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Abstract

A linear thermoviscoelastic materiai model, whose basis is an incremental
constitutive equation that takes compiete sirain and temperature histories into
account, is derived in finite element code * FEVES “(finitc clement of
viscoelastic solids).

The software * FEVES ” can be effectively empleyed for all permissible values
of Poisson’s ratio by using a selective integration procedure. The software is
tested for a number of real applications and the results are compared with
available analytical values,
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The following symbols are used in this paper

By = Kronecker delia, Jlf Hhm}_ ‘r

(hwhen j =i

L] = matrix

[K.] = glastic stifiness matrix

[K] = viscoelastic stiffness matrix

[B] = miatrix of shape functions

i1 = yector

e = nodal displacements vector

Ix} = nodal coordinates vector

A = shift factor at tine ¢ for reduced time

B = strain-displacement matrix

D, = glasticity matrix

D, = viscoelasticity matrix

dv = incremental volwme of the element

Fuit) = wvector of nodal foree due to mechanical loading © pessure,  gravity, centrifugal
lpad,..."

F{1) = yeetor of nodal force doe to thermal load

G = shear relaxation function

K = hulk modulus
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L {e} = integral operator

t = time

Tit) = current femperature

Ty =structure reference temperature
a = coefficient of thermal expansion

Introduction

Time-dependent response of
bothi metals and non-metals present
analysis problems in many areas of
engineering, such as the problem of
solid propeliant rocket fuels, the
problems of turbine blade, and soil
mechanics, these require analysis that
takes into account viscoelastic
response  under  varving  time,
temperature and loads.

The finite element techni-que,
which has been demons-trated to
provide an excellent analysis methoed
for complex geometrical configu-
rations for elastic cases, has been
extended to provide analysis for linear
viscoelastic solids.

The viscoelastic analysis
techniques may broadly be classified
into three basic approaches, which are

(Guasi-elastic  solutions,  Integral
transform  techniques, and Direct
methods,

in the Quasi-elastic solutions
[1] the elastic properties equivalent to
the  corresponding  viscoelastic
properties at the desired time and
temperature are proposed. This
approach essentially ignores the entire
past history of the load and
environment. Therefore this solution
vields crude approximation to the true
response.

Integral transform technique
[2,3.4] is emploved by using the
elastic solution to obtain the
corresponding  viscoelastic  solution.
This approach is exact for which
closed form solutions are possible.
The Direct formulations are based on
the finite element and boundary

4

Finie Element of Linear Viscoelastic Solids

element theories, using either the

differential form [5] or integral form

of the stress-strain relationships [1.6,

7.8].

Most viscoelastic materials are
assumed to be incompressible or
nearly in-compressible viscoelastic
solids. Application of the
displacement finite element method
for the analysis of such solids yields
severally oscillating solution in the
stress and strain across the elements.
This aspect has been studied for
elastic materials and is  well
documented in literature [9]. This may
be overcome by using the following
steps :

I- Using a selective integration

procedure , which is exact in

{3%3) Gauss integration points for

the shear components and approxi-

mate in (2:x2) Gauss integration for
the bulk components of the elastic

stiffness matrix [107

Using 8-node Serendipity

isoparametric element [9].

3- The location of stress and strain
output, i.e. the sampling position,
within the element can be selected
at the (2x2) Gauss points, which
are favored and give exact results
of stresses and strains. While the
results at the geometrical nodes or
(3x3) Gauss points may give poor
and unreasonable results.

2. Theoretical Analysis

The software “FEVES”™ is
based upon the linear uncoupled
thermoviscoelastic formulations and
is carried out by using the
assumptions that the stress-strain
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relation is a  hereditary  integral
expression, the reduced  time
hypothesis is wvalid, the material is
isotropic and homogenous, and the
bulk modulus is constant with time.

2.1 Stress-strain relation

The wiscoelastic stress-strain
relation can be obtained by using the
elastic  stress-strain  relation  and
employing Laplace and Inverse
Laplace transformation [2]. The
general  thermoelastic  stress-strain
relation can be written as:

3
@, =20e, +8 (k==

- 35,2k AT

where G is the shear modulus,
k the bulk modulus, o the coefficent
of  thermai expantion, AT the
temperature increase and &; kronecker
delta. Repeated subscribts denote
summation for the range of the
problem.
Laplace transformation may be
applied to the above equation to

deduce  the  following  stress

component in S-domain.

oy =285 je (5i+ 0, (4(8)
7
-:1_}"' SHEEG(si— 38 @5 kis) AT s) @
By Inverse Laplace

transformation (convelution integral),
the stress wvariation with the time
domain may written as:

o BT F :
ayit)=2[G{ =¢ _J—{fﬂr—m +d ket
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The discontinuity at t=0, may be
eliminated from the above expression
to obtain the following:

e, ()
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Applying integration by parts to the
second and third terms, the above
equation may be simplified into:

o, (1) =2G0)e, (1)
g —¢')

e e

:
+ 8, [k~ ;um; Jeuf(t )

&, (1" )t

 8G(E L")

“;5:-’ '[‘ a f-'nlrfr,wj
- jlfi} ke ATyt')
(3)
where
AT = T() -T(0) (6)

The shifted time & is related to the
real time t, by

dt’
&=L = _{m} (7)

where Ay is the shift function and is
evaluated by using so called WLF
gquation {1]

logd, = Cor Jm‘i?‘l (8)
ar

I _ T 9
PR 0 (9)
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where )} and (' are material
constants,

Equation (5) can be rewritten in
matrix form as:

et=[D Jel + [D Je)

o (10)
~ 3ak{AT () /)
where
r 1 1
k2 c(o) k-6 2
| o
4 i
1 kngG{UJ r+loly o !
J i
|0 g G
L
113
4 2 5
2 |
p,=| 2 L o] (12)
3 3
00 —r‘

L= | Gle _‘I_%T ) et e

(13)
Wi =i 10 (14)

2.2 Finite Element Forniulation

The displacemynt and
coordinate vectors at any point inside
an  isoparametric element cai be
related to (ke nodal displacenien’s and
coordinates by using the chape
functions as tallow [12]:

v)=1la -

14
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where
=lxxe. % (@)= [qq: .17 and
m]2 [ Ny, Wa,... ]

the shape functions

[N] =[ Ny, Na,... ] are functions of
local coordinates in  isoparametric
elements.

N, =[N] {x}

The strain-displacement relation may
be wrilten as:

e} =[Blig} (17)

where [B]=[L][N]and [L]isa
matrix of differentiation operators.
The Finite Element Equilibrium
equation for the finite element can be
written as [12]:

[[BY o, (tidv=Fpy(t) (18)
where v is the volume domain of the
element.

iy substituting eq.(5) into eq.(18), it
cz+ be proved that:

jis] o, 1Bligldv+

T e Y

where:

Fo )= st [B' Jikar  (20)

Luirloying the trapezoidal rule for
tinw: domain, the second term in
eq..1?) can be written for kth time
step u
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The above integration can be
performed by finite difference
integration as shown in Appendix (A).
Substituting eq.(21) into eq.(19), the
element equilibrium equation for the
finite eiement is obtained as

[xﬂ]+§[c:m;—sr;*~;f-.-f]
[K;}{?”w'}=

{Fn t, J] + {Fr' N J}"‘ Mt )

where

(24

(k7= [le'fio. Mol & @9

where:

{M{Ii ]Jl' = '{(; }{@{f& ) (26)
0 |

{qﬁ-]}:—]- d':-: - :}‘lk{li-!h

fs [‘*‘* }{q (,*,

LF“’ dé.i ':-;
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(21)

Nodal displacements {g{t)}at
kth time step are obtained by solving
eq{24).and the corresponding strain
can be evaluated by using eq.(17),
finally the stresses are computed as:

lort, )}= {’!:Hﬂ"& J}"' {4,

=
~sakarin e, )f @0
where
l4]=[D,] )
9
+£[G&r—ﬂ'-_ﬂ ~& D] e

{Mit)} is the memory load vector.

2.3 Incompressibility

Consideration

The elastic stiffness matrix [Kq] of
2q.(25) may be splite into shear and
bulk components [10] a= shown

below
&]=1&; ]+ [&;] 31)
where
[x:]- fle Mo e ()

k2] ﬁﬂ"‘][m][nlm (33)
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The integration of [K')] can
be performed by using the standard
(3%3) Gauss-Legender formula, while
[K'¢] can be evaluated numerically by
using (2x2) Gauss-Legender formula
io overcome the singularity due to
certain values of Poisson’s ratio, when
it reaches to 0.5. The above (2x2)
Gauss point integration is called the
reduced or selective integration and it
1s recommended only when Poisson's
tatio “v"” reaches to 0.5, for other
values it is found that (3x3) Gauss
point integration gives more accurate
results,

%4 Local and Global Smoothing of
Stresses and Strains:

The geometrical nedes of the
finite element mesh, which are the
most useful output locations for
stresses and strains, appear to be in
the worst sample points for
inm'-mpreisible (or nearly
inco: tpressible) materials. It has been
shown that the integration points
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*(2x2) Gauss points”™ give the best
stresses and strains at sample points
but the stresses and strain will be
discontinuous between the elements.
To solve this problem one can use
local and global smoothing technique
{11]. First the smoothing may be
performed separatelv over each
individual element and this will be
called local smoothing, and then
taking the average of siresses and
strains at the nodes of all elements
meeting at a common node. This will
be called global smoothing. The
smoothing function is shown in the
Appendix {B).

1.Numerical example:

In order to verify the validity of the
proposed numerical method, several
numerical examples are considered,
for which exact and numerical
solutions have been already obtained.

3.1 Pressurized Viscoelastic Hollow
Cylinder:

A thick viscoelastic hollow
cylinder subjected to a constant
internal pressure is studied as the first
example, the relaxation function of
this example are:

G(t) = Go[B+(1- B) €™]
The constant coefficients of the
relaxation function are given in the
following table where t, is the
rﬂtardatmn time, which is equal to

(BAY".

G i Klplalg]w

s [ 1270 l-::_ 103333

8! 80 I 25| 4 | 0 | (compressible
lod L1 || materishy
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The exact solution for the
displacement in r-direction is given by
ref, [8]

,,;,.,]_i’:_
W -J{b_""r?:j‘

b’ -
wemens ([ — ([ = )8
Gl 118
¥

—

. (GA+3K)

iy 1
(1-(1-pje~ Pty

where P, a and b are the pressure and
inner and outer radii respectively as
shown in fig.(1).
a= b3,
® = (GE+3KM(G-3K)

Fig(1)

Fig.(1) Thick hollows viscoelastic
cylinder under interna! pressure

The radial displacement at inner and
outer surfaces at different lime steps
are presented in Fig.(2). It is clear that
the “FEVES"” code results are very
close to the analytical values,

£to _— —
= o g ta1
a0 -
300 - — Hii
200 A
100
oo - o o
vir
Fig.(2) Radial displacement of a viscoelastic
hollow evlinder
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3.2 Solid mass slump problem:

Solid  propellant  grains
subjected to gravity force is a serious
problem  in  solid  propellant

engineering, the material being in
nature viscoelastic, the propellant
grains stored for along time, undergo
dimensional deviations due to their
own weight. Normally the grains are
supported by & casing. It is expected
that the slumping can bz minimized
by supporting the grain at the bottom.
This problem is studied for a simple
example of a rectangular prism
structure in ref.[5]. Details of the
structure, the finite element mesh, and
the material properties are shown in
Fig (3):

d =900 mm
a =300 mm
1 =3 mm

Fig.3.

G()=022+.03e ~ ™% ' & page™™
p(density) = 1.8 E-6 kg fmm’ K=110
kg/mm’

v (Poisson’s ratio)
“Nearly incompressible”

=0.4995456

This problem is assumed to
be nearly incompressible (v—{0.5).
Fhe “FEVES" results are shown in
fig.(4) (a and b), where the variations
of the vertical and horizontal
displacements at certain points are
given, It is clear that there is a good
agreement between the present FEM
results and the FEM results from
ref.}5].
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Fig.(4}-(b)

3.3 A simple typical rocket grain
It is a long grain encased in a

rigid sheath (plane strain condition).
The  problem has  practical
significance in  solid  propeliant
analysis where two failure modes
occur.  first is the separation of the
propeliant from the case at the
cylindrical interface, and the second is
the cracking of the propellant material
at the inner free face. This problem
has been solved by [6] using ADINA
code “A finite element code of a

Finear thermoviscoelastic marerials ”
K

I Tyy Tk — WWW\\—e
=Ai—
'-*-M G.‘l-l
(a) deviatoric (shear) (b} volumetric (bulk)
Fig.(5)

The rheological model of this case is
shown in Fig.(5):
The geometrical dimen-tions

of the problem and material properties
are shown in Fig.{6é)
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Thermal stresses and strains
are reduced to a parametric form by
seiting the coefficient of thermal
expansion a=1, and C,=C.=0

The ftransient temperature load
function is taken as:

T=l-gt/m
where  tm  is the retardation time

(AM/GM), The variation of the
dimensionless tangent stress (o, /o k
AT), radial stress (o. /o k AT), and
radial strain (g, ‘o k AT) with the time
are shown in Fig.(7).

bla=3

(Gt Gy VK=0.0201342
Go'Gy=0.1
Fig.(6) Rocket grain

From the figures the siresses and
strains in both codes “FEVES™ and
“"ADINA" are identical (may be due

to same formulation and same
clements),
Gl = — R
Ao 248
EI- Gag -— — AR
o & FivEs
e L% 1 _‘ -:_u —
-";- o — - INTESFACE &
8 | ¢ RADHAL §-RESS g
L ]
R0 f 208 I
g 020 -1 | THGEm L i
Ja  VTRESE ..‘-n““u 1
g 18 ““.‘,._"‘ 41 64
o = hE -
000 100 200 AG0 400 500 500

TIME t/1r
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Conclusions:

The presented “FEVES" code in the
paper is based on linear uncoupled
thermo-viscoelastic  theory.  The
software i made useful for all
permissible values of Poisson's ratio
by using a selective integration proce-
dure, a simoathing technigue is used in
the software (for incompressible or
nearly incompressible solids) to get
the stresses and strains at the nodal
elements. The presenied FEM results
are very close to the published FEM
and analvtical resulis.
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Appendix: (A) Finite Difference Integration

Equation (21} is of convelution integral rype, which is required lo be
integrated by n numerical integration technique such as a trapezoidal rule, the
convolution integral term is:

L{E(f}}f—' -+ rrr-ér—'-—- £, At _,l’}df

Hence

L{Enﬂ;ﬁji EG_"_:___

i=fa’ ar

fe (1 )idt

Each of the integration is transformed to the finite approximation

J,m{a (1)} g" -——d'

! (ak ':.-’

E!'E f.r]r”)-;-g”lrlr J}L e 51_; ~—dt’

%;’: (L) 48,0, NIG(§, =8, )~GlE =&, )
From eq{17):

=118l )+ a1, 111602, = ,.)= 606, ~¢,)

| i3 . . .
Le(t)i=3[BI X [a(t, )+ a0, )] IG(€, =£,0, )= G4, =€, )]
By applying time step (k-1}, the above equation will become:

! ot ¥ - - - -
Ligtei)= -_;[ﬂ] Elaft,  hrat,)f 16§ =L an k=Gl &y =4, )
+%[.BL"GF 0)=- Gl & =& M gl )}

! : .
+im [B]fﬁr Bl=0Gf gy =G M ain M
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Appendix :(B) Smoothing Technique:
Reference [Iil] explainas the smoothing technique for B8-node serendipity

isoparametric element 10 convert the stresses at (2x=2) Gauss

/3 ! 3 |
; 1=t g3 =i i
(o : 2 2 2 & ]
i = — i
{ I ]
lc.r_ = ;_,_.?.i i g_i_ o |
J_ - . 2 z ) ? s
i — f &
" 3 T . N T, ! m[
[cr ' 2 2 2 "2 o
4 | — T ”'.J
| L I _.IJ ._{ 3 \'.3
Lz B T T g ]

paoints 1o the geometrical nodes "local smoothing ™ by using the matrix shown below:
Stresses on the left-hand side represent the four comer nodal stresses, while the

stresses on the right-hand side represent the four (2x2) Gauss point stresses.
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