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Abstract

The large amplitude vibrations of an elastic straight beam with
clamped - free ends which have been subjected to thermal gradient are
studied assuming that the beam is undergoing inextensional motion. The
rotary inertia and shearing effects are neglected. This is because of their small
values. The governing equations are obtained by using Hamilton's principle.
The thermal effects on the nonlinear period and frequency ratios are shown
through plots. The more effective factor to the nonlinear vibration (large
amplitude) is the second moment of area of the beam cross section.
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NOMENCLATURE
A: Area of beam cross section, m’.
E: Modulus of elasticity. Nim?,

Y¥,: Dimensionless temperature of

beam at clamped end.

E,: Modulus ol elasticity at the
clamped end, N/,

I: Second moment of area of beam
cross section, m’,

K: Kinetic energy, J.

{ : Beam length, m.

t: Time, 5.

U: Potential energy. J.

p: Density of beam material kg/m'.

¥: Dimensioniess temperature of
bearn,

Aw:  Dimensionless  temperature
difference between the ends of the
beam.

INTRODUCTION

The theory of vibration of
beams is based uapon some
assumptions such as small dynamic
deflections. Recently many authers
have presented a simple formulation
for non-linear vibrations of beams
(such as traction linkages in tractors )
by considering the axial and
trunsverse inertias in the equation of
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motion. In 1988, Nageswara and
Venkteswaram  [1]  obtained the
formulation for the first mode of
vibration of a clamped — free uniform
beam. Their results compare well with
that presented in 1965 by Wagner [2].
Though the behaviour of the first
mode of vibration s of hardening
type, the authors noticed that the
behaviour of the second mede of
vibration is of softening type. An
attemp has also been made to study
the large amplitude vibrations of free
— free uniform beam by following the
analysis as described in Ref. [1]. It is
found that the first natural frequency
of free - free beam decreases with
increasing the amplitude of vibration.
This phenomenon is observed in

experiments performed on large
aircrafl structures [3,4].
A study on the linear

dynamical behavior of non-uniform
cantilever beam supported by elastic
end support and subjected to axial
force and temperature gradient has
been achieved [5]. They concluded
that increasing the end support
stiffness and the temperature gradient
shifts the instability frequencies to
higher or lower values depending on
the corresponding mode. Also they
concluded that the temperature
gradient has the effect of making the
beam more sensitive 10 periodic loads
and hence the beam stability reduces.
Azrar, Banamar & White [6] ied
the non-linear dynamic response
problem of simply — simply supported
and clamped — clamped beams when
they undergoes large amplitudes of
vibration, They used the single mode
approach  for investigating the
geometrical non-linearity on resonant
phenomenon.

From the above and other
literature which, there is no work
deals with the temperature effects on
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the vibrations of beams when undergo
large amplitudes of vibration. In this
paper the effect of temperature
gradient on the large amplitude
vibration of cantilever beams is
presented.

ANALYSIS:

The element of the deformed

beam is shown in Figure (1). To
simplify the anlysis, the following
assumptions are imposed:
¢ No damping is considered, i.¢. the
svstem is conservative,
The temperature gradient along
the beam is considerd to be linear.
The beam is of uniform cross
section and mechanical properties.
According to Hamilton’s principle
in its simplified form, the kinetic
and potential energies, are:

Kz-‘m—flfuup’)df (D
T L L T

EIf' . .
U=—'2'-6[k {n_...l'}ﬂrr, {2]

where, a dot indicates differentiation
with respect 1o time and & (5.t) the
curvature of the centre line of the
beam and it is given by Wagner [2]:
K(&,0) =2 (xy" = xV) (3)

where, a prime denotes

differentiation with respect to £, and
w=11E

The Lagrangian function is:

L=T-U (4)

To apply Hamilton's principle, the
foliowing condition should be
improvedi9]:
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& [Ldt=0 (5)
1]
which leads to:
Ko "M pd( + 37 ) - ELZ (X"
io—xy) Jdéde
(6)
in which A should be minimum. The
variational A is written as{2];
! F(g: tl x("f: r)] _]',(:' rjl
A = {l . = ] I » " =
wok, y,x', ', x", y" Jd&dt
The corresponding Euler equaticns
are:

Eqilg—_-ik‘a_{]

éx o ax 6 o

& oF a ar

A R i it T

ﬁ§~{ar'} afar(af:' _{8)
and

gi_._.i(_a_.F_'j_i{.&i?.,.

» a g o

& oF @ oF

Sl s ) — = G
aﬁéfl‘u .} ﬂ'fal(ﬁiﬂi) ,____{ }

(10)

By executing the operations in Egs.
(8,9) with the use of Eq. (10), and

afler some manipulations, the
following  equation could be
concluded:
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3 . W2
rr.ﬂ"_v 2a’y 2.9 2
| =3 *¥ —s5 -4 0—] J
\ Sl . d3
.
dy dy n"!,:
=== M —Fi+
a5 dET dg
7 3 JJ_'r 7
=_‘__? r-—-—T; +
di”
=
(& 2’y ;s
fr—) =) =
I 2l & 4
! dv 3 dzy d’y
A=) (—5H—3/
| dE e d )]
(11)

The above equation is a non-linear
differential equation which cannot be
solved simply by the conventional
methods.

&

P

To account for the temperature effect,
the temperature function based on

reference temperature, is [5]:
w=y,(1-¢)
hence Young's modulus is [5]:
E(S)=Egll-Byy(l-£)]
(13)
Seolution of Governing Equation:
The solution of Eq. (11) which is of
high nonlinear partial differential
equation. can be successful only by
of approximate methods.
Shifting the term (1-A%y"*) to the
right side of Eg. (11) and developing
it into a power series gives:

where ¥* =

(12)

means
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2 e
Ng”:ff_;+g:d_£

dt d&?
2dy d'y d'y J
el AEREY GE
?. EA._&- 3 - -

i d-'.ll. |
T it
tru# 1) df“) ‘

ay
Y
a'{."}
(14)

An approximate solution of Eq. {14)
can be written as:

y=®()f(1)
D)

function and its maximum value is 1,

(15)

where, 15 a given space

e

D(E) =1 (16)

It is known that the exact solution of
Eq. (14) cannot be of the product
type indicated by Eq. (15).

Thus we proceed to impose the
following requirement in the factor ¥

one

i
JO(SIN[F(S.1)ds ] =0

(17
This integration vields a nonlinear
ordinary differential equation. For a
cantilever beam, the boundary
conditions are:

D0)=D'(0)=D"(1)=P"(])

(18)
MNow inserting Eq. (13) into Eq. (17)
yields:
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£2 [0 =0

25

o, f +y T o
pei

(19)
with:

a =[@(s)dE  (0)
]

!
a,=[qd"dé (21)
4
2Q@'P"P" +
@, =-4* || @u- oo’
(pup—}
(22)
This  equation can  be

transformed by means of partial
integration as:
LR FTE wr 3!
- (@D 0" ]! +

a:‘w.‘ =_’23" 7 e Wl
@ " dE
]
(23)
NONLINEAR FREQUENCY:

The equation of motion of a
one-mass system with a nonlinear
restoring force is:

fF +FE(f)=0 2%
where F(f) is a polynomial of f.
Mow, according to  Atkinson's
superposition  method of  the

frequencies, the frequency of the
periodic solution of (24), w, is:

, K
0 =Yo, (25)

adl
where o, is the frequency of a
corresponding one — term differential

equation;
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f. +&, (26)

The natural {requency corresponding
to Eq. (26) is given bv MacDuff &
Curreri [7]

.y, M
It -
___'iigi

gy B
e
§ % +3J
(27)
where a is the amplitude and I s

gamma — function which is written as:

I'fo+1)= 'f.r’e“’cz':-:.fcr >0)

E?J: = ;r(ff”(p = l’_)gj"‘

(28)
and,
8§, =—2=p (uz0)
i
(29}

inserting Eq. (27) and Eq. (29) into
Eq. (25) vields:

N i
@' =ayx Y (1+p)1, B

=0
u+2 T =
f gt mlbiventl & . Ll
{r_ durd’ | (o} G
‘Fr“ —-I—.i \t
| Ju=+2

and the ratio of the nonlinear period
T to the linear period T, can be
taken as:

TT=fla/f) (30

where, | ,» and B are numerical values

depending on end conditions for
clamped — frec. The following values
are taken from Singirsu [8)],
o=0.7340955, B=1.875104 1.

1029

Large Amplitude Vibrations of Clamped
= Free Beams Under Thermal Gradient

Discussion

The vibrations of elastic
beams with clamped-frece  ends
undergoing large amplitude

deflections under the effect of thermal
gradients have been proposed. The
relation  between the vibration
amplitude at the beam tip to beam
length ratio on the frequency ratio is
shown in Fig.(2). This figure shows
that at small amplitudes the frequency
ratio is about unity and increases with
increasing the amplitude of vibration.
Throughout the presented results, a
hardening spring has effect for the
first mode, whereas a softening type
of non-linearity is noted for the
second mode. It is noticed that the
spring hardening or softening due to
the axial inertia of the beam,
depending on the mode shape. It can
be seen also from these figures that
the non-linear bending stress exhibits
a higher increase near the clamped
edge, compared with that expected in
linear theory.

The effect of temperature
gradient on the ratio of the nonlinear
frequency to the linear frequency is
shown in Fig.(3). It can be shown that
increasing the temperature gradient
through the beam length will lead 10
increases in the frequency ratio. This
effect is increased with increasing the
amplitude ratio. In other words, the
temperature gradienmt has no effect at
zero- amplitudes, but a very clear
effect at large amplitudes.

The effect of temperature
gradient on the relation between the
ratio of nonlinear period to the linear
period”  versus  “the  vibration
amplitude to beam length ratio” is
shown in Fig. (4). It can be concluded
that the time ratio decreases with
increasing the temperature gradient
for the first mode, but increase for the
second mode, This phenomenon is
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due to two reasons; Firstly; the
temperature gradient causes a change
in the modulus of elasticity
proportional to the value of the
temperature gradient. The change of
the modulus of elasticity along the
beam causes an internal force which
affects both of the period and
frequency ratics. The second reason is
that the temperature gradient causes a
thermal stresses which have positive
or negative effect on the frequency
and time ratios depending on the type
of the stress.
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Fig.(1): Representation of the beam during vibration.
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Figure{(2): Effect of amplitude ratio on frequency ratio,
temperature gradient is zero .
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Figure(3): Eifect of Temperature gradient on
frequency ratio.
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Figure (4): Effect of Temperature gradient on time ratio,
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