
w(x). The slope due to bending
only is equal to the tangent of
the angle of rotation of the
cross section (1):

dw, /dx =tan® (0
where w, is the deflection due
to bending only (no transverse
shear deformation).

Equation (1) is based upon
geometric considerations and it
is applied to a beam of any
material.

Most beams undergo only very
small rotations when they are
loaded; hence, their deflection
curves are very flat and have
extremely small curvature .
Under these conditions, the
angle O is a very small
quantity, then
approximations can be made to
simplify the work (small-angle
theory)tan 0 ~ 6

some

bending
when O is a small quantity (in
radian), then
dw,
dx

(2)

B=tanO=

578

Thus with small rotations of a
beam, the angle of rotation and
the slope are equal. Taking the
derivative of O with respect to
x, the following equation is

obtained:;
do _d’w,
& e &

If the material of the beam
is linearly elastic following
Hooke’s law, the curvature is:

M

El

d’w,
LWy @)
dx
which is the basic differential
equation of the deflection
curve of a beam due fto
bending moment only as
shown in Fig. (1). But the
slope of the deflection curve of
the beam due to shear alone is
approximately equal to the
shear strain at the neutral axis,

as shown in Fig.(Z)“‘z}.
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Fig. (1): Cross-section
deformation by pure bending
moment
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b. Varying shear stress

Fig. (2): Cross-section deformation by

pure transverse shear force

Thus denoting by w_ the

deflections due to shear alone,
the following expression for
the slope is obtained:
dw, aV

in which O is a numerical

factor as stated in Table (1).
This shear shape factor
corrects for the assumed
uniform shear over the cross-
section.

Table (1); Numerical values
of shear coefficient

o Shape

1.2 Rectangular

1.1 Circular
PA/A, [-section

A: total area of the cross-section,
A, area of the web

When there is a continuously
distributed load q (per unit
length) acting on the beam, the
shearing force V is a
continuous function that may
be differentiated with respect
to x. The curvature caused by
the transverse shear alone is:

d’w, a, gv__og
ot GAdc GAY

dx? GA dx
-_4dv
B =
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b=L+a

o
-«

Y Y ¥Y

Fig. (3): Simply supported beam with tapering cross-section
under uniform load

2

The total curvature i ‘f of the
o

prismatic beam due to combined

bending and shear effect is the

sum of the bending curvature

d_“{,b and the shear
dx”
2 I
curvatur md—;ii
2 diw d*w
d \?’ — Zb 5 25 (?)
dx dx dx
Then
d*w M 04 -
=——— 2 8
- B Ga ©

The total curvature in a tapered
beam wili be: -
dzw s M _ x.q (9}
dx>  Elx) GA(x)
as [ = I(x) and A = A(x) are
functions of position x.

The bending moment of a
simply supported beam
subjected to a uniformly

580

distributed load q at distance x
is: -

M(x) =%(x ~a)~ﬂ(x~a)2

2
(10)
where a is the distance from the
nearest support to the origin O,
Fig. (3).

The  second  order
differential equation for
combined bending and shear
curvature for the simply
supported beam shown in Fig.
(3)becomes:-

d’w_ 9 (o _
¢ 2E(x) (x-a)b-x)
o,q
" GA®X) aD

as b = L + a, the distance of
other support from the origin O.
The variable moment of
inertia with respect to x for a
tapered beam can be given as:
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I(x) =1, [fj (12)

where I; is the value of the
moment of inertia at nearest
support to the origin at Xx=a
and m is a shape factor of the
tapered beam. The tapering
ratio u is the ratio of the larger
to smaller ends depth d,/d,
and which is equal to the ratio
of the distance of the farthest to
the nearest support (b / a) from
the origin O.

Also, the variable cross-
sectional area with respect to x
is:

A(X) zAi{{:—]“ (13)

Here n is another shape factor
of the tapered beam. The sha?e
factors m and n are given by

m= E?_g_(I_“j_Il) (14)

nziog(Azz’A,) (15)
logu

Different symmetrical
cross-sectional  shapes  are
considered here for beams
under uniformly distributed
load as shown in Table (2).

The maximum values
of deflection and rotation are
different depending on the taper
ratio of the tapered beam. The
determination from the
analytical solution of a beam
subjected to uniformly
distributed load and having
square or circular  cross-
sectional area as shown in Fig.
(4) is compared with those of a
prismatic beam of uniform
cross section equal to the cross
section at end 1 of the taper
beam in Figs. (5) to (8) for
different taper ratios (u). The
case u = | indicates uniform
Cross-section.

MN/m

EEE RN

b=5u/{u—-1) o

Figure (4): The dimensions and properties of considered beam under
uniformly distributed load
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Table (2): Curvature Differentia! equations for different shape factors

Shape factor® 2 !
Description Shape ?::e s - (31 ":
X
tr
ide- d" v g
Wide-flange or| - ._E"‘T y . q (x—a){b—x)— s
I-section of [ 2.1-2.6 | Variable| 2EIx™ GAX"
varying depth d
T
: %
losed box —qd d
section of t% n d | 2.1-2.6 | Variable -i-;(x—a)[bﬂc) %9 =
varying depth d g 2Ex GAX
f
Solid j 2
rectangular| T =1 {d —q R
section of . ! QEI"‘B [X a)(b x] GAx
. b J
varying depth d
Solid,| T
| —qa a
rectangular| | | jd i : E'z:,q— (x—a){b—x) - gﬁq ,
section of| Lx AX
varying widthb|
t
Opex}-web 1 '_’F . qaz q
section of & d 2 0 2[x~a\ b-—x) _G—A1
varying depth d = Ix
Tower section ' tﬂ:‘l —qd :
of varying| [\ f 2 0 Mq—; (h-a](b~‘<) gﬁq
depth d A
Solid circular 4 2
—(qd
section of O d 4 ) —gﬁ(x-a)(b—x)v %4 =
varying 2Elx GAX
diameter d
Solid square £ 7
section of ‘ Id 4 9 —q4d (x—a}(b—x] 5
varying 1 ZEIX’ GAX
dimension d 1
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Total deflection ratio with respect to

Section along beam

Figure (5): Deflection ratio due to combined bending and
shear along beam for different taper ratios
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Figure (6): Deflection ratio duc to transverse shear along
beam length for different taper ratios
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0.24 - S — s e et e e

Total deflection ratio with respect to prismatic beam

9402 Exact| Tv=mi | prsthatic beam) !
o O e =20 = N
0 1 2 3 4 5 6 7 8 s 1w N

Taper ratio for taper beam
Figure (7): Comparison of exact and approximate maximum deflection ratio
for different taper ratios

‘Total deflection ratio with respect toprismatic beam

0.04 -
L TN
P [
002 T Without shear
04 ; effect
0 1 2 3

Taper ratio for taper beam
Figure (8): Comparison of maximum deflection ratio by including and excluding
transverse shear effect for different taper ratios
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Application:

R RTTA)

0.75m 2 5

'

iizzeo [Joasm
- 0.25m
End 1

End 2 -

7.5

,|  E=200000MN/m’
G =100000MN/m’

Figure (9): Application (D)

The solution of a tapered beam
having a square cross section
and a taper ratio 3
(m=4andn=2) and the
dimensions as shown in Fig. (9)
is considered.

A prismatic beam having the
same propemez, of the tapered
beam shown in Fig. (9) but its
cross section is the same as the
smaller end section (0.25 m x
0.25 m) and loaded atso with (1
MN/m) is compared with the
tapered beam for case of
maximum deflection due to
bending and transverse shear
effects.

The central deflection of the
prismatic beam is: -

1. due to bending":

SqL

Wo = 3841 (16)
2. due to transverse shear M,

_oql?
v, =36a 7
Thus, the total deflection due to
combined bending and
transverse shear effect is

w=w, +w,=0.1256m.
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The general deflection equation
of the tapered beam is:
1. due to bending (by exact
integration of the taper beam
bending equation): -

gd | ab_ath
W, = 4&[6}( o —Inx

x(a _u_ . ), blna—alnb
TL(% 3+lr1u/,+———-—L

[az i J
(18)
2. due to transverse shear (by

integration of the taper beam
shear deflection equation): -

) G”qé(m{

exact _&K
alnb—blm—xlnu)
L
3. due to transverse shear (by
an approximate solution by
assuming a prismatic beam of
uniform cross section equal to
the smaller cross section ( at
end 1) of the taper beam): -

1 al2 bz\

bL

(w,

(19)

L\
8GA |

) = e
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From the previous figures at
taper ratio u = 3, the following
results are obtained:

- From Fig. (5), the
maximum deflection ratio due
to bending and shear is
0.048367 by exact integration.
- From Fig. (6), the
maximum deflection ratio due
to transverse shear effect only
is  0.001772 by  exact
integration.

- From Fig. (7), the
maximum deflection ratio due
to combined bending and
transverse shear effect is
0.051536 in the approximate
solution.

From the above results, the
difference between the
approximate and the exact
maximum deflection values is
+6%.

Conclusions:

The effect of transverse
shear force on the maximum
deflection is considered and
calculated for beams with
different cross sectional area
values in various parts of a
tapered beam.

1. Deflection from transverse
shear force effect is small
when compared with the
deflection from bending
effect. The ratio (3.8 %) of
maximum deflectien due to
bending to that due to shear
is 4.8 %.
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2. To simplify the solution of
the differential equation
when including the
transverse shear effect, an
approximation for the shear
curvature term is assumed
where a constant cross
section area along the taper
beam equals to smaller area
at end 1 is taken. The
approximation results are
found wvery close to the
accurate values for a taper
ratiou=15uptou=3.5
as noticed before and still
the results are close when
this ratio is above u = 3.5.
As a useful note, this
approximation would be
important in studying the
behavior of tapered beams
subjected to constant axial
force with or without
transverse shear effect (as
noticed in some research
work).

The maximum deflection in

a prismatic beam always

occurs at the cross section of

maximum bending moment
because the stress varies along
the axis of the beam in the
same manner as the bending
moment. However, this
conclusion does not apply to
tapered beams because in such
beams, the stresses vary along
the axis not only proportional
to bending moment but also in
an inverse proportion to the
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moment of inertia of the cross-
section.

The deflection curve due to

transverse shear effect in a
taper beam is different from
that in a prismatic beam. The
deflections obtained for a
tapered beam of cross section
from one end to the other by
exact integration are compared
to those obtained for a
prismatic beam of constant
cross section area equal to the
smaller area at end 1 in the
approximate solution.
On the other hand, the
difference in deflection due to
fransverse shear effects
between a taper and a
prismatic beam depends on the
cross sectional area variation
from one end of a tapered
beam to the other. The
comparisons are presented
graphically for deflection due
to transverse shear effect in
two cases: the first is the
deflection for a taper beam
with wvarying cross sectional
area and the second is the
deflection for a prismatic beam
with constant cross section
equal to the smaller area.

List of symbols:

A :cross-sectional area
A=bd

A; :cross-sectional area at
end 1,smaller area
A, =bd,

A; :cross-sectional area at
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end 2, larger area
A, =bd,
E :modulus of elasticity
El :flexural (bending)

rigidity of cross section
G modulus of rigidity (in
shear)

I  :moment of inertia of

cross section, I = bd? /12
I; moment of inertia at end
1, smaller area

[= bdls /12
I, moment of inertia at end
2, larger area
I=bd’/12
2

bending moment
transverse shear force
beam cross section width
(constant)

d  depth of cross section

d; depthatendl
d, depthatend 2
m, shape factors (for I and

n A respectively)

q  uniformly distributed
load on beam

u taper ratio (u = depth at
end 2 / depth at end | =
do/d,)

w  :total deflection

wp :deflection due to bending

w, deflection due to
transverse shear
o :numerical factor (shear

* shape factor)

6 rotation

GA :shearing rigidity of the
cross section
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