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ABSTRACT

Researchers work around the clock on many datasets provided by various institutions. These researchers strive to come
up with highly efficient Artificial Intelligence models. Often, researchers face the problem of imbalance in the distribution
of classes in a particular feature in the selected dataset, which creates an Artificial Intelligence model biased towards one
class at the expense of another class that is no less important than the first. On the other hand, thalassemia is a disease
that affects people of different ages. The degree of disease varies according to the thalassemia class. This study proposes
an improved Machine Learning model that aims to provide a comprehensive comparison of different SMOTE techniques
to enhance class balance in thalassemia prediction. And create a Machine Learning model that predicts the possibility
of an individual suffering from thalassemia based on the data modified by the proposed SMOTE technology. This study
concluded, according to the proposed model, that the best SMOTE technique that can be used in such datasets with
clear imbalance is the SMOTE-ENN technique, as the model achieved high-accuracy prediction results, as the model’s
accuracy was 99% and the F1-score was 97%. This study provides software developers with the steps and source code to
develop it as a mobile or computer application to help people know the probability of their infection with thalassemia.
The study also helps researchers determine the best SMOTE technique that is compatible with imbalanced datasets.

Keywords: Artificial intelligence, Machine learning, SMOTE, Thalassemia

1. Introduction

The dataset is the basic building block of every
artificial intelligence model that relies on previous
training data. Classification is also one of the most
important branches of machine learning [1]. To
perform the classification process, datasets are used
that usually suffer from the problem of imbalance.
The reason for this condition is that some categories
in the dataset are significantly lower than other
categories, which generates an imbalanced dataset.
An example of this is a dataset for a specific disease
that contains two categories, the first of which is
related to the possibility of a person getting the

disease and the other of the possibility of not getting
it. It is noted that the second category is much lower
than the first, which causes the imbalance problem.
To address the data imbalance, the Synthetic Minority
Oversampling Technique (SMOTE) is used. This
technique has several types that will be discussed in
detail later in this article. In this article, the focus
was on thalassemia, which is one of the dangerous
diseases that require study. The -classification
technique was relied upon to predict the probability
of a person getting this disease later based on past
data and factors. Thalassemia occurs as a result of a
genetic disorder in the blood cells. It can be defined as
a decrease in the level of hemoglobin in the blood and
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a decrease in the number of red blood cells. The most
important symptoms of the disease are pallor, fatigue,
and exhaustion resulting from the decrease in the
level of hemoglobin in the blood, which is responsible
for transporting oxygen in the body. This disease is
a genetic disease resulting from changes in the cells
that form hemoglobin [2]. This genetic mutation
causes a deficiency in the production of hemoglobin
in the blood and a decrease in the number of red
blood cells, causing symptoms of anemia [3]. To
prevent this disease, it is recommended to conduct
the necessary tests before marriage to determine the
possibility of contracting this disease [4]. Modern
artificial intelligence techniques help to know in
advance the possibility of a person contracting this
disease through datasets provided by health centers
concerned with this disease. This study focuses on the
possibility of predicting the occurrence of thalassemia
based on machine learning algorithms and based on
previous data. This study relied on the classification
technique, which is one of the supervised learning
techniques, as the model is trained on only
two categories, which are the occurrence or
non-occurrence of the disease. Several studies
have addressed the prediction of the occurrence
of thalassemia as well as the use of classification and
the use of SMOTE technology, including Ananina
Devanath and others have proposed a model based on
machine learning algorithms, and SMOTE technology
has been employed to balance the data used. They
used the following algorithms: K-Nearest Neighbor
(kNN), Logistic Regression, Adaptive Boosting (ADA
Boosting), Multilayer Perceptron (MLP), Gradient
Boosting classifier, and others. The model gave
100% prediction accuracy using the ADA Boosting
algorithm [5]. Alaa S. AlAgha and others designed a
model that predicts the occurrence of -thalassemia.
The model had two stages, the first in which the
data was balanced using SMOTE, and in the second
stage several artificial intelligence algorithms were
used, including k-nearest neighbors (k-NN), naive
Bayesian (NB), decision tree (DT) and the multilayer
perceptron (MLP) neural network. The model gave
a prediction accuracy of approximately 99% [6].
Muniba Saleem and his group proposed a model
based on two pillars. The first is employing five
feature selection approaches to select the best
features that affect prediction. The second pillar
was the employment of nine algorithms. Also,
to obtain good prediction accuracy, SMOTE was
used. The results were good with an accuracy
of 93% [7].

The three research studies above employed one
type of SMOTE with several artificial intelligence
algorithms.

This study, for the first time, employs several
types of SMOTE and uses a single machine-learning
algorithm. The steps of the model are as follows:
feeding the model with a local Iraqi dataset for
thalassemia. We work to balance the classes
using several types of SMOTE, enter the result
of each type into the Random Forest algorithm,
and then measure the prediction accuracy in each
case to find out which type of SMOTE is the best.
Although previous studies have applied SMOTE for
handling class imbalance in medical datasets, most
have used a single variant without systematically
comparing different approaches. This study addresses
this gap by evaluating multiple SMOTE variants
and identifying the most effective technique for
improving thalassemia classification accuracy. This
comparison is crucial as different SMOTE techniques
may have varying impacts depending on dataset
characteristics.

2. Materials and methods

The proposed model in this study was designed to
be used and developed as an application that can
be installed on a mobile or computer. The proposed
model can be integrated into healthcare settings in
several ways:

For Doctors: It can assist physicians in identifying
at-risk patients by providing automated predictions
based on routine blood tests .For Patients: A user-
friendly mobile application could allow individuals
to enter their blood test results and receive an ini-
tial assessment of their risk for thalassemia. For
Researchers: The model can be used as a tool for ana-
lyzing large-scale medical datasets to study disease
prevalence and improve classification techniques.
This model consists of several steps. The first step
is to enter the dataset for thalassemia disease, where
the necessary pre-processing was done to produce an
organized and suitable dataset for the work. Then
the data set was entered into the Random Forest
algorithm, and then the results obtained from the
algorithm were displayed. After that, the process was
repeated, but this time the SMOTE technique was
used to balance the dataset, and then it was entered
again into the Random Forest algorithm, and the re-
sults were displayed again. Also, for the third time,
the dataset was entered on several different types
of SMOTE techniques to balance the dataset and for
each type of SMOTE separately, and the dataset was
entered with each type into the Random Forest algo-
rithm. In the last stage, the results obtained from the
three stages were compared. Finally, the best tech-
nique that gives the most accurate prediction result
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was determined. For more clarification, Fig. 1 can be
seen below.

2.1 Dataset and preprocessing

The dataset used in this study was obtained from Al-
Hussein Medical City in Karbala Governorate in Iraq.
This dataset consists of (9) columns and (1380) rows
for thalassemia patients who visited the hospital.
These rows were as follows: (ID, gender, RBC, HGB,
HCT, MCV, MCH, MCHC, RDW) where RBC stands for
Red Blood Cell and the normal level is between 3.50
and 5.50 units (10"12/L). While HGB is an abbrevia-
tion for Hemoglobin and the normal level of it in the
blood is 11.0 to 16.0, Unit: (g/dL). As for HCT, it is
an abbreviation for Hematocrit which represents the
proportion, by volume, of the Blood that consists of
red blood cells, and the normal level is between 36.0
to 48.0 percentage units. As for MCV, it is the Mean
Corpuscular Volume and the normal level is between
80.0 to 99.0, Unit: fL.. MCH stands for Mean Corpus-
cular Hemoglobin, which is the average amount of
hemoglobin in the average red cell. The normal range
is between 26.0 and 32.0, Unit: pg. MCHC stands for
Mean Corpuscular Hemoglobin Concentration, which
is the normal range between 32.0 and 36.0 units
(g/dL). RDW stands for Red Blood Cell Distribution
Width, which is the normal range between 11.5 and
14.5 units, measured in percentages [8, 9].

The dataset that was initially obtained lacked the
most important column, which is (target). To gener-
ate this column, a programming function was created
within the model proposed in this study. The software
function divided the dataset into five main categories
based on accurate medical information, which are as

follows: (Beta-Thalassemia Minor, Beta-Thalassemia
Major, Alpha-Thalassemia Minor, Alpha-Thalassemia
Major, Normal). When the MCV is between (60-70)
and MCH is between (19-23) and HGB is between
(6-11) and RBC is between (4.5-6.3), this means that
the patient suffers from Minor Beta-Thalassemia.
When the MCV is between (50-70) and MCH is
between (12-20) and HGB is between (6-11) and
RBC is between (4.5-6.3), this means that the patient
suffers from Major Beta-Thalassemia. When the MCV
is less than or equal to 79 and MCH is less than 27
and HGB is between (7-10) and RBC is between
(4.5-6.3), this means that the patient suffers from
Minor Alpha-Thalassemia. When MCYV is less than or
equal to 79, MCH is less than 27, HGB is between
(5-6), and RBC is between (4.5-6.3), this means that
the patient suffers from Major Alpha-Thalassemia.
Otherwise, the function classifies the data as normal.

For all of the above, the target attribute now con-
sists of four main categories that include two different
types of thalassemia, each with a specific level (minor
or major). In addition to these four categories, there
is a fifth category, which is normal, meaning that the
patient’s condition is healthy. Fig. 2 below shows the
levels of these categories. Pre-processing operations
were performed, which consisted of examining the
dataset to see if it contained empty fields, and the
necessary treatments were taken to obtain a com-
plete dataset. After that, the dataset was examined
to see if there was duplicate data, and after examina-
tion, it was found that there was no duplicate. After
performing all of the above operations, the dataset
became ready to be entered into the Random Forest
algorithm, which will be explained in the next stage
of this study.

Preprocessing -> ->

A
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Processed
Dataset

Raw Dataset

Random
Forest =

u

SMOTE

+

SMOTE NCC

4..[ SMOTE Tomek

)
)
q—[ Border Line SMOTE ] -
)
]

-

SMOTE ENN

Fig. 1. General steps.
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Distribution of Target Variable (Before SMOTE)
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Fig. 2. Distribution of target variables in dataset.

2.2. Random forest algorithm

Random Forest is a machine learning algorithm
used in classification or regression [1]. It works by
creating multiple decision trees during training and
outputting the class pattern (classification) or aver-
age prediction (regression) for the individual trees.
This algorithm essentially consists of multiple deci-
sion trees [10]. Decision trees are streamlined with
internal branches that represent the test and terminal
leaves that represent the results. Random Forest is
one of the most important ensemble learning tech-
niques, which means that it builds multiple models
(decision trees) and combines their results to improve
performance. In classification tasks, the algorithm
chooses the class that gets the most votes from among
all the trees [11].

This algorithm also relies on the use of random
samples, as it uses Bagging (Bootstrap Aggregating):
where it takes random samples from the dataset with
replacement to train each decision tree. This leads to
introducing diversity among the trees, which reduces
overfitting.

The random forest algorithm relies on a method
represented by randomization of features: while di-
viding the nodes, the random forest does not evaluate
all possible features but selects a random subset of
features to divide on. This randomness further deco-
rates the trees and improves performance [1].

The classification steps are this algorithm as fol-
lows: The first stage is data preparation: Divide the
data into training and test sets. Then comes the
tree-building stage where multiple decision trees are
created, each of which is trained on a preliminary
sample of the data (random subsets of the training
data). At each node in the tree, a random subset of
features is selected, and the best feature from this
subset is used to perform the division [12].

Then it comes to the voting stage: After creating
the tree forest, a new sample is classified by passing
it through all the trees.

Then each tree gives a classification, and the final
prediction is made based on majority voting (i.e.
the class that is most often predicted by the trees is
chosen) [12].

In summary, the random forest is a powerful clas-
sification algorithm due to its ability to handle large
datasets, reduce overfitting, and provide high accu-
racy. This algorithm is particularly effective when
you need a reliable and flexible model that performs
well even with noisy or missing data.

In the proposed model, the Random Forest algo-
rithm was the core of the model. Random Forest was
chosen due to its robustness in handling imbalanced
datasets, ability to capture complex feature interac-
tions, and resilience against overfitting. Compared to
SVM and XGBoost, Random Forest requires less hy-
perparameter tuning and performs well with small to
moderately sized datasets, making it an ideal choice
for this study. Additionally, prior research on medical
classification problems has demonstrated its effec-
tiveness in producing high accuracy with imbalanced
data. However, the feature that the algorithm will
use for prediction, which is targit, was unbalanced in
the number of values. Therefore, SMOTE techniques
will be used later to create the required balance.
However, at this stage, the dataset was entered
directly into this algorithm without balancing the
data in order to observe the results obtained and
compare them when using several types of SMOTE
in the later stages. Fig. 3 below shows the obtained
results.

Precision measures the proportion of positive iden-
tifications that were actually correct. High precision
indicates that the classifier has a low rate of false pos-
itives. It’s particularly important in scenarios where
the cost of false positives is high. Its mathematical
equation is [13]:

Classification Report :

Confusion Matrix :-
[[197 e 1 @]
[ @ 36 o @]
[ 6 @ 47 o]
[ e 1 @o]]

precision recall fl-score support

Normal 1.00 0.99 1.00 198
Beta-Thalassemia Minor 1.00 1.00 1.00 30
Beta-Thalassemia Major 0.96 1.00 9.98 47
Alpha-Thalassemia Minor g gg .00 0.00 1
accuracy 0.99 276
macro avg 0.74 0.75 0.74 276
weighted avg 0.99 .99 0.99 276

Fig. 3. Results obtained from the random forest algorithm before
applying the SMOTE technique.
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True Positive (TP)
True Positive (TP) + False Positive (EP)

1)

Precision =

Recall, also known as sensitivity or true positive
rate, measures the proportion of actual positives that
were correctly identified. It answers the question: Of
all actual instances of a particular class, how many
were correctly predicted? High recall indicates that
the classifier successfully captures most of the posi-
tive instances. It’s crucial in situations where missing
a positive instance is costly. Its mathematical equa-
tion is [13]:

True Positive (TP)
Recall = — - 2)
True Positive (TP) + False Nagative (FN)

The F1-score is the harmonic mean of precision and
recall. It provides a single metric that balances both
precision and recall. The F1-score is useful when you
need a balance between precision and recall, espe-
cially when you have uneven class distributions. Its
mathematical equation is [13]:

Precision Recall
Fl-score = 2 x — x 3
Precision + Recall

Support refers to the number of actual occurrences
of each class in the dataset. It indicates how many
samples belong to each class. Support is useful for
understanding the distribution of classes and the
context of precision, recall, and F1-score. It helps in
assessing whether the metrics are influenced by class
imbalance.

The macro average computes the metric indepen-
dently for each class and then takes the average,
treating all classes equally regardless of their support.
Macro averaging is useful when you want to evaluate
the model’s performance equally across all classes,
without considering class imbalance. It can be heavily
influenced by classes with fewer instances. Its math-
ematical equation is [14]:

> Precision;

N 4

Macro Precision =

Where N is the number of classes.

The weighted average computes the metric for each
class and then takes the average, weighted by the
number of instances (support) of each class. Weighted
averaging accounts for class imbalance by giving
more weight to classes with more instances. It’s useful
when you want an overall performance metric that re-
flects the distribution of the dataset. Its mathematical

equation is [14]:

> (Precision; x Support;)

Support; )

Weighted Precision =

)

By observing Fig. 3 above, it is clear that the
prediction accuracy of the Random Forest algorithm
was 99%. By observing the confusion matrix,
it is clear that the model works well with the
categories Normal, Beta-Thalassemia Minor, and
Beta-Thalassemia Major, as it predicted most of
the cases correctly, but it is clear that the model
completely failed to classify the last category, Alpha-
Thalassemia Minor, as it took one case and classified
it as Beta-Thalassemia Minor, contrary to reality. The
main reason for this is the imbalance of data in the
(Target) column, which is illustrated in Fig. 4 below,
which shows that the Alpha-Thalassemia Minor
category had the least data size, as it contained only
7 cases. On this basis, this model was proposed, in
which the most important types of SMOTE will be
used to achieve the required balance and thus obtain
an ideal prediction for thalassemia disease, which
will be explained in the following steps in this study.

2.3. SMOTE

SMOTE (Synthetic Minority Oversampling Tech-
nique) is a powerful technique used to balance data
within a single feature in a dataset. Imbalanced data
occurs when the number of instances in one class is
significantly higher than the rest of the classes, which
can negatively impact the performance of machine
learning models [15]. This technique helps balance
the dataset by creating synthetic samples for the
minority class. SMOTE works by identifying the class
with the least samples, known as the minority class.
SMOTE selects one or more nearest neighbors of each
sample from the minority class (based on distance
measures such as Euclidean distance). It then creates
new synthetic data points by interpolating between
the original sample and its selected neighbor [16].
This means that the new data point will lie some-
where along the line between the original sample and

Normal 1019
Beta-Thalassemia Minor 188
Beta-Thalassemia Major 165
Alpha-Thalassemia Minor 7
Name: Target, dtype: inté4

Fig. 4. Size of target feature classes in the dataset.
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its neighbor in the feature space. These newly gener-
ated synthetic samples are then added to the dataset
to balance the ratio between the minority and major-
ity classes. The SMOTE technique was employed in
the proposed model and indeed it generated balanced
data and as Fig. 5 below shows how the classes are
distributed.

The data generated by SMOTE were entered into
the Random Forest algorithm and gave the results
indicated in Fig. 6 below. It is clear from this figure
that the algorithm gave a prediction accuracy of 98%,
which is less than the previous result, but it is notice-
able that the model predicted the Alpha-Thalassemia
Minor case well, as out of 208 cases, it failed to
predict only 16 cases, giving a percentage of 96% ac-
cording to the f1-score measure, and this is noticeable
progress in the model’s performance if compared to
the previous results in which the fl-score was zero.
To obtain better results, other types of SMOTE were
used, which will be explained in detail with their
results in this study.

Distribution of Target Variable (After SMOTE)

1000

800

800

count

400

200

Beta-Thalassemia Minor

Beta-Thalassemia Major ~ Alpha-Thalassemia Minor
Target

Fig. 5. Distribution of target variables in dataset (after SMOTE).

Classification Report :-

precision recall fl-score support

Normal 1.00 1.00 1.00 223
Beta-Thalassemia Minor 0.97 0.99 0.98 196
Beta-Thalassemia Major 0.95 0.99 0.97 173
Alpha-Thalassemia Minor 9,99 0.93 0.96 224
accuracy 0.98 816
macro avg 0.98 0.98 0.98 816
weighted avg 0.98 0.98 0.98 816

Confusion Matrix :-
[[222 © @ 1]
[ 6195 @ 1]
[ @ ©172 1]
[ @ 6 10 208]]

Fig. 6. Results obtained from the random forest algorithm after
applying the SMOTE technique.

2.4. SMOTENC

SMOTENC (Synthetic Minority Oversampling Tech-
nique for Nominal and Continuous Attributes) is a
variant of the SMOTE technique specifically designed
to handle datasets that contain both categorical
(nominal) and numerical (continuous) attributes
[17]. In many real-world scenarios, datasets contain a
mix of these attribute types, and the standard SMOTE
method, which only works on numerical data, cannot
be directly applied. SMOTENC addresses this problem
by treating the two attribute types differently. The
technique can be summarized in several lines: For
numeric attributes, SMOTENC works in the same way
as SMOTE, using nearest neighbors and interpolation
to create synthetic samples among the minority
class instances. For categorical attributes, categorical
attributes cannot be interpolated like numerical
attributes. Instead, SMOTENC uses the mode (most
frequent value) of the categorical features from
the nearest neighbors of a given sample. When
creating a synthetic instance, the value that appears
most frequently among the neighbors is assigned
to the categorical feature instead of numerical
interpolation. SMOTENC can also process both
categorical and continuous features at the same time,
allowing it to create synthetic samples that respect
the nature of both types of data [18]. The SMOTE
technique was employed in the proposed model and
indeed it generated balanced data and as Fig. 7 below
shows how the classes are distributed.

When the data generated by SMOTENC were fed
into the Random Forest algorithm, the results were
close to the previous results using the standard
SMOTE technique. Except for the prediction of the
second category, Beta-Thalassemia Minor, the current
results were slightly better, giving a percentage of
99% according to the fl-score measure compared
to 98% when using the standard SMOTE technique.
Fig. 8 below illustrates this.

Distribution of Target Variable (After SMOTENC)

1000

800

600

count

400

200

Beta-Thalassemia Minor

Beta-Thalassemia Major  Alpha-Thalassemia Minor
Trget

Fig. 7. Distribution of target variables in dataset (after SMOTENC).
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Classification Report :

precision recall fl-score support

Normal 1.00 1.00 1.00 223
Beta-Thalassemia Minor 1.00 0.97 9.99 196
Beta-Thalassemia Major 9.94 1.00 9.97 173
Alpha-Thalassemia Minor 0.98 9.95 9.96 224
accuracy 0.98 816
macro avg 0.98 0.98 0.98 816
weighted avg 0.98 0.98 0.98 816

Confusion Matrix :-
[[223 © © o]
[ 191 o 5]
[ © ©173 o]
[ o o 11 213]]

Fig. 8. Results obtained from the random forest algorithm after
applying the SMOTENC technique.

2.5. Borderline-SMOTE

Borderline-SMOTE (Synthetic Minority Oversam-
pling Technique) is a variant of SMOTE that addresses
the problem of class sizes differing within a single
feature in a dataset. This technique focuses on “bor-
derline” cases, which are the minority class cases
closest to the decision boundary separating the two
classes. These cases are more likely to be misclas-
sified because they are close to the majority class.
This creates a weak model that is biased toward the
majority class because it has difficulty correctly clas-
sifying these cases, resulting in poor performance.
Borderline-SMOTE works by identifying borderline
cases [19]. First, it identifies minority class cases
close to the decision boundary or majority class
cases based on the number of nearest neighbors that
belong to the majority class. The second step is
to oversample near the boundary. Instead of creat-
ing synthetic samples throughout the minority class
space, Borderline-SMOTE focuses on these borderline
cases. The assumption is that synthetic data near the
decision boundary will help the model better dis-
tinguish between classes. Meanwhile, there are two
versions Borderline-SMOTE1: which generates syn-
thetic samples of the marginal minority cases, and
Borderline-SMOTEZ2: which generates synthetic sam-
ples of the marginal minority cases, in addition to
introducing some majority class cases to reduce over-
fitting. The advantage of Borderline-SMOTE is that it
focuses on the “most important” minority class cases
(those close to the decision boundary), which are
more likely to be misclassified. It also improves the
performance of the classifier on imbalanced datasets
without overwhelming the classifier with unneces-
sary synthetic data [20]. By focusing on the marginal
cases, this method tends to produce better results than

the original SMOTE method in cases where misclas-
sification of minority class cases close to the decision
boundary is a major concern. The distribution of the
Target feature classes in the dataset generated by this
technique is shown in Fig. 9 below.

Fig. 10 below shows the results obtained from this
technique after entering the resulting data into the
random forest algorithm. It is noticeable that the
results are not much different from the two previous
techniques, except that this technique gave greater
accuracy than its predecessors in predicting the rare
category represented by Alpha-Thalassemia Minor,
as the accuracy according to the fl-score measure
was 97%. As it failed to classify only 6 cases out of
218 cases.

2.6. SMOTE-Tomek

SMOTE-Tomek This technique differs from its pre-
decessors in that it is a hybrid technique that
combines SMOTE and Tomek links [21]. The SMOTE
technique was previously explained in this study,

Distribution of Target Variable (After Border line SMOTE)

1000

800

600

count

400

200

BetaThalassemia Minor

Beta-Thalassemia Major  Alpha-Thalassemia Minor
Target

Fig. 9. Distribution of target variables in dataset (after Borderline-
SMOTE).

Classification Report :-

precision recall fl-score support

Normal 1.00 1.00 1.00 223
Beta»ThaIassemia Mir?or 0.98 0.98 0.98 196
if‘:’“;z'al“e""? MJJ-OF 0.98 0.98 0.98 173
pha-Thalassemia Minor .97 .97 0.97 224
accuracy 0.98 816
macro avg 0.98 0.98 0.98 816
weighted avg 0.98 0.98 0.98 816

Confusion Matrix :-
[[222 © o 1]
[ 193 o 3]
[ e o170 3]
[ e 3 3218]]

Fig. 10. Results obtained from the random forest algorithm after
applying the borderline-SMOTE technique.
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while Tomek links are a data-cleaning technique used
to remove noisy samples from a dataset, especially
those close to the decision boundaries between the
majority and minority classes. A Tomek link is a pair
of instances (one from the minority class and one
from the majority class) that are the closest neighbors
to each other and are from different classes. The idea
is that such pairs are likely to be borderline or noisy
cases, and removing the majority class instance from
these pairs can help clarify the decision boundaries
[21]. SMOTE-Tomek works by oversampling using
SMOTE, where SMOTE is applied to generate syn-
thetic samples for the minority class, increasing their
size to balance the dataset. Then comes the cleaning
stage using Tomek links, where after oversampling,
Tomek links are identified. For each Tomek link, the
majority of the class instance in the pair is removed,
which helps clean the dataset and reduces potential
noise or overlap between classes. One of the most
important features of this technique is creating a
balanced dataset. SMOTE helps balance the dataset
by oversampling the minority class, making it eas-
ier for the model to learn patterns for both classes.
By applying Tomek links after SMOTE, the method
removes noisy or marginal majority class samples
that might confuse the model. This results in clearer
decision boundaries between classes, which improves
classification performance. Overall, SMOTE-Tomek
enhances the ability of machine learning models
to handle imbalanced datasets by combining the
strengths of SMOTE (oversampling) and Tomek links
(data cleaning) [22]. Fig. 11 below shows the distri-
bution of classes resulting from this technique.

The results obtained from this technique, as shown
in Fig. 12 below, did not differ much from its pre-
decessors, as they are good results with a prediction
accuracy of 98%. To obtain excellent accuracy and
good distribution, other techniques will be taken, as
the last technique in this study will meet this purpose.

Distribution of Target Variable (After SMOTETomek)

1000
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count
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200

Beta-Thalassemia Minor

Beta-Thalassemia Major ~ Alpha-Thalassemia Minor
Trget

Fig. 11. Distribution of target variables in dataset (after SMOTE-
Tomek).

Classification Report :-

precision recall fl-score support

Normal 1.00 0.99 1.00 203
Beta-Thalassemia Minor 9.99 9.99 9.99 205
Beta-Thalassemia Major 0.96 9.99 0.98 199
Alpha-Thalassemia Minor 9.97 9.95 9.96 204
accuracy 0.98 811
macro avg 0.98 0.98 0.98 811
weighted avg 0.98 0.98 0.98 811

Confusion Matrix :-
[[2e1 © o 2]
[ @202 o 3]
[ e © 197 2]
[ e 2 8 194]]

Fig. 12. Results obtained from the random forest algorithm after
applying the SMOTE-Tomek technique.

2.7 SMOTE-ENN

SMOTE-ENN is a hybrid technique like its prede-
cessor but combines SMOTE and ENN (Edited Nearest
Neighbors) to address the problem of imbalanced
datasets [23]. It improves the performance of the
model by oversampling the minority class and
removing noisy or misclassified instances from the
dataset. SMOTE-ENN works by employing SMOTE to
generate synthetic samples of the minority class by
identifying a minority class instance and interfering
between it and its nearest neighbors within the
same class. This oversampling method helps balance
the dataset by increasing the number of minority
class instances, giving the model more data to learn
from the underrepresented class. Next comes ENN,
a data-cleaning method that focuses on removing
noisy or misclassified samples from both the majority
and minority classes [23]. It works by examining the
nearest neighbors of each instance (usually k=3). If
the class label of the instance does not match the
majority of its neighbors’ class labels, the instance
is removed. This technique helps to eliminate cases
that are likely to be noisy or close to the decision
boundary, improving the clarity of the dataset and
the model’s ability to learn. The advantages of this
technique include Improved balance: SMOTE helps
by oversampling the minority class, balancing the
dataset, and making it easier for models to learn
patterns for both classes. Noise reduction: ENN
removes noisy or marginal samples that may confuse
the model, resulting in clearer decision boundaries.
Improved performance: The combination of oversam-
pling and data cleaning helps to reduce overfitting
(from oversampling) and underfitting (from noise),
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leading to better generalization and improved model
performance on imbalanced datasets [24]. This
technique generated the categories shown in Fig. 13
below, which are notable for their differences from
previous techniques. The distribution of data in this
technique is uneven, though not very large.

The SMOTE-ENN technique gave the best results
achieved for the proposed model as shown in Fig. 14
below. It gave a prediction accuracy of 99%. It also
gave the best Fl-score for all classes. For all the
above, this study concludes that the best SMOTE
technique that can be used for classification is
SMOTE-ENN.

Distribution of Target Variable (After SMOTEENN)

1000

800

600

count

400

200

AlphaThalassemia Minor ~ BetaThalassemia Major  Beta-Thalassemia Minor

Fig. 13. Distribution of target variables in dataset (after SMOTE-
ENN).

Classification Report :-

precision recall fl-score support

Normal 1.00 1.00 1.00 170
Beta-Thalassemia Minor 9.98 1.00 9.99 180
Beta-Thalassemia Major 9.97 0.98 9.98 180
Alpha-Thalassemia Minor 9.99 0.96 0.97 207
accuracy 0.99 737
macro avg 0.99 0.99 0.99 737
weighted avg 0.99 0.99 0.99 737

Confusion Matrix :-
[[176 @ o o]
[ 0186 o 0]
[ @ @177 3]
[ @ 3 5 199]]

Fig. 14. Results obtained from the random forest algorithm after
applying the SMOTE-ENN technique.

3. Results

The proposed model in this study is mainly
designed to make a scientific and practical
comparison between the most important types of
SMOTE on the one hand and on the other hand to
study the prediction of thalassemia disease. The first
stages in this model included reading the Iraqi local
dataset and making the prediction of thalassemia
disease using the random forest algorithm without

Table 1. Results obtained from the techniques used in the proposed model.

Technique Thalassemia Precision Recall Fl-score Accuracy
With Out SMOTE Normal 1.00 0.99 1.00 0.99
Beta-Thalassemia Minor 1.00 1.00 1.00
Beta-Thalassemia Major 0.96 1.00 0.98
Alpha-Thalassemia Minor  0.00 0.00 0.00
Normal 1.00 1.00 1.00
Beta-Thalassemia Minor 0.97 0.99 0.98
SMOTE Beta-Thalassemia Major 0.95 0.99 0.97 0.98
Alpha-Thalassemia Minor  0.99 0.93 0.96
Normal 1.00 1.00 1.00
Beta-Thalassemia Minor 1.00 0.97 0.99
SMOTENC Beta-Thalassemia Major 0.94 1.00 0.97 0.98
Alpha-Thalassemia Minor  0.98 0.95 0.96
Normal 1.00 1.00 1.00
. Beta-Thalassemia Minor 0.98 0.98 0.98
Borderline-SMOTE 5o - Thalassemia Major 0.98 0.98 0.98 0.98
Alpha-Thalassemia Minor  0.97 0.97 0.97
Normal 1.00 0.99 1.00
Beta-Thalassemia Minor 0.99 0.99 0.99
SMOTE-Tomek Beta-Thalassemia Major 0.96 0.99 0.98 0.98
Alpha-Thalassemia Minor  0.97 0.95 0.96
Normal 1.00 1.00 1.00
Beta-Thalassemia Minor 0.98 1.00 0.99
SMOTE-ENN Beta-Thalassemia Major 0.97 0.98 0.98 0.99
Alpha-Thalassemia Minor ~ 0.99 0.96 0.97
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Thalassemia Prediction System

RBC (1012/L): Red Blood Cell count. Normal range: 4.7-6.1 (men),

4.2-5.4 (women).

HGB (g/dL): Hemoglobin level. Normal range: 13.8-17.2 (men),

12.1-15.1 (women).

MCYV (fL): Mean Corpuscular Volume. Normal range: 80-100.

MCH (pg): Mean Corpuscular Hemoglobin. Normal range: 27-33.

MCHC (g/dL): Mean Corpuscular Hemoglobin Concentration.

Normal range: 33-36.

RDW: Red Cell Distribution Width. Normal range: 11.5-14.5%.

HCT: Hematocrit. Normal range: 40.7-50.3% (men), 36.1-44.3%

(women).

Fig. 15. The initial interface of the proposed model.

using SMOTE technology. Then came the other
main steps represented by using multiple types of
SMOTE to make a practical comparison of the results
obtained from them. Below is Table 1, which shows
the obtained results in detail.

From the table below, we can conclude the best
technique for the best prediction result. The best ac-
curacy is obtained in the first and last cases. However,
the disadvantage of the first case - without using
SMOTE - is the model’s inability to predict any correct
case of Alpha-Thalassemia Minor, which is consid-
ered the lowest category among the four categories.
As for the last case - using SMOTE -ENN - in addition
to the high prediction accuracy of 99%, the model
was able to predict the case of Alpha-Thalassemia
Minor with an accuracy of 97% according to the F1-
score measure. Thus, the problem of bias in the model
towards the higher categories at the expense of the
lower categories was addressed, which created a bal-
ance in the categories of a single feature. SMOTE-ENN
outperformed other techniques due to its combined
approach of oversampling the minority class (via
SMOTE) and removing noisy or borderline instances
(via Edited Nearest Neighbors). This hybrid method
enhances class balance while reducing overlapping
between classes, leading to improved model general-
ization. Specifically, it proved effective in handling
borderline cases, which were a major challenge in
our dataset, as seen in its superior Fl-score for the
Alpha-Thalassemia Minor category. The interface re-
quired for the model’s operation was designed as
an integrated application, where the user enters the
required test data and clicks the prediction button.
Based on its training and the provided test results,

the proposed model generates a prediction regarding
the individual’s likelihood of having thalassemia, as
illustrated in Fig. 15 below.

4. Conclusion

Thalassemia is a disease that deserves to be high-
lighted. Predicting the occurrence of this disease for
people at risk is one of the important things that
helps to avoid and recover from it. On the other hand,
researchers have always suffered from the problem of
data imbalance and model bias towards one class at
the expense of the other. SMOTE is one of the tech-
niques that address this problem. As presented in this
study, this technique has several types that have been
discussed in detail. This study concluded that the best
type of SMOTE that can be used and that gave the best
prediction is SMOTE-ENN. This study is considered a
basis and reference for researchers wishing to use one
of the types of SMOTE. It is also a strong reference for
software developers to use the model code to develop
mobile and computer applications to help individuals
prevent thalassemia.
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