Eng. & Technology, Vols, Np.24, 2005

An Improvement of Serpent Algorithm

Saleh M. Al-Karaawy* Ashwaq T. Hashim
Received on 4/1/2005
Accepted on 11/9/2005

Abstract

An improvement to Serpent algorithm will be proposed, Serpent algorithm is
a Feistel network, iterating a simple encryption function 32 times. The block
size is 256 bits, and the key can be any length up to 256 bytes. The proposed
algorithm is designed fo take advantage of the powerful facility, which is
supported by Serpent algorithm with overcoming its weaknesses, resulting in
a much improved security/performance tradeoff over existing ciphers, As a
result, the proposed algorithm offers better security than Serpeat algorithm.
The proposed algorithm is compact, simple and easy to understand. It
increases the block size to overcome the matching cipher text and brute force
attacks,

Key words: Serpent Algorithm, Encryption Techniques, Network Security,

ol s Ak) 95 (Cppen)

daatisdl
T - G e S e) A Opndd 2 e adhiee Gad] 134 o
G (e Gy 256 5l paa g% e)) gl 23 A5 5 32 uddal Ales alad dua
A A el A58 Crana 81 uly 256 i) Sy Jgb gl ok s8
Ot s Rdi Ao Jgezal) A 5 b gloas (NS s a3 0 0l B gy Calaa
il &y o ol)) 550 ol Aailh iy .) Pk B dg /5181 Al
S AT Al oy ppll) A s Aoy G hall Ao i) iy Ana sl gd Adad (0
sl Cbles Quiadd ABal) a0 bl aaa ol

1. Introduction stream ciphers, and hash functions.
There are many symmetric-key
block ciphers, which offer
different levels of security,
flexibility, and efficiency. Among

Symmetric-key block ciphers
have long been used as a
fundamental cryptographic
element for providing informati :
security, L ‘,ﬂﬁoihg l?;z?ndt;?_z tl}e many sy:mnetrul,ukey block
primarily designed for providing ciphers currently available, some
data confidentiality, their (such as DES, RCS, CAST,
versatility allows them to serve as Blowfish, FEAL.’ SAFER, and
2 main component in the IDE‘%} h:_we =teived the greatest
practical interest. Most symmetric-

construction of many . e
cryptographic systems such ag key block ciphers (such as DES,
pseudo random number generators, RC5, CAST, and Blowfish) are
message authentication protocols, wan based on a “Feistel” network

* Diept, of Contrel & Svstems Eng., University of Technology

https:/doi.org/10.30684/et].24.6.11]

University of Technology-Iraq, Baghdad, Iraq/2412-0758 . .
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

https://orcid.org/0000-0002-3282-6419
https://doi.org/10.30684/ etj.24.6.11
https://doi.org/10.30684/etj.24.6.11

Eng. & Technology, Vol.6, No.24, 2003

censtruct and a “round function™
[1]. The round function provides a
basic encryption mechanism by
composing several simple linear
and non-linear operations such as
Ex-ORing, substitution, permute-
tion, and modular arithmetic. The

strength of a Feistel cipher
depends heavily on the degree of
diffusion and non-linearity

properties provided by the round
function. Many ciphers (such as
DES and CAST) base their round
functions on a construct called a
“substitution box™ (s-box) as a
source of diffusion and non-
linearity. Some ciphers (such as
RCS) use bit-wise data-dependent
rotations and a few other ciphers
(such as IDEA) use multiplication
in their round functions for
diffusion [1]. Figure 1 illustrates
the round of Serpent, while Fig. 2
represents the scheme of Serpent
algorithm [2.3.4].

Inpu

b

S |

5.
¥
1 linear l

'

Outpu

Fig. 1 A Round of Serpent

One of the main goals in secret key
cryptography is the development
of design criteria, so thal we
develop Serpent algorithm, which

751

An Improvement of Serpent Algorithm

18 one of the final list candidates,
to become much suited to the next
generation of 64-bit processor and
to become more secure compared
with the previous algorithm.

2. Key Generation

The serpent encryplion requires
132 32-bits of key material. First
the user supplied 256-bit key K is
expanded to 33 128-bit subkeys
Kpyevery K3z the key K will be
written as eight 32-bit wig ... Wis

and expand these into an
intermediate key wgy ..., Wy by
the following affine
recurrence(5,6]:

[hy ks s Kz y Kol = 8a2f Wi, Wae, w7,
Woagt

Eane kg o Koz Kogol = 8o way) war s wor,
Wiaal
Wrn Kas o Kop s Bpaed = 8] Wiz, Was, woy,

Wear F

After that renumber the 32-bit
values k; as 128-bit subkeys k; (for
i € {0..r}) as follows:

K= { Kais Kgirns Raivzs Kaivs §

The round keys are now
calculated from the prekeys using
the S-boxes. The S-boxes are used
to transform the prekevs wy; into
words &; of round key by dividing
the wvector of prekeys into four

sections and transformation the ith
words of each of the four sections
using Si(r+3-i) mod r. This can be
seen simply for the default case
r=32 as follows:

{kn ¥ k_” ' kﬁﬁ ¥ ."ny# = Sa{ Wa . Wiz, Wys .
Hagl

Wi=(Wy B wis S w; B, & e <

Eng. & Technology, Val.6, No.24, 2005

laintext 128 bits

i

Inifiad cpsnition

Uirear Transtormation
——-_J ?E
Finat operation
Ciphertext 25 bits

An Improvement of Serpent Algorithm

Ciphertext 128 bit

¥

Final oparaticn

Lingar Transformation

Indizil operatia

¥

Mainiext 128 biis

Where r=0....31 (round number)

(a) The Eneryption unit

(b) The Decryption unit,

Fig, 2 Eneryption and Decryption Units of Serpent Algorithm

Where @, is the fractional part
of the golden ratio 0x9e3779b9 in
hexadecimal, The underlying
polynomial (x” + x” + x¥ + A° &+ 1)
is primitive, which together with
the addition of the round index is
chosen to ensure an even

752

distribution of key bits throughout
the rounds, and to eliminate weak
keys and related keys.

The Tnitial Permutation (IP) is
applied to the round key in order to
place the key bits in the correct
column, ie.. K; IP (K. Figure 3

Eng. & Technology, Vol g, Mo.24, 2005

illustrates the
algorithm [2].

key generation

#Wﬂﬂﬂ!‘rﬂﬂ

Fig. 3 The Key Generation
Algorithm

3. The Improved Algorithm

Improved Serpent algorithm
was intentionally designed to be
extremely simple, to invite
analysis shedding light on the
security provided by extensive use
of data-dependent rotations, To
meet the requirements of the AES,
a block cipher must handle 256-bit
input/output blocks. While Serpent
1S an exceptionally fast block
cipher, extending it to act on 256-
bit blocks in the most natural
manner would result in using two
128-bit working registers. The
specified target architecture and
languages for AES do not yet
support 128-bit operations in an

An Tmprovement of Serpent Algorithm

efficient manner. Thus, the design
to use four 64-bit registers rather
than two 128-bit registers in the P-
function should be modified and
still use the four 32-bit register by
applying one round of previous
Serpent algorithm to the left half of
the proposed algorithm.

It is worth observing that with a
cipher running at the rate of one
terabit per second (that is,

. 12
encrypting data at the rate of 10
bits/second), the time required for
50 computers working in parallel
to encrypt 2°* blocks of data is
more than a year; to encrypt ol
blocks of data is more than 98,000
years; and to encrypt 2'*® blocks of
data is more than 10'° years [7].

While hawng a data
requirement of 2'** blocks of data
for a successful attack might be
viewed as sufficient in practical
terms, the proposed algorithm aims
to provide a much greater level of
security. The community as a
whole will decide which level of
security a cipher; in particular an
AES candidate should satisfy,
Should this be less than a data
requirement of 2°°® blocks of data
then, thereby providing an
improvement in performance?

Figure 4 shows the structure of
the improved algorithm, which in
fact is a Feistel network. It consists
of splitting the plaintext into two
128-bits halves. Feistel cipher is a
special class of iterated block
ciphers, where the ciphertext is
calculated from the plaintext by
repeated application of the same
transformation or round function.
The round function is applied to

Eng, & Technology, Vol.6, No.24, 2005

one half using a subkey and the
output of F function is XORed
with the other half. The two halves
are then swapped. Each round
[ollows the same pattern except for
the last round where there is no
swapping. A nice feature of a

- Phaintext
256 bits -

An Improvement of Serpent Algorithm

Feistel cipher is that encryption
and decryption are structurally
identical, through the subkeys used
during encryption at each round
and are taken in reverse order
during decryption.

P tita ;I —
L P-Function il 1 ———
™ Cyrhs
L3 B Ty Ik E
: Fo
:‘ Famztlan,
4 bk g -
P
Ry — For
1 1"‘ =1 3
RE,, b _{ o P Pty = |
! ", s S =
L
L3Fedy
Lﬁ_ﬁ
J Shox |
Hry Dby .-’*9 J
—i
L ‘)
Ciphertext
256 bits

Fig. 4 The Structure of Improved Serpent Algorithm

3.1 Encryption and Decryption
The design of the proposed
algorithm began with a
consideration of Serpent as a
potential candidate for an AES
submission. Modifications were
then made to meet the AES

754

requirements, to increase security,
and to improve performance.

Let IP represent Initial Permutation
and L/R Left/Right shifting, the
Encryption algorithm is used to
encrypt the plaintext P using secret
key K to produce Ciphertext C and
can be described as follows:

Eng. & Technology, Vol.6, No.24, 2005

Decryption Algorithm
1. A = Ciphertext C.
2. Fori=r,...0
21l swap L, R
22 R=R & INV-LT{F(L&
KF :-}J
When i=r step 2.2 is replaced
by
R.f=R & F (L F‘.'Fr.l &
F.'Fr -

2.3(Lfn;=P.=A,ﬁPl_
APW,:_

24A4=(L/R)
3. Plaintext= P [4, KPr

KP ¥ 2)

The decryption process is the
same as the encryption process
except that the round keys are
applied in reverse order and use
the inverse of linear transformation

The decryption algorithm i
described below, which is used tc
decrypt the Ciphertext C using
secrete key K to produce the
plaintext P.

IE

K

3.2 The F-function

The F-function is, of 128-bit,
and used to apply the Serpent
algorithm to the left half of the
proposed algerithm. This transfor-

mation appears to meet our
security goals while taking
advantage of previous Serpent
algorithm that is efficiently

implemented on most moderm
processors. Figure 5 illustrates the
F-function of Serpent algorithm
which represents the left half of the
improved Serpent algorithm.

755

An Improvement of Serpent Algzorithm

3.3 The P-Function

In Serpent algorithm (before
improvement) the initial
permutation and corresponding
final permutation public and fixed
table are used. They have no effect
on the attacks but the fixed table
makes the encrypted algorithm
harder to explain and they do not
affect the security,

L i
Wogas

L[e mwtmain@n |
2 : .

ks %\7 Rl
—

Figure 5 The F-function

In the improved algorithm key
dependent initial permutation is
applied as a reversible mixing
function (which is more
complicated reversible mixing
function) before F function. It is
used to overcome a Feistel
structure weakness that each round
transformation always keeps one
half of the block constant so that
the P-function would further
confuse the entry values into the
Feiste] network and ensure a

Eng. & Technology

gy, Vol.g, No.24, 20035
complete avalanche effect after the
first two rounds.

The P-function is required to
provide the necessary diffusion
and confusion to the input block,
such that additive differences will
be destroyed as the key is changed.

This could provide a protection
against linear and differential
cryptanalysis. Figure 6 illustrates
the P-function which has 256-bit
mput 4 and 256 A and 2356-bit
output [J,

It adopts "byte transpo-sition”
and 48-bit SUbkﬁ}’ (KP;; | KP;s) to

An Improvement of Serpent Algorithm

control data rotations, where

i=0...r1

Let: KF] ={m|1m15nrjemq),

And KP, =(m,ny,m.n,),

where mj and n; are 6-bit subkey

and not equal to zero, j=1...., 4.
The function:
D= P(4,KP, |KP,)
is defined by following:
i) Right rotation:

by=ap>>>m;,

for j=1,....4.
{i) Byte transposition:

1t 3 4 4 4 7 a3 ."-"l-d-——-—p::::-ml . al
32 hads
LT I R BT - TR T b
E o1 2F> ang | 22
4348 v e 1 2t 3y 24 By — TPR ENa g A
RO 27 WA 99 a0 mor ¥, . ——f— =25 ang -y
Byite l'nmupoﬁ:lim
< a,
TS % 1a 7 o 2sw] — === my —
< 2,
d e oad 18 2% W 0.3 2] wRE I -
¥ —= 0
o '1:'
15 00 W 29 M 03 7 ou — HEE Mg [25 bt
a4
od L
%G wd W 32 4 & 1% 14 — .Y

EF w8, B0
HE mim, Loy |, [t i3, 13 et

FEI={n I In | oé)n 13 Bk,

Fig,6 The P-function

Considering the block to be
made up of bytes 1 to 32, these

TG

bytes are arranged in a rectangle,
and shifted as follows:

Eng. & Technology, Vol.6, No.24, 20035

From

| 5 9 13 17 21 25 29
2 610 14 1% 22 26 30
3 i1 15 19 23 27 3]
4 &8 12 16 20 24 28 32
To:

1 5 9 13 17 21 25 29
@ 10 14 1" 22 2 I 2
15 19 23 27 13l 3 7 11
2 24 28 32 4 3 12 16

The transposition step ensures
that the different bytes of each row
do not interact with the
corresponding byte in other rows,
iii} Left rotation:,

dj=cj<<<n;

for j=1,...,4.

It is clear that in this proposal
each input word a, affects all

output words and consequently
each output word is affected by all
input words. In, P-function, the
permutations are key dependent so
that it could avoid linking
plaintexts to input to the F-function
and ciphertexts to input to the F-
function in each round,

4. Evaluation of the Improved

Algorithm

The improved Serpent
algorithm increases the security of
the original serpent algorithm by
using block size of 256-bits. If the
length of block is small, then the
attack on the algorithm will be
easy. All possibilities to the
improvement algorithm of a data
are 2%° blocks, thereby providing
an improvement in performance.
As described before, and referring
to Fig.6, the improved Serpent
algorithm increases the security by

757

An Improvement of Serpent Algorithm

using the P-function, where each
mnput word a, affects all output

words and each output word is
affected by all input words. In, P-
function, the permutations are key
dependent so that it could aveid
linking plaintexts to input to the
first F-function and ciphertexts to
input to the last F-function.

The improved algorithm is
pertinent to the following types of
attack and this is due to many
[EASOns:

a) Differential
largely

cryptanalysis is
theoretical. The
enormous time and data
requirements to mount a
differential cryptanalytic attack
put almost beyond the reach of
everyone.
b) Key-dependent permutation
function is used before the F-
function such that the input bits
are exchanged wunder the
control of subkeys, so that the
additive difference will be
destroyed, as the bits are
exchanged, this could provide
protection against linear and
differential cryptanalysis.
The previous Serpent S-boxes
were well designed with
respect to linear and
differential cryptanalysis. So,
the improvement algorithm
uses the same S-boxes of the
previous Serpent algorithm,

The block size of 256-bits
makes Serpent algorithm
vulnerable to the matching

ciphertext attack, because after
encryption of 2% blocks, equal
ciphertexts can be expected and
information is leaked about

Eng. & Technology, Vel.é, Mo 24, 2005

plaintext. So that, the improved
Serpent algorithm with 256-bits
block size is resistant to matching
ciphertext attacks and hence it is
required for 2'*® ciphertext.

4.1 Avalanche Effect
Horst Feistel referres to the avalanche
effect as; “a small change in the key gives
rise to a large change in the ciphertext”
18]

Avalanche effect is a property
that is used 1o measure the strength
of the algorithm. It is used for

making statistical test on the
ciphertext that is produced from
encrypting variable plaintexts

under the control of the key of
length 2536-bits Plaintext and Key
in hexadecimal form:

KEY=000000000000000000000000000
0000000000C00000000000000000000

PT=00000000000000000000000000000
0000000000000000000000000000000
PT=44444444444444444444444444444
4444444444444444444444444444444
PT=11001100110011001100110011001
10011001100110011001 10011001100
PT=55555555555555555555555555555
5555555555555555555555555555555
PT=01010101010101010101010101010
101010101016G10101010T0101010101
PT=fir e e PO AT PO T T
Rddsaduinuantarnsuuaapaniainenininidiani
iiisnitid

Tables 1 and 2 illustrate that the
number of blocks that have
avalanche effect greater than 64
before improvement is 2 out of 6
and the averape of avalanche effect
is 61.1. After using the improved
Serpent algorithm all the blocks
have avalanche effect greater than

T58

An fmprovement of Serpent Algorithm

128 and the average of the
avalanche effect is 132.6.

[et us consider ancther example to
test Avalanche effect that assets
the result.

Key in hexadecimal form:
Key= 300000000000000000000
000000000000000000000
000000000000000000000

Plaintext in hexadecimal form:

PT = QO000000G00000000000000
QOOOOH001

PT = 00000000000000000000000
00000004

PT = 00000000000000000000000
OoO0ooo10

PT = 000000GOG00000000000000
00000040

PT = 00000000000000000000000
000000100

BT = 00000000000000000000000
000000400

PT = 00000000000000000000000
Q00001000

BT = 00000000000000000000000
000004006

BT = 00000000000000000000000
QOo0010000

PT = 00000000000000000000000
000040000

PT = 00000000000300000000000
000100000

PT = 0000000000000000G000000
COO400000

PT = 00000000000000000000000
Q01000000

PT = 00000000000000000000CH0
Q04000000

PT = 00000000000000000000000
010000000

PT = QOC00000000000000000000
(40000000

PT = Q00000000000000000000
100000000

T = GO00000000000000000CH00
400000000

BT = Q0000000000000000000001
O00OGR0C0

BT = 00000000000000000000004

Eng. & Technology, Vol.g, No.24, 2005

G000000G0

PT = G0000000000000000000010
000000000

PT = 00000000000000000000040
000000000

PT = G0000000000000000000100
000000000

PT = 00000000000000000000400
000000000

FT = 0000000000000000000 1000
000000000

PT = 00000000000000000004000
000000000

PT = 00000000000000000010000
000000000

PT = 00000000000000000040000
Q00000000

PT = 000000000000000001 00000
000000000

PT = 00000000000000000400000
0oo00000n0n

An Improvement of Serpent Algorithm

PT = 00000000000000001 000000
000000

PT = 00000000000000004000000
(0000

Figures 7 and 8 represent the
avalanche effect on the ciphertext
when only one bit is changed and
the Serpent algorithm of 128-bit
block size is performed before
improvement and 256-bits block
size after improvement. The
figures show that the changes are
54 to 76 bits out of 128 bits when
the algorithm before improvement
is performed.

Tablel. Avalanche before improvement

Block NO. | Ciphertext 128-bits in Hexadccimal “Weight
1 CT1=a82b5743M8ddI984 181950801 04945
CT2=5Tdd866d30b663039ded 7403971 blad 1]
4 CTi=4701 {151 362421 293d3% 06503865 0c
CT2=%e55874b356a40114419¢cecf515b04ab 57
3 CTI=43fc01 28 4nadAS6033dd4a544 3185
CT2=838687bfe34864acea3506 T c2ed24b 55
4 CTl=al535c3cdHETeB33e00494cB163135
CT2=4354Hc00c0e771 05677 742124008153 60
5 CT1=55b0438b3c3a22ad] 1094 b68DScMe3S 5
CT2=b7Tal f80T4ch6dS00202TafS6bR312d17 | 6l I
[CT1=%200alef1a35221MIL4446M0311dd '
CT2=e213e6b0dMS5ccfadh345a92c3nedbe 69
l keyl QUED000UHHLIOHHINNNN0000 00000000000 000000 0000000000 CO000N0D. |
t Key2 120000000008000000000000000000A0 0000000000000 00 HHMNI000000000 Jf

Eng. & Technology, Vol.6, Mo 24, 2005 An Improvement of Scepent Algorithm

Table 2 Avalanche effects after improvement

Block | ~ Ciphertext 128-bits in Hexadecimal | Weight
ND.

1 CTI=2b404022350032852 270768101 w4b663246addTSaedd
de8decbed400765 128
CT=Tadcam T340 5 2503 e S da 48 2 Me 0020 hi3belaltsl
ddb3atheShiedst

& CT1=66ec237557a502Tel bt 4357004 I bEIec2ehed 2AN 150
| LST0cheT8b1471e 136
CT2=Talrd359334d5cfe2503 LeBda 48 2Me290 201 dhD3 beDal 68
28d83albeShdcdST

K] CTi=
aa3fhdb2dTadH ededfBT9acd N 7 TebB 3d0de M decdd5 1 d15u5461 134
2b2abEScds0

CT2=Tadcd59334d5¢fe25b3 1elda (82 M0e20¢29 1 dbO3bellusE2
Sd83albeShiedss

4+ CTi=di3acd225537hd 1332 254abb20752167d6be0% 1 bE4R10T
13p006760796272 136
CTI=Taled559334d5cTe25b3 1 e8dda (4822920 b3 bedalod
28d83albesbRedSt

3 CTi=bdc316a0445636ea67el DeBTac | duthechel cab 71 690501
hebBEI8e360e52 132
CT2=723cd55933405cTe25b3 T eRda 482106 29c20 1 db03 bedalEs
2808301 beSbEedsT '
& CT1=-8b6b0634e25183381 2048597 La2ab 190fdd 208cdi9] 128
A5T3aTE T e 700605 134
CT2=7a3ed559334d5cFe 25031 e8da M8 210029c20 LA I bela e R
28dR3alheShbyedsr

Revl Gﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ!bﬂﬂﬂﬂﬂﬂﬂﬂWﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂuﬂﬂﬂﬂﬂﬂﬂmmﬂﬂﬂ

Keyz | 100000000400000000000(I000C0000000T00I0HIN0IT0000000UI0T0000

avalanche effect of 128 block size

avaianchg affect
A
;

| o [= oK o E— —— e AT, Siny o LR

| 1 4 i T L T TR - T TR R

block number |

Figure 7 Avalanche effect on the ciphertext when only one bit is
changed and the Serpent algorithm of 128-bit block size is
performed

Tai)

Eng. & Technology, Vol.6, No,24, 2005

240 -
220
200 -
180 -
160 -
140 -
120 -
160

80 -
&

40 -
20 -

1 e S .

avalanche effect

An Improvement of Serpent Algorithm

N s e SESSE

T2 & 7 9 M 13 15 7 1w o A BT o8 N

block number

Figure 8 Avalanche effect on the ciphertext when only one bit is
changed and the Improved Serpent algorithm of 256-bit block size is

performed

Meanwhile, after the improvement
the changes are 117 to 142 bits out
of 256 bits. The number of blocks
that have avalanche effect is larger
than 64 (which is half of 128) after
performing unimproved Serpent
algorithm is 12 out of 32 blocks.
From the figure it is clear that the
number of blocks that have
avalanche effect larger than 128
(which is half of 256) after
performing improved Serpent
algorithm 1s 17 out of 32 blocks.
Moreover, we note that the average
of avalanche effect before and
after improvement is 63.5 and
129.3 respectively.

4.2 Randomness Test
Symmetric-key block ciphers are
primarily designed for providing

data confidentiality, their
versatility allows them to serve as
a main component in the
construction of many

761

cryptographic systems such as
pseudo random number generators.
message authentica-tion protocols,
stream ciphers, and hash functions
[8].

Three well-known tests [9] can be

used to test the proposed
algorithm, these tests are
frequency, serial and auto-

correlation. These tests have been
made on the cipher text that is
produced from encrypting of eight
blocks of the block mentioned in
Section 4.1 using Serpent
algorithm before improvement and
after improvement with block size

128-bits and 256-hits. Table 4
shows these tests.

4.3 Time Requirement

In this section the time
requirements are computed for the
algorithm before and after
improvement.

Eng. & Technology, Vol 6, No.24, 2005

This comparison represents the
time for encryption and decryption
using Serpent algorithm before and
after improvement as shown in

AN Improvement of Serpent Algorithm

cluck_t beg, end;

ir

(f

fp=~fopeni

"example.txt”,"rb"))==NULL}
[printf{"error: can not open file™');
exit{ly;)

Table 3,

The following program part

beg=clock(};
while { Heof (Tp)

{
ENCRYPTION PROCESS FOR ONE
BLOCK

written in C, is used to compute
the time required to encrvpt file
example.txt which contains a

end=clock();

felose(fph;

message of specific length.

printf" %80 (double}end-

beghCLK_TCK): &
Second

To get time in

Table 3. Speed comparisons of Serpent algorithm on a Pentium 11 PC
before and after improvement

; i Speed (Clocks per
Algorithm | g0 size Number of Bytes Sec.)
1000 0.16
Serpent 128-bits 10000 1.26
, 100000 F 7.14]
Improved | 236-bits i!‘]%ﬂgﬂﬂ — ?;; -
i s fo. Em |

Table 4 . Randomness test of Serpent algorithm before and after improvement
Auto C. test = Auto Correlation Test

Block Randomness test | Serpent of 256 | Serpent of 128 Degree of
e, | bits hlock size | bits block size Freedom
| Freg. test (L0765625 0.125000 With 1 <=3.54
' Serial test 0.0814767 | 0.02460 With 5>=14.1 |
Auto C, test :
d= 1 0.074254 | 0.017349 |
d=2 0.093110 0.007448 !
1 g=3 0.114186 | 0.001643
=4 0.137507 | 0.000032 i I
=5 | 0163100 | 0.002717 o 1mgs |
d=6 | L190993 | 0.009806 1 i
L d=7 (.221213 0.021406 i
Freq. test 1562500 | 3.12500 |
Serial test 2.46495] 3.197835 |

762

Eng & Technology, Vol.g, Mo 24, 2005

AN Improvement of Serpent Algorithm

Auto C. test d= 1 I
d=2 0.000301 0.016101
d=3 0.002260 | 0.008066
d=4 0.006059 | 0.002749
d=35 0.011721 | 0.000218
d=6 0.019267 | 0.000539
D=1 0.028720 | 0.003783
0.040104 | 0.010023
. Freg. test 0.000000 | 0.781250
| Serial test 0.105882 | 0.880167
| Auto C, test d= | 0.0360598 S
| d=2 0.0325624 | 0.035800
d=3 0.0292219 | 0.022170
d= 4 | 0.0260501 | 0.011721
d=5 0.0230492 | 0.004530
d=6 p.0202211 | 0.000677 :
D=7 0.0175680 | 0.000244
0,003315
Freq. test 1.562500 0.000000
Serial test 1.617892 | 1.488189
Auto C. test
d=1 0.019966 | 0868110
i d=2 0.030337 | 0.960317
| d=3 0.042924 1.058000
| d=4 0.057754 1161290
; d=35 0.074852 | 1.270325
| d=6 0.094246 1.385246
1 D=7 0.115964 1.506198
Freq. test 0.0140625 0.031250 With 1 <=3.84
Serial test 0.561336 0.685285 With 5>=14.1
Auto C, test d= |
d=2 0.023468 | 0.154589
d=3 0.034357 | 0.193578
d=4 0.047371 0.237316 With 1<=3.84
d=5 0.062534 | 0.285919
d=6 0.079873 | 0.339508
D=7 0.099414 | 0.398199
0.121183 | 0.462124
Freq. test 0.562500 0.500000
| Serial test 3312010 | 2799213
i Auto C, test d= |
d=2 0.288350 0.600846
d=3 0.322557 0.672355
d= 4 0.358829 0.748523
d=35 0.397191 0.829463
d=6 ' 0.437669 0.915292
D=7 | 0.480288 1.006131
| 0.525073 1102102 i
Freq. test 0.250000 1.125000
{ Serial test 2. 710784 T.780512

Th3

Eng. & Technology, Vol.6, No.24, 2003

Amn Improvement of Serpent Algorithm

| Auto C. test d= 1 S
[de=2 0.324017 1838584
d=13 0.365019 1.964711
d=4 0.408642 2.096142
7 d=5 0.454918 2.233004
d=6 | 0.503878 2375430

d=7 0.555554 2.523557 J

| {.609950 2.677526 {
| Fraq. test 00265625 0.125000
| Serial test 1.0757904 0.402559

Auto C. test d= 1
d=2 0.00083 1 P 0045143
g d=3 0.003573 0067209
d=4 0.008251 0.093881
d=3 0.014889 (0125272
d=6 0.023510 0.161497
d=7 0.034138 0.202673
0.046797 0.248925
Conclusions 1- The same algorithm criteria for

The proposed algorithm is used
in a large variety of applications
including protection of the secrecy

of login passwords, e-mail
messages, and video transm-
issions (such as pay-per-view

movies) and stored data files.
The block size can be increased to
256 bits instead of 128 bits by
using round function in a Feistel
construction; this makes the
exhaustive key search and the
matching ciphertext atiack are
infeasible. The proposed algorithm
also uses key dependent function
before and after each round instead
of initial and final permutation
which uses fixed tables. This gives
the algorithm, a protection against
differential and linear
cryptanalysis.

The results obtained illustrate
that the improved algorithm has
the following features:

Th4

encryption and decryption with
some key schedules can be used.

2- It is based on simple theory
principles and simple arithmetic
operations and easy to implement,
easy to understand algorithm,

3- It adopts key—dependent
permutation and substitution to
provide protection against

differential and linear cryptanalysis
so, the improved algorithm is
secure.

4- It uses the subkey to control
data permutation and data
substitution.

5-From the results obtained from
the avalanche effect and random
test, after measuring the strength of
the proposed alporithm we can
conclude that the proposed
algorithm can be used to increase
the security.

6- From the time require-ment
section, we notice that although the

Eng. & Technology, Vol.6, No.24, 2005

improved algorithm uses P-
function after each round, the time
which is required to encrypt the
same file afier the improvement
takes less time compared with
previous Serpent algorithm. The
reason for that is the encryption
process encrypts double blocks
instead of one block of previous
Serpent algorithm.

References:

. Burwick, D. Coppersmith, FE.
D" Avignon, R. Gennaro, S. Halevi, C.
Jutla, 5. M. Matyas. L.. O'Connor, M,
Peyravian, . Safford and N, Zunic,
“Mars a candidate cipher for AES”,
First Advanced Encryption Standard
{AES) Conference, Ventura, CA,
1998,

2. Anderson R., Biham E. and
Knudsen L., “Serpent: A Proposal for
the Advanced Encryption

Standard.” First Advanced Encryption
Standard (AES) Conference, Ventura,
CA, 1998,

3. Serge Mister, "Properties of the
Building Blocks of Serpent”
http://csre.nist. poviencryption/ass/rou
nd2/conf3/aesipapers.html, May 15,
2000

T

An Improvement of Serpent Alporithim

4. Weeks B, Bean M., Rozylowicz

T., and Ficke C., * Hardware
Performance Simul-ations of Round 2
Advanced Encryption Standard
Algorithms™, Nariomal Security

Agency, 2001

3. Anderson R.. Biham E. and
Knudsen L." Serpent and Smart
Cards." Third Smart Card Research
and Advanced Applicat-ions
Conference Proceedings, 1998, to
appear. NIST AES Proposal, Jun 1998
6. Shakir M. * A New Feedback
Symmetric Block Cipher Method”
Ph. D. Thesis, University of Tech.,
Baghdad, 1997,

7. Bora P. and Ezajka T,
"Implementation of the Serpent
algorithm using altera FPGA
devices”,

hitp:Vesre.nist, gov/encryption/aes/rou
nd2/comments/200005 1 3-pbora.pdf

8. Shiner B. “Applied Cryptography
Second Edition Protocols.
Algorithms, and Source, and Source
Code in C", John Wiley and Sons,
Inc., 1994.

9, 1996 " il Lkl ¢ Haaadl apey

