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RESEARCH ARTICLE

Minimizing the Total Waiting Time for Fuzzy
Two-Machine Flow Shop Scheduling Problem
with Uncertain Processing Time

K. Ranjith , K. Karthikeyan *

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

ABSTRACT

Scheduling involves assigning resources to jobs within specified constraints over time. Traditionally, the processing
time for each job was considered a constant value. However, in practical scenarios, job processing times can dynamically
fluctuate based on prevailing circumstances. In this article, a novel approach is presented for the two-machine fuzzy
Flow-Shop Scheduling Problem (FSSP) in a fuzzy environment, where job processing times are represented by trapezoidal
fuzzy numbers. Additionally, a novel algorithm based on Goyal’s approach for the two-machine FSSP with fuzzy
processing times has been proposed and developed. Simultaneously, an existing algorithm has been enhanced to improve
its performance in this specific context. The study aims to minimize the total waiting time for jobs. A defuzzification
function is employed to rank fuzzy numbers, with the ultimate goal of minimizing the total waiting time. Furthermore,
the article evaluates the performance of these methods in terms of solution quality, using test problems with 10, 20,
30, 40, 50, 60, 80, 90, 100, 120, 200, 250, 300, and 500 jobs, along with 2 machines. The mean total waiting time
is compared to existing algorithms, including the NEH algorithm, Palmer’s method, Johnson’s method, B. Goyal and
B. Kaur, and the proposed algorithm. Additionally, the obtained results, along with a well-structured ANOVA test,
highlight the effectiveness of the proposed method in addressing the scheduling problem under investigation. The
experimental results showcase that the proposed algorithm can effectively minimize the waiting time in fuzzy two-
machine FSSP and achieve superior results when compared to various existing algorithms.

Keywords: Fuzzy flow shop scheduling problem, Fuzzy logic, Heuristic algorithm, Optimal sequence, Trapezoidal fuzzy
number (TrFN), Total waiting time

Introduction

Flow shop scheduling problems consist of n iden-
tical jobs processed in the same order across m
machines. Real scheduling problems often encounter
challenges where data cannot be accurately recorded
or collected, particularly in unexpected circum-
stances. An example is the imprecise measurement
of job processing times, making it challenging to
gather precise data. In 1954, Johnson introduced
algorithm1 known as Johnson’s rule, aimed at min-
imizing the makespan in the two-machine flow shop

problem. This concept, renowned for its ability to
yield precise results in the two-machine scenario,
has catalyzed the development of heuristics for more
complex m-machine flow shop problems, including
notable algorithms like Palmer’s,2 Gupta’s,3 and the
CDS algorithm.4 While Johnson’s algorithm assumed
deterministic processing times, setting precise val-
ues for job processing times is often challenging
in real-world scenarios. Variability is inherent, with
processing times often fluctuating within intervals
rather than fixed values. Consequently, represent-
ing such uncertainties is both natural and realistic.5
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As a result, there arises a necessity to extend the
classical Johnson’s algorithm to accommodate fuzzy
processing times. Therefore, there has been a grow-
ing interest among researchers in recent years in
using fuzzy processing time to tackle job scheduling
problems, with particular emphasis on the flow-
shop scheduling problem. Additionally, researchers
propose employing fuzzy set theory,6 to tackle uncer-
tainty in scheduling problems, a crucial approach for
domains such as healthcare and production.7 In flow
shop scheduling problem-solving, NP-complete prob-
lems8 are quick to verify but slow to solve. This limits
the effectiveness of exact optimization algorithms for
large-scale problems. Instead, Industries9 relies on
scheduling to allocate resources to tasks over time,
aiming to minimize metrics such as makespan,10,11

total flow time, tardiness,12 and waiting time.13

In flow shop scheduling, the focus is on minimizing
waste, including idle time of machines and wait-
ing time of jobs. These factors significantly impact
production efficiency and are crucial considerations
in scheduling objectives.14 The significant impact of
waiting time, as seen in industries like steel produc-
tion, involves the wastage of time, raw materials, and
resources. In the context of the problem, Asif et al.15

studied an effective algorithm aimed at reducing total
elapsed time and idle time for solving FSSPs. McCa-
hon and Lee,16 discussed a method for predicting the
job sequence with an optimal value for a two-machine
FSSP employing a triangular fuzzy number.

Previous studies in flow-shop scheduling primarily
focused on deterministic environments. However,
real-world manufacturing processes inherently
involve uncertainty.17 Recently, significant attention
has been devoted to addressing uncertain shop
scheduling problems, with fuzzy shop scheduling
emerging as a prominent research area. Additionally,
Dubios and Prade,18 proposed overlapping
relationships among fuzzy numbers to characterize a
domain of possibility. Mahfouf M. et al.,19 highlight
the application of fuzzy logic techniques in healthcare
disciplines such as internal medicine and others.
Kiptum et al.,20 evaluated the challenges associated
with achieving sustainable urban development using
a fuzzy approach. Besides, Alburaikan A. et al.21

introduced a novel strategy for arranging tasks
within a three-stage flow shop setting involving
uncertain processing times. They presented two
distinct methods: the first employs a ranking function,
while the second utilizes a tight interval estimate of
fuzzy numbers. In recent years, several researchers
have made significant contributions to this literature.
Zhou T et al.,22 examined three-machine n-job
FSSP with fuzzy piecewise quadratic processing
times. Zubair and Ahmed,23 devised an innovative

set of operational guidelines and a ranking
procedure for Single-Valued Neutrosophic Uncertain
Linguistic Variables concerning linguistic scale
functions. Akram et al.,24 introduced a new linear
programming problem that incorporates LR-type
Pythagorean fuzzy numbers. Zanjani B et al.,25

developed a multi-objective robust mixed-integer
linear programming model considering real-world
conditions where due dates and processing times
are assumed to be uncertain. Edalatpanah et al.,26

utilized Cooperative Continuous Static Games with
fuzzy cost functions that exhibit piecewise quadratic
behavior. Gupta D. and Goyal B.,27 have created
specialized structural models aimed at optimizing job
waiting times in flow shop scheduling, with a focus
on distinct setup times and the concept of job blocks.
Here, a two-machine flow shop scheduling problem is
presented, incorporating trapezoidal fuzzy processing
times.

Recently, there has been a growing focus among
researchers on the fuzzy FSSPs. Engin and Isler,28

developed a parallel greedy algorithm for the fuzzy
hybrid FSSPs with setup time and lot size. Bahmani V
et al.,29 examined the two-stage flow shop schedul-
ing problem involving distribution through vehicle
routing within a flexible timeframe. Rouhbakhsh R
et al.,30 developed a lot-streaming algorithm for
the hybrid flow shop scheduling problem consider-
ing transportation time. Jain et al.,31 presented a
model for optimizing fuzzy inventory-transportation
problems aimed at minimizing overall distribution
costs. In this context, Goyal B and Kaur S,32 ex-
plored a triangular fuzzy number-based algorithm
for minimizing job waiting time in specific FSSPs,
demonstrating its superiority in waiting time opti-
mization compared to various heuristic approaches.
To solve the same problem Goyal B and Kaur S,33

explored scheduling issues in a two-machine per-
mutation flow shop, considering random processing
times on both machines. In this article, an enhance-
ment to the Goyal method is proposed. Specifically, a
novel approach is introduced to thoroughly explore
the potential relationships between fuzzy numbers,
thereby leading to improved performance in obtain-
ing optimal job sequences.

The rest of the article is structured in the following
manner: Preliminary concepts that explain the fuzzy
set and other principles, providing an overview of the
problem statement. The fuzzy two-machine FSSPs are
proposed. The result analysis discusses the numerical
comparison employed to verify the computational ef-
ficiency of the proposed method. The article provides
a summary and explores potential avenues for future
research in the conclusion. The flow chart for the
proposed algorithm is clearly outlined in Fig. 1.
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Fig. 1. Flow chart for the proposed method.

Preliminary concepts

The preliminary concept contains a mathematical
representation of job completion time and waiting
time. Moreover, the assumptions applied in the prob-
lem setting were presented. The subsequent notations
indicate the total waiting time for the fuzzy FSSP with
n jobs and 2 machine problems.

Assumptions

The following assumptions form the foundation of
the flow shop scheduling problems.34

• At time zero, all machines should be operational.
• Each machine processes each job once, and they

work independently.
• Predictable and consistent processing times exist.
• Machines are always accessible and do not mal-

function throughout the operation.
• No machines can handle two or more tasks con-

currently.
• Preemption of jobs is not authorized; the machine

remains dedicated to the current job until
completion.

Table 1. Notation.

Characters Descriptions

i Index for jobs βi, i = 1,2, . . . . . . n
M Machines (M1 and M2)
P̃M

i Average Hesitant Fuzzy Set (AHR) score for the fuzzy
processing time of the job i on machine M. This re-
presented the average value of the fuzzy job time.

fM
i Fuzzy processing time of job i on machine M.

CM
β Completion time of job β on machine M.

Uβ Job β ′s waiting time.
Si The starting time of the job i on machine M, denoted

as Wt .
Wβ Waiting time of job β.
Wt ime Total waiting time.

Fig. 2. Trapezoidal membership function.

The objective of the two-machine fuzzy FSSP is to
determine the optimal sequencing of all jobs while
minimizing the total waiting time. Table 1 provides
a comprehensive list of symbols and their respective
meanings utilized in two machine fuzzy FSSP.

Fuzzy flow shop scheduling problem

Problem statement
In this section, the formulation of the fuzzy

FSSP has been investigated, where the processing
times for a set of n jobs, sequenced across a pair of
machines, are expressed as trapezoidal fuzzy numbers
denoted as P̃M

i . These fuzzy representations capture
uncertainty, offering a range for each processing time
rather than a precise value.35 The primary objective
is to devise an optimal job processing sequence on the
two machines, emphasizing the minimization of total
waiting time while accounting for the uncertainty
introduced by trapezoidal fuzzy numbers. The dura-
tion for processing job i on machine M is represented
by the trapezoidal fuzzy number P̃ = (e1, e2, e3, e4),
where e1, e2, e3, e4 are parameters. For trapezoidal
fuzzy numbers, the membership function is 1 or
the maximum of (e2 − e3), and it is zero at the
corners e1 and e4 of the trapezoidal fuzzy number.
Fig. 2 illustrates these numbers. In this context, µ
denotes the membership function, and x signifies
the processing time. The membership function,
employed in fuzzy logic, assesses the degree of
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membership or truth value of an element in a fuzzy
set, considering its attributes like processing time.
Additionally, a crucial condition max(P̃1

i ) ≤ min(P̃2
i )

ensures compatibility in processing time intervals on
different machines, contributing to the feasibility of
the scheduling solution.

Preliminaries

The initial introduction of fuzzy mathematical pro-
gramming at a broad level originated within the
framework of fuzzy FSSP proposed by Behnamian J.36

Next, essential definitions are provided.

Fuzzy set37

A fuzzy set P̃ maps elements from the universe of
discourse X̃ to the unit interval. Let P̃ be represented
as P̃ = {(x, µP̃(x)/x ∈ X̃ )}, where µP̃ is the member-
ship function that assigns a value to each element
x belonging to X in the fuzzy set P̃. µP̃(x) yields the
degree to which x belongs to the fuzzy set P̃. µP̃ maps
X̃ to the interval [0,1], and the fuzzy set P̃ can be
represented as P̃ : X̃ → [0,1].

Fuzzy number37,38

A fuzzy number, denoted as P̃, is defined based on
the following criterion

• µP̃(x): R→ [0,1] is continuous.
• µP̃(x) = 1 for all xε[e1, e4] where e1 < e2 < e3 <

e4.
• µP̃(x) strictly increasing on [e1, e2] and strictly

decreasing on [e3, e4].
• µP̃(x) = 0 for all xε(−∞, e1) ∪ (e4,+∞).

Trapezoidal Fuzzy Number: A trapezoidal fuzzy
number P̃ = (e1, e2, e3, e4) is defined by its member-
ship function µP̃(x) as follows:

µP̃ (x) =



x−e1
e2−e1

, i f e1 < x < e2

1, i f e2 < x < e3

e4−x
e4−e3

i f e3 < x < e4

0, i f otherwise

(1)

Defuzzification method39

Finding the singleton value (crisp value), which is
the average value of the trapezoidal fuzzy numbers,
is the process of defuzzification. Due to its simplicity
and accuracy, Robust’s Ranking approach is utilized
in this case to defuzzify trapezoidal fuzzy numbers.

Robust ranking technique

If P̃ is a trapezoidal fuzzy number, then the ranking
method is given by

R(P̃) =
∫ 1

0
α(bL

α, b
R
α )dα,

where (bL
α, bR

α ) = {[α(e2 − e1)+ e1,−α(e4 − e3)+ e4]}
the α – level cut off the fuzzy numbers P̃.

R
(
P̃
)
=

∫ 1

0
[e1 + α (e2 − e1)]αdα

+

∫ 1

0
[e4 − α(e4 − e3)]αdα

(2)

R
(
P̃
)
=

∫ 1

0

[
e1α + α

2 (e2 − e1)
]
dα

+

∫ 1

0
[e4α − α

2(e4 − e3)]dα

R
(
P̃
)
=

[
e1
α2

2
+ (e2 − e1)

α3

3

]1

0

+

[
e4
α2

2
−
α3

3
(e4 − e3)

]1

0

R
(
P̃
)
=

e1 + 2(e2 + e3)+ e4

6

(3)

R(P̃) is the ranking index for fuzzy number P̃.

Significance and novelty of the proposed model

The importance of the proposed objective resonates
across every service provider organization and in-
dustry because client satisfaction is of paramount
importance to every executive. In today’s rapidly
advancing world, where time is at a premium, ev-
eryone seeks services that minimize waiting times.
Therefore, service executives consistently strive to en-
sure timely service delivery, avoiding extended wait
periods for clients. Most of the previous research
has focused on achieving different objectives, includ-
ing minimizing elapsed time and reducing the rental
cost of machines. The objective introduced in this
study has previously garnered little attention from
researchers in the context of trapezoidal fuzzy pro-
cessing numbers. The novelty of this research lies in
delving into this objective and presenting an algo-
rithm aimed at minimizing job waiting times for flow
shop scheduling problems with randomly generated
trapezoidal fuzzy processing times.
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Table 2. Representation of the problem description
in matrix form.

Jobs(i) M1( f1
i ) M2( f2

i )

1 (e1
11, e1

21, e
1
31, e

1
41) (e2

11, e2
21, e

2
31, e

2
41)

2 (e1
12, e1

22, θ
1
32, e

1
42) (e2

12, e2
22, e

2
32, e

2
42)

3 (e1
13, e1

23, e
1
33, e

1
43) (e2

13, e2
23, e

2
33, e

2
43)

. . .

. . .

. . .
n (e1

1n, e
1
2n, e

1
3n, e

1
4n) (e2

1n, e2
2n, e

2
3n, e

2
4n)

Total waiting time for flow shop scheduling

Consider the problem of a flow-shop with n jobs and
two machines, where the jobs are processed sequen-
tially on machines M1 and M2, following the order
M1M2, without allowing any passing. Furthermore,
let S1

i and C1
i denote the starting and completion times

of job i on machine M1, and S2
i and C2

i represent the
starting and completion times of job i on machine
M2, where i = 1, 2 . . . , n. The waiting time for job
i on machine M2, referred to as Wi, is determined
as S2

i − C1
i within a schedule ‘S’ involving n jobs

(S = β1, β2, . . . . . . βn). The total completion time of all
jobs in a two-machine flow shop problem is the com-
pletion time of the last job on the second machine,
denoted as C2

βn

C1
β1
= P̃1

1 (4)

C1
βi
= C1

βi−1
+ P̃1

βi
, i = 2, . . . , n (5)

C2
βi
= max

{
C2
βi−1
, C1

βi

}
+ P̃2

βi
, i = 2, . . . , n (6)

The total completion time is then C2
βn

. The objective
is to find a schedule that minimizes the total waiting
time Wt ime, where Wt ime =

∑n
i=1 Wi. The mathematical

details of this problem can be found in Table 2.
The two-machine specialized flow-shop scheduling

problem arises when the processing times of the n
jobs on machines M1 and M2 adhere to the condi-
tion expressed as max P̃1

i ≤ min P̃2
i , transforming the

problem into a specialized scheduling problem.

Theorem 1: Let n-jobs, indexed from 1 through n, un-
dergo processing on two machines (M1 and M2) in a flow
shop environment, excluding any transient operations.
Suppose these jobs adhere to the structural condition:

max P̃1
i ≤ min P̃2

i (7)

where P̃M
i - represents the alpha cut ranking index Eq. (3)

value of the equivalent fuzzy processing time required by
the job i on machine M (M = 1,2), and (Wt ime), the
total waiting time of jobs, is determined as:

Under this constraint, the total waiting time of jobs
(Wt ime) is mathematically represented as:

Wt ime = n · P̃1
β1
+

n−1∑
j=1

(n− q) dβq −

n=1∑
i=1

P̃1
βi

(8)

where:

dβq =

(
P̃2
βq
− P̃1

βq

)
(9)

Proof: Initially, the evaluation begins with determin-
ing the completion time, denoted as CM

β , for orders
β on machine M, considering the sequence, S =
β1, β2, β3, . . . βk . . . , βn.

Claim:

C2
βn
= P̃1

β1
+ P̃2

β1
+ P̃2

β2
+ · · · + P̃2

βn
(10)

Applying mathematical induction to n, let P(n)
denote:

C2
βn
= P̃1

β1
+ P̃2

β1
+ P̃2

β2
+ · · · + P̃2

βn
(11)

Now, for n = 1,

C2
β1
= P̃1

β1
+ P̃2

β1
(12)

Now, assuming P(k) to be true for n = k,
Then for P(k + 1), utilizing Eq. (7).

C2
βk+1
= max

(
C1
βk+1

, C2
βk

)
+ P̃2

βk+1
(13)

Proving,

C2
βn
= P̃1

β1
+ P̃2

β1
+ P̃2

β2
+ · · · + P̃2

βk
+ P̃2

βk+1
(14)

Next, Uβ will be evaluated, representing the time
consumed by the job β while waiting.

Claim: For the sequence S = β1, β2, β3, . . . βk . . . , βn
of the jobs

Next, the waiting time Uβ for the job, β is analyzed
for the sequence Uβk = β1, β2, β3, . . . , βk . . . , βn of the
jobs:

Clearly,

Uβ1 = 0 (15)

and

Uβk = S2
β1
−C1

βk
k = 2, 3 . . . , n (16)

Implicitly,

Uβk = max
(
C2
βk−1

, C1
βk

)
−C1

βk
, k = 2, 3 . . . , n (17)
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Condition Eq. (7) of the proposed model specifies a
requirement that must be satisfied, expressed as:

Uβk = P̃1
β1
+

n−1∑
q=1

dβq +

n∑
i=1

P̃1
βk
, k = 2,3 . . . , n (18)

Approaching the major proof of the theorem:

Wt ime = Uβ1 +Uβ2 +Uβ3 + · · · ,+Uβn (19)

Wt ime = n. P̃1
β1
+

n−1∑
q=1

(n− q) dβq +

n∑
i=1

P̃1
βi
,

k = 2,3 . . . , n (20)

Theorem 2: Given a natural number k and real
numbers r1, r2, . . . , rk, among all possible linear com-
binations of the form

k−1∑
i=0

(
k− i

)
ri+1

the minimum value is attained when r1 ≤ r2 ≤ . . . ,

≤ rk.

Proof: Applying the induction hypothesis on k, the
result holds trivially for k = 1.

Assume that the result holds for less than k real
numbers.

Now, considering the ordered sequence

r1 ≤ r2 ≤ · · · ≤ rk

kr1 +
(
k− 1

)
r2 +

(
k− 2

)
r3 + · · · + 2rk−1 + rk

=
(
k − 1

)
r1 +

(
k − 2

)
r2 +

(
k − 3

)
r3 + · · ·

+ rk−1 +

k∑
i=1

ri

Since the last term
∑k

i=1 ri is constant, the hypoth-
esis assumption implies that

kr1 +
(
k − 1

)
r2 +

(
k − 2

)
r3 + · · · + 2rk−1 + rk

is minimized.

Remark: Based on the result from Theorem 2,
it is evident that for an n-job sequence S =
β1, β2, β3, . . . βk . . . , βn the term

n∑
q=1

(n − q) dβq

in Eq. (8) will be minimized if the n-jobs in sequence S
are arranged in the non-decreasing order of the values

dβq , while
n∑

i=1

P̃βi

remains constant for every sequence of jobs. Bearing
these observations in mind, an exact method
is proposed to minimize the total waiting time
Wt ime for two-machine specially structured flow-shop
scheduling problems.

Proposed algorithm

The proposed algorithm entails the following steps:

Step 1: Calculate the Ranking Index value of fuzzy
processing time fM

i = (e1, e2, e3, e4) for all jobs
ji, where i = 1, 2, 3 . . . , n, using alpha cut
Ranking Index Eq. (3).
Step 2: Verify the structural condition, i.e.,
max P̃1

i ≤ min P̃2
i

Step 3: Calculate hiq = (n − q)di, where di =

P̃2
i − P̃1

i for i = 1,2,3, . . . , n− 1, and present
the computed entries in the following tabulated
format:
Step 4: Arrange the jobs in ascending order of di
and obtain the sequence S1 = β1, β2, β3, . . . , βn.
Step 5: Identify the minimum processing time of
machine 1 and denote it as P̃1

x . Then, verify the
condition

P̃1
x = P̃1

β1
,

If this condition is satisfied, then the sequence ob-
tained in the previous step is optimal; otherwise,
proceed to the next step.
Step 6: Generate other sequences Si, where i =
2,3,4, . . . , n, by exchanging the ith job with the
first one of the sequences Si−1 while keeping the
remaining job sequence unchanged.
Step 7: Compute the total waiting time Wt ime for
all sequences S1, S2, S3, . . . , Sn using the formula
defined in Eq. (8).
Step 8: Select the sequence with the minimum
total waiting time from the list mentioned in the
previous step; this sequence represents the opti-
mal solution.

Illustration

A mathematical representation of a problem involv-
ing 10 jobs and two machines is presented in Table 3,
as illustrated in the adjusted algorithm.37

The representation of the ranking method Eq. (3)
for the previously mentioned fuzzy processing times
is shown in Table 4.
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Table 3. Trapezoidal fuzzy processing times.

Jobs M1 M2

i f1
i f2

i

1 (65, 69, 77, 93) (75, 89, 97, 112)
2 (61, 72, 83, 93) (80, 92, 104, 106)
3 (65, 69, 77, 93) (81, 86, 97, 112)
4 (64, 71, 79, 94) (76, 89, 99, 107)
5 (57, 75, 78, 88) (79, 83, 98, 107)
6 (54, 71, 76, 92) (82, 87, 102, 113)
7 (65, 72, 85, 89) (76, 85, 103, 110)
8 (60, 70, 80, 92) (80, 87, 98, 112)
9 (58, 69, 78, 90) (76, 84, 94, 106)
10 (63, 69, 84, 87) (75, 89, 94, 107)

Table 4. Crisp values of P̃M
j .

Jobs M1 M2

j P̃1
i P̃2

i

1 75.00 93.16
2 77.33 96.33
3 76.66 91.50
4 76.33 93.16
5 75.16 91.33
6 73.33 95.50
7 78.00 93.66
8 75.33 93.66
9 73.66 89.66
10 76.00 91.33

It is clear from the above table that the max
max(P̃1

i ) ≤ min(P̃2
i ).

Therefore, the structural criterion has been ful-
filled. Then with the aid of step 4, the subsequent
sequences have been obtained.

S1 = β3, β10, β7, β9, β5, β4, β1, β8, β2, β6

As a result, P1
x 6= P1

β1
, all potential sequences accord-

ing to step 6 are

S2 = β10, β3, β7, β9, β5, β4, β1, β8, β2, β6

S3 = β7, β3, β10, β9, β5, β4, β1, β8, β2, β6

S4 = β9, β3, β10, β7, β5, β4, β1, β8, β2, β6

S5 = β5, β3, β10, β7, β9, β4, β1, β8, β2, β6

S6 = β4, β3, β10, β7, β9, β5, β1, β8, β2, β6

S7 = β1, β3, β10, β7, β9, β5, β4, β8, β2, β6

S8 = β8, β3, β10, β7, β9, β5, β4, β1, β2, β6

S9 = β2, β3, β10, β7, β9, β5, β4, β1, β8, β6

S10 = β6, β3, β10, β7, β9, β5, β4, β1, β8, β2

Table 5. The optimal job schedules.

Sequences Total Waiting Time (Wt ime)

S1 730.00
S2 723.83
S3 744.50
S4 702.16
S5 717.83
S6 732.83
S7 727.50
S8 732.00
S9 757.33
S10 745.83

Therefore, the optimal job sequence S4, consist-
ing of β9, β3, β10, β7, β5, β4, β1, β8, β2, β6 had
achieved the minimum total waiting time Wt ime of
702.16 units, as had been indicated in Table 5.

After analyzing the outcomes of the aforemen-
tioned methods, it becomes evident that the proposed
approach outperforms the Goyal method, exhibiting
the most favorable optimal value. This comparison is
detailed in Table 6.

Pseudo code for the proposed algorithm

The pseudocodes of the proposed algorithm steps
are mentioned below

Pseudo code for Proposed algorithm

Require: Fuzzy processing time matrix fM
i , Job

processing times P̃1
i , P̃

2
i

Ensure: Optimal job sequence Si, minimum total
waiting time Wt ime

Initialization
While: max P̃1

i ≤ min P̃2
i do

Compute the alpha Ranking Index for fM
i

if processing times satisfy the condition, then
Compute difference matrix hiq = (n− q)Vi,

where Vi = P̃2
i − P̃1

i
Arrange jobs in ascending order based on

differences
Find minimum processing time P̃1

x
Obtain alternative job sequences Si
Calculate the total waiting time Wi for each

sequence
Select a sequence with a minimum total waiting

time Si
Set W ∗ to minimum Wi

else
Print “Structural condition not met.”

end if
end while
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Table 6. Comparison for optimal sequence.

S. No Ranking Method Optimal sequence Waiting time

1 B. Goyal & S. Kaur34 β9, β3, β10, β4, β7, β1, β5, β2, β8, β6 708.25 units
2 Ranjith. K and Karthikeyan40 β9, β7, β10, β3, β4, β1, β5, β2, β8, β6 706.34 units
3 Proposed algorithm β9, β3, β10, β7, β5, β4, β1, β8, β2, β6 702.16 units

Fig. 3. Comparison of mean of total waiting time for FSSPs.

Results and discussion

The algorithms were employed in MATLAB and
performed on computers running Windows 10 Pro-
fessional, each equipped with 4 GB of RAM and Intel
Core i5-3770 processors operating at 3.10 GHz. To
assess the proposed algorithm, experiments were car-
ried out by testing it on 10 different cases of the
fuzzy two-machine FSSPs. These cases were randomly
generated,33 resulting in a total of 14 combinations
for 2-machine n-jobs problems, with the number of
machines (m) held constant at 2 and the number of
jobs (n) varying within the range of n = {10, 20, 30,
40, 50, 60, 80, 90, 100, 120, 200, 250, 300, 500}. The
processing time P̃ = e1, e2, e3, e4 for job i on ma-
chine M1 and M2 was determined as follows: P̃1

i was
assigned a random value between 65 and 90, while P̃2

i
was randomly generated within the range of 90 to
115. Each of the algorithms requires an equal amount
of computation time, resulting in a waiting time of
n× 2 seconds. For each group, the mean total waiting
time for each problem generated by the proposed al-
gorithm is compared with the mean makespan values
of existing approaches such as the Palmer algorithm,2

Johnson algorithm,1 NEH algorithm,41 and Goyal B.
and Kaur S.34 These comparisons are visualized in
the graph presented in Fig. 3. These results were ob-
tained using both the proposed algorithm and existing
heuristics, as depicted in Table 7.

The examination of the experiment involved
applying a multi-factor Analysis of Variance
(ANOVA) technique,42 with n-jobs and 2-machine
considered as uncontrollable factors. To execute

Fig. 4. Quantile-quantile plot.

Fig. 5. The statistical mean difference for FSSPs.

ANOVA, it is crucial to verify the primary hypotheses,
specifically focusing on the normality and
independence of residuals. Normality can be assessed
through methods such as a Quantile–Quantile plot,
Fig. 4 of the residuals, or by evaluating their fit
to a theoretical normal distribution. Additionally,
statistical tests such as the chi-square test or the
Kolmogorov–Smirnov test for normality can be
employed in this context. The results of the ANOVA
analysis are presented in Table 10. Fig. 5, illustrates
the results of different statistical tests used to evaluate
the adherence of our data to a normal distribution. A
high p-value (exceeding 0.05) indicates that the data
does not significantly deviate from normality.

In Table 8, descriptive statistics outline the mean,
standard deviation, and standard error for various
algorithms, including the Palmer, Johnson, NEH,
Goyal, and Kaur, and the proposed method. Notably,
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Table 7. Average mean of total waiting time for FSSPs.

Jobs
Palmer’s
Method2

Johnson’s
Method1

NEH
Algorithm41

B. Goyal &
S. Kaur34

Proposed
algorithm

10 1001.78 910.12 856.56 882.11 840.43
20 4465.84 4324.52 3865.56 3986.13 3799.23
30 10605.92 9905.92 9205.92 9428.81 9280.59
40 19205.52 18005.52 16585.52 16916.67 16374.47
50 29535.36 28635.36 25535.36 26564.62 25398.47
60 41708.53 38952.36 35069.27 37217.52 35049.66
80 75259.35 70523.23 66925.52 66984.44 65923.66
90 92124.52 89365.42 83245.25 83799.91 83009.82
100 112235.3 111235.3 104235.3 104957.6 103945.3
120 150873.36 158973.67 149883.85 148873.62 148873.6
200 428004.26 412984.26 398984.26 398004.18 397984.26
250 701661.88 681661.88 661661.88 651661.88 651735.97
300 953894.94 933894.94 923894.94 935718.69 923894.94
500 2652455.01 2552455.01 2489542.66 2587262.75 2417305.66

Table 8. Descriptives of mean comparison.

95% Confidence Interval for Mean

Algorithms N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

Palmer’s Method2 14 376645.11 717233.64 191688.75 −37473.26 790763.49 1001.78 2652455.01
Johnson’s Method1 14 365130.54 691114.24 184708.05 −33906.95 764168.02 910.12 2552455.01
NEH Algorithm41 14 354963.70 675471.15 180527.26 −35041.73 744969.13 856.56 2489542.66
B. Goyal & S. Kaur34 14 362304.21 699562.45 186965.93 −41611.13 766219.54 882.11 2587262.75
Proposed algorithm 14 348815.43 657684.54 175773.59 −30920.31 728551.18 840.43 2417305.66

Total 70 361571.79 668327.41 79880.40 202214.75 520928.84 840.43 2652455.06

the mean values for the proposed method are
lower than those of the other algorithms, indicating
potential performance improvements. Specifically,
the proposed method exhibits the lowest mean among
all algorithms, suggesting its superior performance
in the evaluated metric. However, drawing definitive
conclusions requires considering the associated
standard deviations and standard errors, which offer
insights into the variability and precision of the
measurements. The lower mean in the proposed
method category, coupled with an assessment
of the associated variability, implies that this
algorithm may represent the most advantageous
choice among the options considered in this
analysis.

As mentioned in Table 9, the proposed method was
compared to the Johnson, Palmer, NEH, and B. Goyal
and S. Kaur algorithms. The mean deviations were
−27829.67929, −16315.10357, −6148.27071, and
−13488.7764 respectively. The significance level
(p-value) was 1.000, and the confidence intervals
ranged from −27829.67929 to −13488.7764. Our
experiment involved a non-parametric analysis,
including ANOVA and multiple comparisons, to
determine whether there are statistically significant
differences between the algorithms. Surprisingly,
varying levels of parameter T do not yield statistically
significant differences. This suggests that the

proposed algorithm exhibits robustness across
different values of T. As previously mentioned, there
is no evident statistically significant disparity among
the various levels of T. The high p-values indicate no
statistically significant differences between the means
of the proposed method and the other algorithms, as
shown in Table 10.

As discussed earlier, there is no clear statistically
significant distinction among the various T levels.
However, setting T to 0.5 appears to yield superior
outcomes compared to a setting of 0.0, where
only enhanced solutions are accepted. Further
experiments with higher T levels did not result in
additional improvements.

Considering uncontrollable factors such as n-jobs
and 2-machine setups, Further investigation into the
optimal combinations of destruction and temperature
factors for each of the 14 groups of instances can be
conducted. While such analysis could potentially fine-
tune the algorithm, it also runs the risk of over-tuning,
complicating its implementation. Therefore, all algo-
rithms are executed under identical conditions.

Based on the provided ANOVA results, it does not
appear that there is a statistically significant differ-
ence in the performance of the proposed algorithm.
The high p-values for the F-statistic in both the Be-
tween Groups comparisons suggest that any observed
variations are likely due to random chance rather
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Table 9. Multiple comparisons.

Dependent Variable:

Tukey HSD

95% Confidence Interval

(I) Algorithm Mean Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

Palmer’s Method2

Johnson’s Method 11514.57571 260234.00707 1.000 −718656.2734 741685.4248
NEH Algorithm 21681.40857 260234.00707 1.000 −708489.4406 751852.2577
B. Goyal & S. Kaur 14340.90286 260234.00707 1.000 −715829.9463 744511.7520
Proposed algorithm 27829.67929 260234.00707 1.000 −702341.1698 758000.5284

Johnson’s Method1

Palmer’s Method −11514.57571 260234.00707 1.000 −741685.4248 718656.2734
NEH Algorithm 10166.83286 260234.00707 1.000 −720004.0163 740337.6820
B. Goyal & S. Kaur 2826.32714 260234.00707 1.000 −727344.5220 732997.1763
Proposed algorithm 16315.10357 260234.00707 1.000 −713855.7456 746485.9527

NEH Algorithm41

Palmer’s Method −21681.40857 260234.00707 1.000 −751852.2577 708489.4406
Johnson’s Method −10166.83286 260234.00707 1.000 −740337.6820 720004.0163
B. Goyal & S. Kaur −7340.50571 260234.00707 1.000 −737511.3548 722830.3434
Proposed algorithm 6148.27071 260234.00707 1.000 −724022.5784 736319.1198

B. Goyal & S. Kaur34

Palmer’s Method −14340.90286 260234.00707 1.000 −744511.7520 715829.9463
Johnson’s Method −2826.32714 260234.00707 1.000 −732997.1763 727344.5220
NEH Algorithm 7340.50571 260234.00707 1.000 −722830.3434 737511.3548
Proposed algorithm 13488.77643 260234.00707 1.000 −716682.0727 743659.6256

Proposed algorithm
Palmer’s Method −27829.67929 260234.00707 1.000 −758000.5284 702341.1698
Johnson’s Method −16315.10357 260234.00707 1.000 −746485.9527 713855.7456
NEH Algorithm −6148.27071 260234.00707 1.000 −736319.1198 724022.5784
B. Goyal & S. Kaur −13488.77643 260234.00707 1.000 −743659.6256 716682.0727

Table 10. ANOVA for the experiment on the parameter of the proposed algorithm.

Total waiting time

Sum of Squares df Mean Square F Sig.

Between Groups 6255166517.299 4 1563791629.325 0.003 1.000
Within Groups 30813390987352.500 65 474052169036.192
Total 30819646153869.800 69

than systematic differences. The analysis of the mean
differences between the proposed algorithm and
the comparison algorithms (Palmer, Johnson, NEH,
B. Goyal, and S. Kaur) reveals that, on average, there
are no statistically significant variations. The mean
differences and associated confidence intervals sug-
gest that any observed distinctions in performance
are likely attributable to random chance rather than
inherent differences in the algorithms.

These values represent the differences in means,
precision, significance, and confidence intervals
around those differences. The high p-values suggest
that there are no statistically significant differences
between the means of the proposed method and each
of the other algorithms. The mean comparisons are
clearly displayed in Fig. 4. As discussed earlier, there
is no discernible statistically significant distinction

among the various T levels. Nevertheless, it appears
that setting T to 0.5 yields superior outcomes com-
pared to a setting of 0.0, where only enhanced solu-
tions are accepted. Further experiments with higher T
levels did not result in any additional improvements.

Our experiment employed a non-parametric analy-
sis, incorporating ANOVA and multiple comparisons,
to assess the presence of statistically significant dif-
ferences among the algorithms. ANOVA Table 10
suggests no overall significance, yet mean compar-
isons reveal a slight variance in the total waiting
time of jobs between the proposed and existing al-
gorithms. Notably, one of the suggested heuristics
consistently emerges as the most effective across var-
ious distributions, yielding an ANOVA below one.
This conclusion is supported by both visual and
statistical analyses, including Tukey’s ANOVA and
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the Kolmogorov-Smirnov signed rank test. Future re-
search could explore integrating machine setup time,
using trapezoidal fuzzy numbers, and extending the
algorithm’s application to scheduling problems with
three or more machines.

Conclusion

In this paper, the two-machine flow-shop
scheduling problem with trapezoidal fuzzy processing
times is addressed, aiming to minimize the total
waiting time. A novel algorithm with a specially
structured model is proposed. A defuzzification
function is utilized to rank fuzzy numbers. The
proposed method is then compared with existing
algorithms, including NEH, Palmer, Johnson, and
B. Goyal & Kaur all re-implemented for this study.
Results from exact algorithms indicate that the
approach outperforms the existing algorithms in
both solution quality and computational effort. The
efficiency of the proposed algorithm for jobs 10, 20,
30, 40, 50, 60, 80, 90, 100, 120, 150, 200, 250, 300,
and 500 is demonstrated, statistically outperforming
other heuristics. Additionally, there is an aim to
integrate uncertainty into distributed scheduling to
enhance the practicality of scheduling outcomes.
Furthermore, a key focus of future work is to merge
artificial intelligence techniques like reinforcement
learning with intelligent optimization algorithms to
tackle combinatorial optimization challenges.
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تقليل إجمالي وقت الانتظار لمشكلة جدولة متجر التدفق الغامض 

 لجهازين مع وقت معالجة غير مؤكد

 

 كارثيكيان ك.  ، ك.رانجيث

 

 .قسم الرياضيات، كلية العلوم المتقدمة، معهد فيلور للتكنولوجيا، فيلور، الهند

 

التسلسل الأمثل، الرقم شبه المنحرف  مشكلة جدولة متجر التدفق الغامض، المنطق الضبابي، الخوارزمية الإرشادية، :المفتاحية الكلمات

(TrFN.إجمالي وقت الانتظار ،) 

 ةالخلاص

مرور الوقت. تقليديا، كان وقت المعالجة لكل مهمة يعتبر قيمة  تتضمن الجدولة تخصيص الموارد للوظائف ضمن قيود محددة مع

ثابتة. ومع ذلك، في السيناريوهات العملية، يمكن أن تتقلب أوقات معالجة الوظائف ديناميكياً بناءً على الظروف السائدة. في هذه 

غامضة، حيث يتم تمثيل أوقات معالجة الوظيفة  في بيئة (FSSP) المقالة، يتم تقديم أسلوب جديد لمشكلة جدولة متجر التدفق الضبابي

المكون من  FSSP بأرقام غامضة شبه منحرفة. بالإضافة إلى ذلك، تم اقتراح وتطوير خوارزمية جديدة تعتمد على نهج جويال لـ

اق المحدد. تهدف جهازين مع أوقات معالجة غامضة. وفي الوقت نفسه، تم تعزيز الخوارزمية الموجودة لتحسين أدائها في هذا السي

الدراسة إلى تقليل إجمالي وقت الانتظار للوظائف. يتم استخدام وظيفة إزالة الضبابية لترتيب الأرقام الغامضة، بهدف نهائي هو تقليل 

ختبار إجمالي وقت الانتظار. علاوة على ذلك، يقوم المقال بتقييم أداء هذه الأساليب من حيث جودة الحلول، وذلك باستخدام مشاكل الا

آلات. تتم مقارنة  2وظيفة، جنبا إلى جنب مع  500، و 300، 250، 200، 120، 100، 90، 80، 60، 50، 40، 30، 20، 10مع 

 .B، وJohnson ، وطريقةPalmer ، وطريقةNEH إجمالي وقت الانتظار بالخوارزميات الموجودة، بما في ذلك خوارزميةمتوسط 

Goyal وB. Kaur المقترحة. بالإضافة إلى ذلك، فإن النتائج التي تم الحصول عليها، إلى جانب اختبار، والخوارزمية ANOVA 

جيد التنظيم، تسلط الضوء على فعالية الطريقة المقترحة في معالجة مشكلة الجدولة قيد التحقيق. توضح النتائج التجريبية أن 

ثنائي الجهاز وتحقيق نتائج متفوقة بالمقارنة مع الخوارزميات  FSSP يالخوارزمية المقترحة يمكنها تقليل وقت الانتظار بشكل فعال ف

 .المختلفة الموجودة
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