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ABSTRACT

Dam displacement is a crucial indicator for assessing the safety of a concrete dam through structural health monitoring.
Since the displacement data exhibits a non-linear and complex relationship with influencing factors like waterhead,
time and temperature, machine learning models are deployed to accurately predict dam displacement. Furthermore, the
limited availability of monitored data in the majority of the dams renders the studies conducted with a large number of
observations valueless. In order to address the aforementioned issues, this study proposes a feature selection approach
to predict dam displacement by examining the ability of four ensemble machine learning models on different input
combinations. The results reveal that the extreme gradient boost performs the best with a coefficient of determination
(R2) and RMSE value of 0.960 and 0.275 mm respectively. Random forests and decision tree models exhibited better
performance on using single predictor variables waterhead and age respectively. AdaBoost exhibited moderate perfor-
mance but was unaffected by the negative influence of extra predictor variables. The comparison results indicated that
models developed with only ambient air temperature as input data are insufficient to predict dam deformation. The
outcomes of this study are resourceful in prioritizing models based on the data availability for accurate prediction of
dam displacement.

Keywords: Dam displacement, Concrete dam, Machine learning, Feature selection, Random forests

1. Introduction

Dams are structures built across the flow of wa-
ter to serve multiple purposes. In addition to being
the foundation for maximizing the temporal-spatial
distribution of water resources, dam safety has a
significant impact on biological ecosystems and so-
cial development [1, 2]. Their role in mitigating the
effects of floods and droughts has inspired several
nations to consider them an asset to their econ-
omy. They also support the socio-economic growth
of a country by facilitating flood control, hydropower
generation, and off-season water storage for irriga-
tion purposes, as well as recreational activities and
tourism [3]. Floods and landslides prone regions have
benefited intensively from the presence of dams built

upstream to their community as they could issue
warnings earlier [4]. Concrete gravity dams are one
of the most commonly built structures for retaining
water in wide river valleys and often rise over 70 m
[5, 6]. They are deemed to be more adaptive to to-
pographical and geographical conditions of an area
and generally utilize their self-weight to maintain
stability from upstream hydraulic pressure and other
miscellaneous loads [7].

The functioning of a concrete dam is connected
with complex inherent mechanical qualities and the
consideration of a diversity of external loads [8]. The
safety of dams can be jeopardized by a variety of
risk factors and is eventually deemed as a significant
social issue. These variables cover a broad diver-
sity of effects, such as excessive external stresses,
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poor design and construction, aging materials, and
increased human activity around dams [9, 10]. The
combination of these elements highlights the intricate
interactions that endanger the stability of dams and is
responsible for drawing further public attention to the
problem in recent years. It is also deemed essential
to keep up with the evaluation of monitoring data
of dams to understand the potentially deteriorating
influence of external parameters like weather and cli-
mate, surroundings and aging impacts. The predicted
changes in precipitation patterns driven by climate
change, in addition to the increased frequency and
intensity of extreme weather events, would proba-
bly cause dam failure that exceeds present design
parameters [11, 12]. For the purpose of ensuring
the safe operation of the dam, it is equipped with
several monitoring sensors at various points to track
structural reactions such as displacement, seepage,
tension, and strain. Among the aforementioned reac-
tions, the track record of dam displacement is easily
accessible and is a fairly straightforward indicator of
overall dam performance [13].

Owing to the factual information about the low
adaptability of concrete dams for deformation, dis-
placements can often be visualized on the application
of external loads and subsequently considered as a
key index for determining dam safety [14]. Fail-
ure seldom happens due to the degradation of dam
material with time or through the application of
the sudden increase in external loads [15]. Con-
versely, concrete gravity dams are known to resist
sudden failures, and their deformation can be eas-
ily observed through long-term monitoring of dam
behavior. This also provides the potential opportu-
nity to develop feasible solutions [16]. In order to
track performance indicators like deformation, crack-
ing, stress, and strain, various monitoring equipment,
including plumb lines, strain gauges, osmometers,
and thermometers, are placed in strategic locations
within the dam body of contemporary concrete dams
[17]. Recent years have witnessed an increment in
data availability by automatizing monitoring devices.
Scholars [18] instigated the requirement of precise
estimation of the deformation field to ensure a dam’s
serviceability and safe operation.

A frequently used approach for estimating dam
deformation is numerical models based on the fi-
nite element method (FEM). These models ground
their simulation results on the physical principles
controlling the behavior of the operation [19]. FEM
simulation, which is useful to analyze the operation
safety status of dams, can generate the dam deforma-
tion field based on the parameter inversion approach
[20, 21]. Another approach deployed by [22] is to
estimate the hydrostatic component of dam displace-

ments by introducing spatial coordinates and utilizing
FEM. He then built a three-dimensional hybrid model
for a concrete arch dam. However, some measures
of dam safety highlight the limitations of numerical
models [23, 24].

The literature presented several empirical for-
mulations to simulate dam displacement that are
dependent on several constant coefficients and phys-
ical or climate parameters. However, those empirical
equations were established in a particular case study
and require certain assumptions for their conceptu-
alization and thus, it is difficult to give the general
expression for their utility. In addition, those formu-
lations need a huge dataset for their development. For
the foregoing reasons, the development of new tech-
nologies on dam displacement prediction is highly
urged. Future predictions can be achieved through
data-driven models that are built by the analysis of
historical monitoring data of dam deformation. When
the anticipated deformation value in the model dif-
fers from the actual measured deformation value by
more than the specified warning thresholds or safety
margins, an early warning can be generated [19, 25].
The displacement of a concrete dam is a crucial
time-varying deformation performance indicator. It
typically exhibits a complex nonlinear relationship
with internal and external influencing factors, includ-
ing water and air temperatures, the aging effects of
concrete, hydrostatic pressure, and other unobserved
factors [26]. The statistical models and machine
learning models are the two primarily used data-
driven models. Statistical models are well-known for
their straightforward principles and ease of use. They
are a vital tool for analyzing and inferring the distri-
bution law and trend of data [24]. Over the course
of its lengthy history, the statistical modeling known
as the Hydrostatic-Season-Time (HST) model has pro-
duced well-established theories and found effective
applications in real-world engineering [27, 28]. By
altering the seasonal function using methods such as
double support vector regression, periodic harmonic
components, Gaussian process regression, and others,
researchers have recently attempted to improve the
accuracy of the HST model in representing the ther-
mal deformation effects of concrete dams [13, 29].
However, it has been noted that HST encounters prob-
lems in handling extensive monitoring data [30].

In recent times, the use of soft computing mod-
els has widely increased in the field of hydraulics
and hydrology [28, 31]. The advancement in the
development of machine learning methods for data-
based predictive modeling has replaced conven-
tional statistical tools [32]. The limitations of the
conventional statistical method may be overcome by
the extensively used machine learning techniques in
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the structural health monitoring of dams [33, 34].
An inherent advantage of displacement prediction
models created using machine learning techniques
is their ability to handle large amounts of multidi-
mensional nonlinear data [35]. Multiple advanced
ML models including support vector machines [36],
artificial neural networks [37], convolution neural
networks [38], random forests [39], Gaussian process
regression [40], long-short term memory model [41],
and adaptive neuro fuzzy inference systems [42] have
been deemed as novel models for prediction of dam
displacement and deformation. The use of ensemble
models with decision trees as a foundational learner
is becoming more and more popular due to their
simplicity and ease of interpretation [43, 44]. Nu-
merous researchers have deployed ensemble models
like gradient-boosting decision trees (GBDT) [45],
random forest (RF) [39, 46], extreme gradient boost-
ing (XGB) [47], adaboosting (ADB) [48], and light
gradient boosting machine (LGBM) [49] for similar
studies. Various researchers have also emphasized
that ensemble models produce acceptable results on
limited data availability and are more reliable for
getting better performance [50–52].

To tackle the problem of limited data availabil-
ity and remove the dependency of continuous data
monitoring for time series analysis, this study pro-
poses a comparison of modern-day ensemble machine
learning models based on a decision tree for dam
displacement prediction. These multiple regression
models decompose the displacement observed into
three components, namely, hydrostatic, aging and
temperature. A feature selection approach is inte-
grated to analyze the dependency of displacement
based on different subsets of independent variables.
To effectively evaluate the performance of considered
machine learning models, multiple performance in-
dices are deployed.

2. Methodology overview

2.1. Decision trees (DT)

A supervised learning model that maps a data do-
main hierarchically onto a response set is called a
decision tree. A data domain (node) is split recur-
sively into two subdomains so that the information
gain of the subdomains is greater than that of the
split node. Since data categorization is the known
objective of supervised learning, information gain is
the degree to which the split’s produced subdomains
are easily classified. The optimization algorithm in
decision tree-based supervised learning seeks to iden-
tify the optimal split that maximizes information gain
or the ease of categorization [53]. The nodes used in

decision trees come in three variations: root nodes,
internal nodes and leaf nodes.

DTs are stimulated by algorithms that create de-
cision nodes based on predetermined cases. Using
a fitness function minimization approach, the im-
plemented algorithm seeks to identify the best DT.
Regression models are fitted to the target variable
using each of the independent variables because the
dataset used in this article does not contain classes.
Each independent variable has its dataset divided at
many split points. The implemented algorithm deter-
mines the difference between the actual and expected
values concerning the pre-established fitness function
at each split point. The variable generating the lowest
fitness function value is selected as the split point
after a comparison of the split point errors for each
variable.

For the prediction of dam displacement, the set of
predictor variables X = {X1, X2, X3} contains water-
head, age of dam, and temperature. Fig. 1 describes
how the nodes of decision trees split the data involved
for accurate prediction of displacement.

2.2. Extreme gradient boosted (XGB)

The eXtreme Gradient Boosting package, or XG-
Boost for short, is made to be effective, adaptable,
and portable. An effective tree learning method and
a linear model solver are included in the package.
It is compatible with multiple objective functions,
including regression, classification, and ranking. This
gradient-boosting framework optimization and im-
plementation is scalable, effective, and efficient [54].
By controlling the model’s complexity, a regularized
model prevents overfitting and simplifies the learning
model. When choosing the optimal dividing points for
enumeration, it uses parallelization, which acceler-
ates training. When the forecast is accurate, the tree
building is halted early on, accelerating the training
pace [55].

Gradient boosting works on the fundamental prin-
ciple that a group of weak learners will provide
a better score than any single weak learner. The
gradient boosting framework is normally expressed
as:

Fm(x) =
m∑

i=1

βiti(x) (1)

Where m is the number of weak learners involved
in the development of the algorithm, t is the weak
learner and β is the coefficient.

By building a set of functions F0, F1, F2. . .Fm. . .Fn

and a certain learning rate (α), the gradient-boosted
decision trees train iteratively. The loss function
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Fig. 1. An exemplary decision tree that can be created for dam displacement prediction.

L (yi, Fm) can be improved by identifying another
function, Fk+1 = Fk + tk+1(X), such that tk+1 mini-
mizes the anticipated value of the loss function. Take
into consideration the output values {y1, y2, y3. . .ym}
corresponding to the set of predictor variables {X1,
X2, X3. . .Xm}. For each t, the set of Decision Trees that
should be added to the ensemble is the contender.

tm+1
= argmin L

(
y, Fm) (2)

Therefore, the next function Fm+1 is generated as
follows:

L
(
y, Fm+1)

= L
(
y, Fm

+ tm+1) (3)

The XGBoost algorithm further involves a convex
function and the term ‘�’ for integrating the com-
plexity of all the regression trees involved in the
model.

2.3. Random forests (RF)

Random forest (RF) was originally introduced by
[56] as an extended version of the DT predictor. The
utilization of RF for application in water resource
management with emphasis on dams has been de-
picted by various research [57, 58]. In recent years,
the RF algorithm has been considered an extraordi-
narily strict learning algorithm despite its bias for
high-level variables among categorical variables with
different levels. The first step in the RF algorithm’s
operation is the random sample collection from the
given data. In the second step, a DT will be built
for every sample. The final forecast produced by RF
is the result of merging the predictions from several
decision trees.

The average or total of all predictions is the result
of training each tree using a different subset of the
training data. The average of the forecasts from indi-
vidual decision trees yields the final prediction. It is
possible to manually adjust a number of parameters

Fig. 2. Working of a random forest model.

for better outcomes, including the number of estima-
tors, the maximum depth of the tree, the minimum
number of samples needed for splitting nodes, the
minimum number of leaves, the weight of the leaves,
and whether to bootstrap at every tree or start a warm
start.

For a set of output variables {y1, y2, y3, . . . , yn} from
n number of DT, the RF prediction will be given as
follows:

yr f =
1
n

n∑
i=1

yi (4)

A basic schematic diagram of the working model of
RF can be seen in Fig. 2.

2.4. AdaBoost regression (ADB)

AdaBoost algorithm, or adaptive boosting, is an
ensemble model and works on the principle of im-
proving the accuracy of weak learners by altering
the weight distribution. It is one of the most used
algorithms in integrated learning due to its capabil-
ity of combining with other frameworks [48]. This
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algorithm was initially introduced by [59] to adapt
against the regression accuracies. The AdaBoost re-
gressor creates weak regressors with high bias error
but low variance error by continuously reweighting
training examples depending on the prediction error
with each boosting iteration. In doing so, the sub-
sequent regressor highlights instances in which the
initial phase’s predictions proved to be incorrect. The
final prediction is generated by summing the results
of each weak regressor, which results in a model with
fewer bias errors and low variance [60, 61].

Consider the training set {Xi, yi}
n
i=1, the output re-

gression can be denoted by F(x), and the weight of the
sample can be written as Wt, where t = 1, 2, 3. . ..n
are used for training purposes. The maximum error
generated after t iterations for basic learner Ft(x) is
calculated as below:

Et = max |yi − Ft (xi)| (5)

For the ith sample, the relative error is calculated
according to the linear error method:

et i = 1− e
−
|yi−Ft (xi)|

E2
t (6)

The weight coefficient αt of the proportion of the
t-th base learner Ft(x) in the final strong learner is
found based on the computed regression error rate
εt. Following an iteration, the sample error is used to
update the weight value of Ft(x). Following the t+1
iteration, the Wt+1 expression is:

Wt+1 =
(
ωt+1,1, ωt+1,2, ωt+1,3 . . . ωt+1,n

)
(7)

ωt+1,i =
ωt i

Zi
α

1−et i
t (8)

where Z is the Z-score normalization factor, such that
the sum of weights is limited to 1.

The final stronger learner Fn (x) can be described
as:

Fn (x) =
T∑

i=1

ln
(

1
αt

)
f (x) (9)

Where f(x) is the mean of αt*Ft(x) for all the itera-
tions t = 1, 2, 3 . . . n.

2.5. Modeling development procedure

The ability of the ensemble ML models to accurately
predict dam displacement is examined by deploy-
ing four algorithms, namely, DT, XGB, RF and ADB.

Fig. 3. Correlation matrix of variables.

The algorithms were developed for several combi-
nations from the set of independent variables using
all possible subsets of feature selection. Usually, the
sequential feature selection is prioritized for creating
input combinations. However, the former method is
given priority in this study due to the fewer number of
predictor variables. The first combination includes all
three predictor variables for model development. The
second, third and fourth input combinations include
two predictor variables each, while the fifth, sixth and
seventh combinations consist of only one predictor
variable. The combination number was prioritized
based on the value of correlation with dam displace-
ment (δ) for the variable as seen from Fig. 3.

The variable waterhead has the maximum correla-
tion with δ and is included in models second, third
and fifth. The age of the dam has almost 0 correlation
with δ and is used with waterhead and temperature in
combination second and fourth respectively. It is used
alone in combination sixth. Mean ambient tempera-
ture is used in third, fourth and seventh combinations
due to its negative correlation with δ. The model
developed are marked Y1-Y7 for their respective com-
bination number. A generalized workflow for this
study is shown in Fig. 4.

2.6. Statistical evaluation metrics

To assess the accuracy of prediction, several eval-
uation metrics were adopted including coefficient of
determination (R2), root mean square error (RMSE),
mean absolute error (MAE), mean absolute percent-
age error (MAPE), Nash-Sutcliffe efficiency (NSE),
and agreement index (MD). The expressions for
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Fig. 4. Proposed workflow of study.

calculating these metrics are as follows:

R =
∑n

i=1
(
ypi − yp

) (
yi − ȳ

)∑n
i=1
(
ypi − yp

) ∑n
i=1
(
yi − ȳ

)2 (10)

RMSE =

√√√√ n∑
i=1

(ypi − yi)2

n
(11)

MAE =
1
n

n∑
i=1

|ypi − yi| (12)

MAPE =
1
n

n∑
i=1

∣∣ypi − yi
∣∣

yp
(13)

NSE = 1−
∑n

i=1 (ypi − yi)2∑n
i=1
(
yi − ȳ

)2 (14)

MD = 1−
∑n

i=1 (ypi − yi)2∑n
i=1 (|ypi − ȳ |+| yi − ȳ|)2 (15)

where, n is the number of predicted samples, y, ȳ,
yp, and ȳp represent observed value, mean observed
value, predicted value and mean value for prediction
of dam displacement respectively. These evaluation
metrics were adopted to infer various indicators of
model validations.

3. Case study

3.1. Study area

The study revolves around a concrete gravity dam,
RCCD located in Cambodia. It is a massive hy-
dropower structure built across the Kamchay River
with a total elevation of 153 m. The foundation is
located around 112 m below it, at a height of 41 m
above the mean sea level. The normal water level was
initially kept at 133 m, but has been updated in April,
2011 to store the water up to the elevation of 150m.
The geological study of the location informs that the
bedrock below the structure is mainly comprised of
quartz sandstone, and the rocks of the right flanks are
also weak in strength. This also boosts the necessity
of studying the displacement at different sections to
understand the current status of foundation defor-
mation. For measuring purposes, six inverted plumb
lines were installed at elevations of 153 m, 120 m
and 88 m. They were installed on either of the two
flanks and are denoted as IP1, IP2, IP3, IP4, IP5 and
IP6. In this study, we consider a section measured at
118.25 m with IP4 (near 120 m).

3.2. Dataset description

3.2.1. Basic theory
Owing to the complexity of dam displacement,

the derivation of a casual relationship between dam
displacement and its influential factors is almost
impossible. Based on the present research findings,
water pressure, ambient temperature, and time have
the greatest effects on the dam’s displacement [25,
62]. Consequently, the displacement of the dam (δ)
can be written as a function of these factors: hy-
drostatic (δH), temperature (δT), and aging (δθ ) with
residual error ε.

δ = δH + δT + δθ + ε (16)

The hydrostatic component of dam displacement
consists of three subcomponents, name, the dam
displacement by direct influence of hydrostatic pres-
sure, the displacement of the dam body caused by
foundation deformation under internal forces due
to hydrostatic pressure, and the bedrock rotation
caused by the vertical weight component of the water
[26]. The hydrostatic component can be written as
follows:

δH =

n∑
i=1

ai1H i (17)

where, 1H is the elevation difference in water level
between the time of observation and the beginning of
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observation, a is a fitting coefficient and n is a number
that is equal to three for concrete gravity dams and
four for arch dams.

The interior temperature field of the dam and the
ambient temperature are related to the temperature
variable. Furthermore, the continuity and integrity
of the temperature monitoring data throughout the
period are important considerations in the selection
and computation of temperature variables [63]. The
temperature variable can be expressed using the com-
bination of harmonic period functions as follows
when the temperature monitoring data are not con-
tinuous, insufficient, or unavailable:

δT =

2∑
i=1

[
b1i

(
sin

(
2π it
365

)
− sin

(
2π it0
365

))

+ b2i

(
cos

(
2π it
365

)
− cos

(
2π it0
365

))]
(18)

where b is the regression coefficient, t is the cumula-
tive number of days between observations and, t0 is
the first monitored day of the dataset from the first
observation day, respectively. The value of i is 1 for
the annual cycle and 2 for half yearly cycle [25].

The aging component can be used to grasp an idea
about the creep of concrete in the dam body and
bedrock and be written as follows:

δθ = c1

(
t − t0
100

)
+ c2ln

(
t − t0
100

)
(19)

where, c1 and c2 are regression coefficients, with
t and t0 holding the same meaning as in equation
Eq. (19). However, there is a nonlinear and delayed
relationship between the displacements and the tem-
perature and water level. Secondly, the time-varying
effect is intricate and defies simplfunction description
[46, 64].

3.2.2. Statistical analysis
A total of 170 samples were collected for the pur-

pose of conducting this study at uneven intervals. The
major part of dataset was retrieved from [40], and the
ambient temperature data was collected from https://
www.ncei.noaa.gov/cdo-web/. A thorough analysis
of the dataset was also done to determine the statis-
tical parameters of the dependent and independent
variables and the correlation among them. The statis-
tical analysis of the dataset is presented in Table 1.

Table 1 makes it evident that the ambient tempera-
ture in the region ranges from 295.93 K to 306.48 K.
However, the IQR range depicts that most of the val-
ues lie between 301.48 K and 303.15 K. It can also
be noted that the variables water head, temperature

Table 1. Statistical analysis of variables.

Age Waterhead Mean Displacement
(days) (m) temp (K) (mm)

Minimum 1 13.83 295.93 29.41
Maximum 1377 31.71 306.48 35.91
Mean 645.99 26.64 302.16 33.94
Median 652 27.47 302.59 34.17
Q1 283 24.43 301.48 33.22
Q3 999.5 27.47 303.15 34.99
Range 1376 17.88 10.55 6.50
IQR Range 716.5 5.11 1.67 1.78
Standard

deviation
410.10 4.03 1.70 1.38

Skewness 0.07 −1.11 −0.53 −1.00
Variance 168185 16.27 2.90 1.89
Kurtosis −1.22 0.82 1.52 0.72

and displacement are negatively skewed and all four
of the variables are platykurtic. Therefore, signifying
the low tails in the distribution of data.

4. Results

4.1. Statistical evaluation

In this study, four regression models were em-
ployed for the prediction of dam deformation and six
performance evaluators were used to assess their per-
formance. The reason for opting to use six evaluators
can be attributed to the fact that all the evaluation
metrics have potential shortcomings and loopholes.
Therefore, a grouped summary of six of them will
produce acceptable metrics for further development.
A summary of the results for DT, XGB, RF and ADB
for the validation dataset is shown in Table 2.

Different models Y1-Y7 were calibrated on the
same output variable by providing different sets of
dataset combinations. The variation of input variables
resulted in influencing the values of performance
evaluation metrics. The seven models constructed in
this study provided information about the sensitivity
of dam displacement to different predictor variables
and their respective combinations. It is evident from
Table 2 that the XGB model marks the best outcome
by implementing its ability to minimize the loss func-
tion. Conversely, RF surpasses XGB when it comes to
models Y3 and Y5. It was previously introduced that
in model Y5, the dependent variable is a function
of the waterhead in the dam, whereas it consists of
both the waterhead and age in Y3. ADB also performs
better than XGB on the Y3 combination. This can be
used to infer that RF prediction depends more on the
variation of waterhead when compared to other al-
gorithms. NSE indicates the predictive accuracy, and
XGB for combination Y2 performs the best among all
models and their combinations. The negative value

https://www.ncei.noaa.gov/cdo-web/
https://www.ncei.noaa.gov/cdo-web/
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Table 2. Summary table of performance evaluation metrics.

Decision Tree Regression

Model R2 RMSE MAE MAPE NSE MD

Y1 0.867 0.502 0.391 1.164 0.862 0.964
Y2 0.891 0.450 0.362 1.080 0.889 0.971
Y3 0.688 0.764 0.550 1.636 0.682 0.905
Y4 0.656 0.845 0.572 1.716 0.610 0.899
Y5 0.731 0.726 0.574 1.699 0.712 0.922
Y6 0.766 0.678 0.478 1.430 0.749 0.935
Y7 0.123 1.316 1.002 3.001 0.054 0.520

Extreme Gradient Boost Regression

Model R2 RMSE MAE MAPE NSE MD

Y1 0.953 0.299 0.243 0.723 0.944 0.987
Y2 0.960 0.275 0.231 0.683 0.955 0.989
Y3 0.720 0.731 0.582 1.727 0.681 0.919
Y4 0.737 0.719 0.503 1.509 0.708 0.925
Y5 0.761 0.684 0.550 1.625 0.743 0.932
Y6 0.756 0.691 0.486 1.457 0.730 0.931
Y7 0.123 1.316 1.005 3.010 −1.543 0.520

Random Forests Regression

Model R2 RMSE MAE MAPE NSE MD

Y1 0.894 0.453 0.359 1.070 0.888 0.967
Y2 0.900 0.434 0.354 1.052 0.897 0.971
Y3 0.813 0.589 0.451 1.341 0.811 0.945
Y4 0.656 0.915 0.704 2.107 0.543 0.775
Y5 0.813 0.587 0.464 1.374 0.812 0.946
Y6 0.667 0.864 0.660 1.978 0.593 0.819
Y7 0.144 1.260 0.976 2.920 0.134 0.485

AdaBoost Regression

Model R2 RMSE MAE MAPE NSE MD

Y1 0.869 0.501 0.410 1.223 0.863 0.961
Y2 0.892 0.457 0.379 1.132 0.886 0.968
Y3 0.742 0.687 0.551 1.638 0.742 0.921
Y4 0.719 0.857 0.707 2.079 0.599 0.878
Y5 0.744 0.689 0.555 1.648 0.741 0.925
Y6 0.703 0.853 0.679 1.996 0.603 0.882
Y7 0.112 1.336 1.066 3.152 0.025 0.477

of NSE for the Y7 combination of XGB indicates that
the average observed data would have been better
than keeping the mean temperature as a predictor
for model calibration. The value of MD represents
the minimal deviation from the performance. XGB
and DT have a value of MD greater than 0.9 for
all 6 combinations excluding Y7. ADB also has rel-
atively low values of deviation when compared with
RF.

4.2. Graphical evaluation

Fig. 5 illustrates the scatter plot for the Y1 combina-
tion of all four soft computing models. The value of R2

for the Y1 combination that includes all three predic-
tor variables is maximum for XGB (0.9527), followed
by RF (0.8839), whereas ADB and DT show values
for R2 of 0.8776 and 0.8698 respectively. Figs. 6 to 9

shows the scatter plot for models Y2-Y7 for DT, XGB,
RF and ADB respectively under the testing phase. R2

is a measure to understand the proportion of variance
in the predicted variable. For the decision tree model
algorithm depicted in Fig. 6, the Y2 model performs
the best with an R2 score of 0.8860 which is followed
by Y6, Y5, Y3, and Y4.

Model Y7 based on only mean temperature is un-
able to predict displacement for any of the four
algorithms considered in this study (R2 < 0.2). As for
the scatter plot of XGB shown in Fig. 7, Y2 performs
the best with the coefficient of the determination
being 0.9595, which is followed by models Y5, Y6,
Y4 and Y3.

In the case of RF (Fig. 8), Y2 (R2
= 0.8998) is

followed by Y5 and Y3, then Y6 with Y4 showing
a very moderate value of R2. The variation of R2 in
RF bears intriguing results as the difference between
the Y3 and Y6 is approximately 0.1, and between the
models Y3 with Y4 is over 0.2. This decrement of over
20% between Y3 and Y4 emerged on the substitution
of waterhead with mean temperature.

The plot for ADB (Fig. 9) indicates that the Y2
model (R2

= 0.8926) is succeeded by Y5 and Y3 in
the prediction of displacement. Y4 and Y6 depicted a
value of around 0.7 for coefficient of determination.
However, the influence of outliers on R2 is an impor-
tant aspect and should be taken as a heed to visualize
using other means as well.

The line chart is a great means of visualizing the
error that occurred in prediction. Fig. 10 depicts the
variation of displacement with time (aging effect on
dam displacement) for Y1 models of different algo-
rithms. It can be visualized that model Y1 in XGB
performs much better when compared to the others.
This is also supported by its MAE and RMSE values of
0.243 and 0.299 respectively. The performance eval-
uation of DT is more complex as it has better indices
when it comes to MAE, MAPE and MD. However, it is
evident from Fig. 10 that the DT model is overfitting
as it is making sharp cuts which might correspond
more to the validation datasets. On the other hand,
ADB is under fitting in the case of combination Y1. It
is not able to find the peak displacements and rather
depicts a smoother transition when studied under the
time duration of about 350–700 days after the first
observation. RF prediction is playing closer to the
actual displacement value remains usually a bit lower
than the observed value.

Figs. 11 to 14 shows the displacement variation as a
function of age for DT, XGB, RF and ADB respectively.
In Fig. 11, it is evident that Y2 and Y6 predictions
follow the validation data very closely. They also bear
the lowest value for RMSE, MAE and MAPE. The value
of these three performance metrics for model Y6 is
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Fig. 5. Prediction performance Y1 model.

Fig. 6. Performance of DT prediction (Y2-Y7).

Fig. 7. Performance of XGB prediction (Y2-Y7).
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Fig. 8. Performance of RF prediction (Y2-Y7).

Fig. 9. Performance of ADB prediction (Y2-Y7).

Fig. 10. Deformation vs aging plot for Y1 model.
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Fig. 11. Displacement vs aging plot for DT (Y2-Y7).

Fig. 12. Displacement vs aging plot for XGB (Y2-Y7).

the least for DT, with the numerical value of 0.678,
0.478 and 1.430 respectively. These three metrics are
regarded as a sound methodology for measuring the
difference between predicted and observed values.

The Y2 model of XGB has the best results among
all the models developed in this study. It provides a
very accurate measure of the result, with the min-
imum RMSE and MAE values of 0.275 and 0.231
respectively. The value of MAE for Y6 is less than
its counterpart of Y5. Conversely, the model Y6 lies
behind Y5 in terms of other evaluation metrics. How-
ever, it can also be seen from Fig. 12 that the Y6
model is sounder when it is compared to Y5 for an
accurate measure of peak displacements of the dam.
Meanwhile, the RF prediction is only acceptable for
models Y2, Y3 and Y5 as visualized from Fig. 13. It is
interesting to note that all three of these models have
a common independent variable waterhead. RF also

has the lowest MAE and RMSE values of 0.451 and
0.589 for Y3 and 0.464 and 0.587 for Y5 respectively.
The Y4 and Y6 models of RF depict underfitting of
data and might improve for a greater number of train-
ing datasets.

ADB line plot between displacement and aging has
been illustrated in Fig. 14. The ADB prediction is
similar to RF and shows better results for Y3 and Y5
after model Y2. Although the Y5 model performs the
second best in terms of evaluation metrics, it can be
witnessed from the line chart that it under fits for
the second deformation peak that occurred during the
study period.

Taylor diagram is a visual representation [65]
created using three metrics: standard deviation,
statistical correlation, and RMSE to illustrate the
whereabouts of the predicted value of the models
with respect to the observed value. Fig. 15 contains
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Fig. 13. Displacement vs aging plot for RF (Y2-Y7).

Fig. 14. Displacement vs aging plot for ADB (Y2-Y7).

the Taylor representation for all four algorithms. Ow-
ing to the limitations of any evaluation metric, the
Taylor chart is widely accepted due to its ability to
represent three metrics at the same time. It is evident
that model Y2 of XGB has the least distance to the
actual value, and therefore produces the most accu-
rate prediction of dam displacement and is followed
closely by model Y1 of XGB. Models Y1 and Y2 of
all four algorithms are within the first radial circle
of 0.5 RMSE. The Y3 and Y5 models also lie very
close to the first circle and can be considered for
prediction on limited data availability. However, the
models Y4 and Y6 of RF are far from the actual value.
It can be inferred from the Taylor chart that all the
models provided acceptable results except Y7 of all
algorithms, which depicted low value of statistical
correlation and deviation, and a high value of RMSE.
The Taylor chart also perceived the superiority of
using waterhead and age as predictor variables.

5. Discussion

Application of ML algorithms to counter the com-
plex problems in hydraulic structures is the need of
the hour as these methods are accurate in simulating
the non-linear relationships between dependent and
independent variables. In this study, it was noted that
the model Y2 performs the best for every algorithm.
This result could be attributed to the fact that perhaps
the models began to overfit on adding the ambient
temperature combinations in Y1. All four algorithms
were able to provide satisfactory results with XGB
providing the best result for the Y1, Y2 and Y4 mod-
els. Whereas, RF dominates the result for the Y3 and
Y5 models, and DT depicts the best prediction on the
Y6 model. This signifies the different datasets that
could acquire acceptable results. In the presence of an
ample amount of datasets, XGB is the most preferred
algorithm out of the four ML models tested in this
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Fig. 15. Taylor representation of ML models for the testing phase.

study. Since RF has an R2 value greater than 0.8 for
every combination including waterhead level, it can
be inferred that this algorithm is greatly influenced
by the presence of accurate measures of waterhead
and can be used to predict dam displacement when
only waterhead level observation is available. Con-
versely, it shows a low value of 0.656 and 0.667
for models Y4 and Y6 respectively. This implies that
its reliability is compromised when aging is consid-
ered the major factor for dam deformation prediction.
Whereas XGB and DT provided acceptable results
with aging as predictor variables. DT performed the
best in the situation when only the age of the dam
was available as the predictor variable. Therefore, it
can be used to predict the dam displacement effec-
tively in case of the most abundant data available
easily. Mean ambient temperature turned out to be
a negative influence on the prediction models in this
study. However, an interesting conclusion can be in-
ferred that ADB is the algorithm that prevented the
deterioration of its result even with the addition of an
unwanted predictor variable in limited data availabil-

ity (in the case of Y4 and Y6). This justifies the ability
of ADB to adjust the weights during model build-
up and avoid negative influence by the unwanted
independent variables. It should be noted that the
MAE value of DT prediction is less when compared
to ADB. Conversely, the superiority of ADB over DT
is evident from the higher value of the coefficient
of determination R2. This information can be used
to infer that we cannot barely rely on MAE for per-
formance evaluation as it was practiced by [46] for
their improved RF model. This can also be used to
induce the requirement of using multiple evaluation
measures for model validation. Although the tem-
perature influence did not provide expected results,
this one case study cannot be used to rule out the
effect of temperature as noted by previous research
[66, 67]. However, these studies indicated long term
temperature induced effects on dam displacement. As
a result, it can be inferred that unevenly distributed
limited ambient air temperature data might not be
the best predictor variable to be included in similar
studies.



AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:118–133 131

6. Conclusion

The development of reliable models for the predic-
tion of dam displacement is a need of the hour. This
study worked on establishing different ML models
for the prediction of dam displacement in limited
data availability. A total of 170 observations collected
from previous work were divided in a 60:40 ratio
for calibration and validation purposes, implying that
model training was done using only 102 observations,
suggesting the superiority of ensemble models to pre-
dict displacement on minuscule amounts of data, and
their reliability over conventional statistical methods.
Seven input combinations were created based on the
availability of datasets and were used to test the reli-
ability of ML algorithms for displacement prediction
using feature selection approach. The validation was
done through statistical and graphical metrics. The
results depicted that different algorithms should be
deployed according to the variation in data availabil-
ity. Models Y1, Y2 and Y4 performed the best for XGB,
while models Y3 and Y5 were more reliable in case
of RF, with DT leading the charge for Y6 model. The
primary conclusions inferred from this study can be
summarized as follows:

i. The XGB model performed exceptionally well in
the availability of comprehensive datasets. Its
prediction for displacement based on aging also
provided acceptable results (R2 > 0.7).

ii. RF model prediction is greatly influenced by
the amount of water present in the dam. Its
reliability is degraded immensely on removing
waterhead from the set of predictor variables.

iii. Conventional DT algorithm reported accept-
able results, especially in the presence of age
datasets. Moreover, DT is a time-efficient means
of prediction and utilizes less computational
power.

iv. ADB provided results which were unaffected by
the presence of a variable that had a negative
influence in the later combinations.

Although this study verified the time-induced ef-
fects on dam displacement, there is still room for
refinement. Attention mechanisms should be inte-
grated with these ensemble models to further verify
their integrity on specific datasets. Time induced
effect on displacement should be further analyzed
for trend by integrating Mann-Kendall and Theil-Sen
slope estimates. The generalization ability and predic-
tion resilience of the models employed in this study
will be enhanced with further monitoring data from
various types of concrete dams in long-term service.

Conflict of interest: The authors declare no con-
flict of interest to any party.
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