Eng. & Technology, Vol.2d4, No.a, 2003

Genetic Algorithm for Developing Program Using Buckus
Naur Form (GAPBNF)

Rasha Shaker Abdul Wahab*

Received on: 352004

Aceepted on:12/7/2005
Abstract
GAPBNF, genotype-phenotype genetic algorithms, is presented here as a
technigue for the creation of computer program. This techuigue uses new
representation to generate the program which ¢an be exccuted using any
language. In this case the chromosome (genotvpe) is a lisi of integer
representing production in syntax, which is used to generate the program
(phenotype). In order to explain the effectiveness of using this type of
representation, GAPBNF is implemented for solving svmbolic regression
problem, The results show that GAPBNF is an efficient and promising method
that can be used to generate any program in any language,

A
RIS d...i EATRE jl-l_l—l-'.\..!-'l daa all SAET 5 tal 43 GAPBNF & 2 Jadl tia :_].JI.L.J
»aAUE G el Al ABpkll ada AL Gl pliad Uil saa L3 aladSod a5 AusER)
Clsgfias feee 3l et p g Zadl pliad sl el eldsd alie g and pluad
Al gl S A0 SB (B A davacall s fe ilude 08 6 ls el aaladl
Al Lgu‘jﬂ!l P Rkt R Wt e ﬁ:u.dl :—ah_pll'l 'E-*-"I et 7 LGAY AL .é;ﬂ'l_j FIRE SR |
il Dl A3l s) alad Al AlEe e e A gkl oy Gulag JlSul
Sl gl 2l Ly e il) RELEYL Dl Jalall s A Selicy

L. Introduction Evolutionary algorithms area has been
popelated with numerous different
Evolutionary algorithms (EA) have approaches 1o generale programs with
been used with much success for other languages, the following
automatic generation of program. In paragraphs represent some of these
many researches, that are concerned dpproaches
with generating a computer program Honer introduced a svstem called
automatically. use lisp languagze as genetic program kernel { GPR) which
their targat language to represent the i3 similar to standard GP, employs
PHOEraT and because lisp trees o code genes Fach tree is 4
5_expression causes some problems derivation tree made up from the BNF
such as memory problem and slow definition, However, GPI has been
execution [1,2] therefore most recent criticized for the ditficulty associared
rescarchers train o use a new with generating the first generation
direction for representing the program (v [Tort must be put into ensuring thar
and to guide the EA 1o generate other all the entire tree represemts valid
languages by using ihe grammar 1o sequencest [2].
the target language, Paterson developed an approach to

generate O program directly, This
740

=

Drepe ot Computer Science, Universiy of Technaloay

https:/doi.org/10.30684/etj.24.6.14
University of Technology-Iraq, Baghdad, Iraq/2412-0758
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

https://doi.org/10.30684/ etj.24.6.14
https://doi.org/10.30684/etj.24.6.14

Eng. & Technology, Vol.24, No.g, 2005

approach uses fixed length
chromosome that encodes which
production rules are to be applied. But
this approach suffers from number of
draw backs. In particular as the
number of productions grows, the
chance of any particular production
being chosen by a gene reduces [6].

In this paper, we describe a
different technique that uses BNF
(Backus Naur Form) definitions and
evolves the chromosomes using some
canstraint. The developed system can
be used to produce program in any
language. In addition the developed
approach adopts the idea of
distinction between the genotype and
the phenotype (program generated),

This approach is based on the same
principle of (GADS) technigue [6],
and solving the problems that
suffering from it. So our main
contribution is what we call GAPBNF
{Genetic Algorithm for developing
Program using Backus Naur Form).

2. Backus Naur Form [2]

Backus WNaur Form (BNF) is a
notation for expression the grammar
of a language in the form of
production rules. BNF grammars
consist of terminals, which are items
that can appear in the language, i.e., +,
- ...etc, and non-terminal which can
be expanded into one or more
terminal and non-terminals. A
grammar can be represented by the
tuple [N, T, P, S} where N is the set
of nonterminals, T the set of
terminais, P a set of production rules
that map the elements of N to T and S
is a start symbol which is a member of
M .For example, below, is a possible
BNF for a simple expression ,where :
N= {sexp, op, pre_op,var}

T= {+,-, %.*, X.Sin,Cos}

S=<sexp>

791

Cienetic Algorithm for Developing Program
Using Backus Maur Form (GAPBMNF)

And P can be represented as:

<gexp>i= <sexp=<op><sexp> (1)
[<pre_op> (<sexp=) (2)

| <var> (3)
<opru= + (1)
|- (2)

|/ (3)

| * (4)
<pre_op>:=Sin (1}
| Cos (2}
<yar=;=X (1)

3. Principle of GABHFF

GAPBNF, a genotype-phenotype
genetic algorithm, is a new technique
for the creation of computer program.

GAPBNF genotype is a list of
integers representing production
number of the syntax language used to
generate computer program. These
numbers are used to generate the
phenotype.

As explained above, GAPBNF isa
genetic algorithm (like GAs and GP),
as it uses population of individuals,
select them according to fitness, and
introduce genetic operators, so that
GAPBNF can be implemented using
the traditional genetic algorithm
principles and it is developed in order
to improve traditional method.

The important differences
between GAs, GP and GAPENF
reside in the nature of the individuals
in which:

1. GAs individuals are nonlinear

stringg of fixed length
{chromosomes).

2. GP individuals are nonlinear
entities of different sizes and
shapes (parse trees)

3. GAPBNF individuals are
encoded as linear strings of

variable length (the genotype of
chromosomes) which are
afterwards expressed as nonlinear

Eng. & Technology, Vol.24, No.g, 2003

entities of different sizes and

shapes (expression tree).

GAPBNF is the aggregation of
different proposals for automatic
program generation which are:

1.The first proposal being the
change in the representation of
the genotype (chromosome).

2. The length of chromosomes will
be variable.

3.The storage space is reduced.

4. Evaluating programs using any
language.

In the following subsection, the most
important components wused with
GAPBNF will be described.

3-1 Initial Population

In this method, the generation of gene
in the genotype simply depends on
some constraints. If al, a2, a3aL
is the genotype, the selection of a
gene a2, for example, is not done
randomly. This gene is generated
based on the cases of the previous
gene or al in this case, Therefore, for
doing this operation some constraint
is used which is represented by the
rewriting rules of the CFG (Context
Free Grammar) {7].

In GAPBNF, the genotype consisis
of a linear integer string of variable
fength of genes .In this method, it will
be shown that despite this type of
constraints, GAPBNF genotype can
reduce the storage space, so in this
case there is no loss in the generated
genes ,and the losses will be after the
program builds (phenotype), i.e., the
tail penes.

3-2 The Ontogenic Mapping and
Generating the Phenotype

792

Genetic Algorithm for Developing Program
Using Backas Maur Form (CAPBNE)

The chromosomes (genotype) wili be
passes into a suitable generator after
their generation. This generator
output the program which represents
the phenotype. The mapping process
from the genotype to phenotype is
cailed the ontogenic mapping.

The ontogenic mapping is
represented in this method as an
agerepation of a different number of
rues that helps te generate the
program (phenotype), these rules
represent the production rules of the
syntax languape, therefore the
principles of the BNF definition are

used 1o generate the associated
phenotype.
The implementation of the

ontogenic mapping is done by writing
the syntax of the phenotype language
as a set of productions of the form:
lhs: =rhs, where lhs is one non-
terminal symbol of the language and
rhs is a concatenation of zero or more
symbols (terminate or non-terminal of
the language) for example:

{sexp) = (sexp) + (s exp}|
{sexp) — (sexp)

The use of | symbol is to indicate an
alternative in the rhs, it is a shorthand
for several productions which have
the same rhs [6].

In GAPBNF the productions are
numbered from O to n and each
production may have several
concatenation symbols on the right
hand side, therefore in this case the
number of each one of the
concatenation symbol is appended
with the number of the production,
for example if the following
production has a number 1, then:

(10)
(11)

{sexp):=(sexp) + (sexp) |
(sexp) ~ (sexp)

Eng. & Technology, Vaol.24, No.b, 2005

This production has two of the
possibilities on right hand side, so the
probability of the gene that can be
showed based on this production may
be 10or1l.

Even well-formed program in a
language has a derivation according to
the syntax of that language. A
derivation is a sequence of
productions which when applied in
turn; transform the language's start
symbol into the program [6].

Thus any program can be
represented by a derivation, and any
derivation can be represented by the
sequence of integer which
corresponds to the production in its
derivation [6]. So any program can be
represented as a sequence of integer
number in the range [0,n] and each
range can be represented as an integer
number in the range [0,p], where p
represents the number of
concatenation symbol on the right
hand side of each production and n
represents the number of productions.
The evolutionary design of GAPENT
system is represented in figure (1).

The phenotype may be generated as
strings or abstract syntax trees [6]. In
our work we use a string which is
ordered as a postfix expression
(postfix ordering occurs when the
operator follows its operands). For

example, the following postfix
expression [B]: wx*yztisgrt s
equivalent to the following

expression: ¥ (w*x)*(y+z).

One advantage of using postfix
expression is that, if one evaluates the
postfix expression from left to right,
we will always have evaluated the
operands to each operate before it is
necessary to process the operator.
Also in postfix expression no
parentheses are needed in postfix
notation [5, 8].

793

Grenetic Algorithm for Developing Progratm
Using Backus Maur Form (GAPBNF)

In order to evaluate the generated
phenotype that has been represented
as a postiix expression, we use stack-
based implementation which is an
easy way to evaluate the postfix
expression. Stack-based implementa_
tions in general do not require post{ix
expression to represent a syntactically
correct parse tree, This is a potential
advantage of the stack-based approach
since the other interpreters which we
considered require the syntax to be
maintained [8].

At the beginning of the process of
converting the genotype to phenotype,
an initial value is needed. The initial
value of the genotype is usually the
start symbol of the language symbol.
In more general terms, the initial
value may be any partially generated
program such as <sexp> which is
presented in the production exits in
section 2.

4. Experimental Design

This section describes an experiment
to test the GAPBNF technique by
solving a symbolic regression
problem.

4-1 The Problem
Symbolic regression is the process of
discovering both the functional form
of a target function and all of its
necessary coefficients, or at least an
approximation to this .symbolic
regression is a distinct form, since in
other forms of regression such as
polynomial regression, we are merely
trying lo find the coefficient of a
polyneomial of a pre specified order.
In this case, the system will be
provided with a set of input and
output pairs and it must determine the
function that maps one to another.
That is, we are given a sample of
data in the form of 20 pairs (X.Y)),

Eng. & Technology, Vol.24, No.6, 2005

where X, is a value of the independent
variable in the interval [-1,+1] and Yi
is the associated value of the

dependent variable. The 20 values of

X; were chosen at random in the
interval [-1, +1]. For example, these
20 pairs (X,Y;) might include pairs
such as (-0.40,-0.2784),(+0.25,
+0,3320) and (+0.50,4+0.934), These
20 pairs (XY} are the fitness cases
(fitness cases are typically only a
small finite sample of entire domain
space which is usually very large or
infinite) that will be used to evaluate
the fiiness of any individual. The goal
is to find a function in symbolic form
that is close or perfect to fit the 20
pairs of numerical data points. The
solution to this problem is to find a
function in symbelic form: this
function s viewed as a search for
mathematical expression in a space of
possible solutions [4).

4-2 The
Syntax

Phenotype Language

As mentioned earlier, to convert the
genotype to phenotype the ontogenic
mapping is needed.

The syntax rule (BNF) that has been
used for this problem is presented in
table (1),

in the beginning, we identify rule
number (10) as the initial starting
symbaol which will be used to generate
the phenotype. After that we use the
implementation of the stack-based in
order to obtain the obiective value of
this genotype (chromosome) and after
that discarding the generated
phenotype.

To complete the BNF definition
for a Pascal, we need to include the
following rule for symbolic regression
problem:

<Header>:= program svmbalic;

794

Genetic Algorithm for Developing Pragram
VUsing Backus Naur Form (GAPBNF)

var x: real
Begin f:=<sexp> End.

We used in this case a limited rule,
this is because the nature of the
preblem, and the system can easily
generate program in any form that is
done by changing the above rule.

4-3 Evaluation Function

Aller the GAPBNF begins to convert
cach genotype to phenotype, the
fitness value is computed. This value
is used to control the application of
the operations that modify the
population. The fitness function that
has been wused in this paper is
computed as follows [4]:
N,
HX)= f F.ﬁ ~
J j=]| FTE |

A =11+ r(X)......

(D
(2)

where Ne is the number of fitness
cases, s is the returned value by an
individual program for fitness j and ¢;
is the correct value for fitness case j.
The next step is to select the best
chromosome, if the selected
chromosome is considered the correct
program then stop otherwise perform
the genetic operators on the
population genotypes). These opera_
tions are repeated until the required
program is found.

4-4 The Initial Population

Each chromosome in the population
have a variable length, and in the
generated process, each gene in the
associated chromosome is based on
some constramts which are illustrated
by using the rewriting rules of the
CFG (context free grammar), To build
the grammar, which shows the

Eng. & Technology, YVal.24, No.6, 2003

constraint, we need to assign each
production rule number with a
specified symbol as follows {based on
the production defined in table (1)):

0 - 4,11 B.20 —» C,
=+ D30 = EJ3l = F,
2 = 5,33 - H,

-

b

L
L8

Thus the CFG used in this problem is
shown in figure (2).

4-5 Experimental Condition

Table (2) presents the information
needed to solve the problem using
GAPENF, Table (3) shows the
experimental constants and variable
conditions,

4-6Genetic Operators

The brood recombination operation
has been used in this work. This
method was devised by Tackeit [8].
Tackett attempted to model the
observed fact that many animal
species produce far more offspring
than are expected to live. Although
there are many different mechanisms,
the excess offspring die, This is a hard
but effective way to cull out the result
of bad crossover. Tackett created a
"brood" each time the crossover was
performed. One of the key parameters
of his system was a parameter called
brood size NB, Figure () shows the
creation and evaluation of brood
where NB=4 [8]. The probability of
the crossover and mutation is 1.0 and
0.35 respectively,

Mutation operator involves by
selecting a gene randomly from a
genotype, generating another gene
randomly and replacing the selected
gZene,

795

Genetic Algorithim for Developing Program
Using Backus Maur Form (GAPBNF)

5, The Result
5.1 The Performance

Since GP is a probabilistic algorithm,
not all runs are successful in vielding
a solution to the problem by
generation i. When a particular run of
GP is not successful after running the
pre-specified maximum number of
generations, G, there is no way to find
out whether or not the run would ever
be successful, Thus, there is no
knowable value for the number of
generations that will yield a solution.
We can compute the probability of
success that the particular run with a
population of size M yields the
solution by generation i.

Figure (4) presents the
performance curves of GAPBNF .The
curve i1s based on 100 independent
runs. This curve shows the probability
of success of solving the problem by
generation i.

5.2 Example

Experiment 1: GAPBNF discovers
the target function, where the length
of the individual (the genotype) is a
shorter length GAPBNF, in one run
the individual or target expression is
found at generation 3 with the length
equal to 26 and contains around 13
symbols. The genotype of that
individual is as follows:

1033 103011201033 11201120
103010321126:11201033 1120

the corresponding phenotype s
presented as follows (postfix
expression).

Bxxxt i xxFax+*

Eng. & Technology, Yol.24, No.6, 2005

After converting the postfix
expression in to infix order, the
corresponding program generated is:
Program symbolic;
var x: real
Begin
F=((c =) (o H(x*x))

End.
Experiment 2: In another run we
found the best individual at generation
10, the genotype and the
corresponding phenotype is presented
as follows:
3011103311201030112010
33 1120 10 30 11 20 10 33 11 20 11
201120

the phenotype
Pttt

6. Conclusions

We have described GAPBNF
technique that can map an integer
number genolype into phenotype
(which is a high level program).
Because our mapping technigue
employs a BNF definition, the system
is language independent and can
generate complex functions using any
language that is wanted to generat the
program,

In addition, this technique has many
features that distinguish from others:

I. Variable length string may be
used to represent each chromosome,
2. In the GAPBNF, the wasted
genes are reduced which leads to
reducing the storage space.

3. Postfix expression is used to
represent the phenotype to the
asscciate genotype, so stack-based
implementation is used to generate
the phenotype; this type of
implementation reduces the time
needed to obtain objective value.

796

Genetic Algorithm for Developing Program
Using Backus Neur Farm (GAPBNF)

Also the GAPBNF technique gives
good and correct solution after a small
number of penerations, and all the

encountered problems in GADS
technique have been solved.
Reference

I, Allen Kent, and James G.

Williams, “Encyclopedia of Computer
Science and Technology™, In Koza,
John R(Ed), Genetic programming,
NY: Marcel-Dekker, Volume 39,
supplement 24, 1998,

2. Conor Ryan, JI Collins, Michael
0. Neil. “Grammatical Evolution:
Evolving Programs for an Arbitrary
Language”, in Wolfgang Banzhaf,
Riccardo Poli, Marc Scheonauer, and
Terence C. Fogarty (Eds), Lecture
Notes in Computer Science, on GP,
Springer-Verlag London, UK , vol.
1391, pp 83-96, 1908

3. Herbert Schildt. The Complete
Reference, Borland C++, McGraw-
Hill, 1997,

4. Koza, ! R.Genetic Programming;
On the Programming of Computer By
means of natural selection, MIT Press,
1992,

5. Kennth E.Kinnear ., Genetic
Programming in C++: implementation
issues”, In Kemneth E. (Eds),
Advance in Genetic Programming ,pp
285-310, MIT Press ,1994.

6. MNorman R. Paterson, Mike L.,
“Distinguishing Genotype and
Phenotype in Genetic Programming”,
in Koza, J.R. (Ed), Late Breaking
Papers at the Genetic Programming
1996 Conf. Stanford Univ,, pp 141-
150. 1996

7. Thomas Haynes, Wainwright R.,
Sen 5, Schoenefeld D), “Strongly
Typed Genetic Programming in
Evelving Cooperation Strategies”, in
Eshelman, [.J. (Ed.), Proc. of the

Emg. & Technology, Vol 24, Moo, 2003 Cicnenic Algorahm for Developing Program
Using Backus Maur Fonm (GAPBRNF)

sixth Int. Conf. on GA, Morgan
Kaufmann, pp.271-378, 1995,

8 Wollzang B, Peter N, Robert E.
Keller, Frank D. Francone, Genetic
Programming, An Introduction on the
Automatic Evolution of Computer
Frograms and s Applicarions,
Morgan Raufmann and dpunks
Verlag, 1998,

Decoding (using BNF)

T
L

otype ‘] (Phenotype J

=

Fitness Evaluation

Figure (1) Evolutionary design of GADS

Table (1) The Svnrax Rule

<application>
<input>

< sexpatsexps |
CEONPE S5eKp>

<exp=%y <sexp> |
<sexp>* <sexp>

T

Eng. & Technology, Vol 24, Mo, 2003 Genetic Algorithm for Developing Program
Using Backus Maur Form (GAPBNF)

S8->AS81
S1->83| ES2 [FS2| GS2| H2[x

S2->AS82 | BS2
S3->C|D

re {2} The ‘f the gnut_vps |

@ @ Bad
rrree] @
® ©®
® ©

Evaluate fitness-select the
L“ | | L best two indivia]s |
Figure {(3) Brood recombination

798

Eng & Technolopy, Yol 24, Moo, 2003 Genetic Algorithm for Developing Program

Tabie (2) Ta

Cbjective

Using Backus Maur Form ({GAPBNF)
ble for the simple symbolic regression problem

Find a function of one independent variable and one
dependent variable, in symbolic form, that fils a given
sample of 200X,.Y;) data points, where the target
function is the quartic polynomial(X*+X*+X*+X).

Terminzal set

X (the independent variable)

Function set

"
+ r“l’rl“

The sum, taken over the 20 fitness cases, of the absolute

Raw fitmess value of difference between value of the dependent
variable produced by the S-expression and the target
value Yi of the dependent variable.

Standardized | Equal to the raw fitness for this problem.

fitness

Adjusted The adjusted fitness is 1.0/(1.0+raw fitness)

fitness

Fitness cases

The given sample of 20 data points (X;,Y;) where the X|
comes from the interval[-1,+1].

Parameters

M ulation size)=500,G(generation)=51

Table (3) Experimental constants and variables

; Value

Description

500

The population is fixed at 500 individuals,

Best-of-run

When an individual has fitness value equal to 1.00,
the run is terminated.

AST

Phenotypes are generated as ASTs which can be
interpreted.

Three individual lengths are compared.

{ Variable length
' Selection

Tournament selection is used,

Crossover

Brood recombination crossover 1s used.

0.35

Mutation rate.

1.0

Crossover rate,

<sexp>

<application>

Two initial values for generating the phenotype are
used.

799

Eng. & Technology, Vol.24, No.6, 2005 Genetic Algorithm for Developing Progrum
Using Backus Naur Form (GAPBNF)

g
g
=
i
Tmy
=
2
=
]
o
4
-

20 30

Generation range

Figure (4) Performance curve for the Symbolic
Regression Problem

800

