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RESEARCH ARTICLE

A Novel Approach to Cexp Average Assignments
on Chain Graphs

A. Rajesh Kannan

Department of Mathematics, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India

ABSTRACT

In general, the exponential average of two positive numbers does not have to be an integer. Because of this, the
exponential average needs to be an integer that takes into consideration the flooring or ceiling function. It has been
defined that graphs can be labeled with an exponential average, where the flooring function or the ceiling function can
apply labels to the edges. To establish the exponential average assignment on graphs, consider the edge labels that arise
from the ceiling function alone. The vertex assignment function δ and edge assignment function δ∗ are called a Cexp
average assignment of the graph G with p vertices and q edges if δ is injective and δ∗ is bijective and the corresponding
relations are δ : V → N − {q+ 2, . . . ,∞}, δ∗ : E → N − {1, q+ 2, . . . ,∞} and is defined by edge label δ∗ is δ∗(uv) =
d

1
e ( X (v)

X (u) )
1

Y (u,v) e where X (u) = δ(u)δ(u)
,Y (u, v) = δ(v)− δ(u) and N is the set of all natural numbers. If the graph accepts

a Cexp average assignment then it is called a Cexp average assignment graph. The Cexp average assignment of graphs is
proposed in this paper, and its characteristics are explored on the cycle, the union of path and cycle, the union of T-
graph and cycle, the graph G*, the graph G′, the graph Ĝ and tadpole.

Keywords: Cexp average assignment, Cexp average assignment graph, Chain graphs, Edge labeling, Vertex labeling

Introduction

Graph labeling is the assignment of labels,
generally represented by integers, to the edges
and/or vertices of a graph. The average procedures
with chain graph topologies are effective models
in a wide range of applications, including circuit
design, communications infrastructure addressing,
astronomy, database management systems, and
coding theory. The chain graph is essential in
different applications which include electronics,
electrical, and wireless communication. Mathematics
is used in almost every aspect of computer
science, including intelligent transportation, project
management systems and tools, software architecture
and design, multiprocessing, automated control,
distributed and concurrent algorithms, and so on.
Algorithm creation, implementation, and analysis are
all aided by mathematics in scientific and technical

applications. It also enhances the efficacy and
application of current approaches and algorithms.
The assignment of vertices and edges is important in
many applications in the field of graph theory and
optimization. Our paper introduces a new method
for determining Cexp averages on chain graphs, a type
of graph that is frequently found in various domains
like network analysis, biology, channel assignment,
routing and path selection, max-flow min-cut process,
fault detection and localization process, resource al-
location, interference mitigation, theoretical analysis
or simulation, wireless network performance metrics,
fuzzy decision making, and telecommunications. A
graph is characterized as a finite, undirected, and
simple graph throughout this work. Interpret the
graph G(V, E), which has p endpoints and q linkages.
West DB1 provided concepts and notations for graphs
and survey2 provided a detailed analysis of graph
labeling.
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Fig. 1. A Cexp average assignment of S3.

Materials and methods

Path on n vertices is denoted by Pn and cycle on n
vertices is denoted by Cn. The graph K1,n is called a
star graph and it is denoted by Sn. The T-graph Tn is
obtained by attaching a pendant vertex to a neighbor
of the pendant vertex of a path on n− 1 vertices. The
graph Tadpoles T (n, k) is obtained by identifying a
vertex of the cycle Cn to an end vertex of the path Pk.
Barrientos and Minion proposed a method that allows
us to transform a special kind of graceful labeling into
harmonious labeling for many families of graphs.3

Durai Baskar et al. presented the F-geometric mean
and developed its meanness for chain graphs in-
cluding the graph G*, the graph G′ , and the graph
Ĝ.4 Uma Devi et al. delivered the odd Fibonacci
edge irregular labeling5 for some trees obtained from
subdivision and vertex identification operations. The
C-exponential meanness of graph6 includes path, tri-
angular tree of Tn, the cartesian product of two
paths, a one-sided step graph, and a double-sided step
graph was studied by Thamaraiselvi and Rajasekaran.
Khan et al. studied the computational and topological
properties of neural networks using graph-theoretic
parameters.7 Ashwini et al. determined the lucky
number8 of various graphs. Muthugurupackiam et al.
determined the (a, d) -total edge irregularity strength
of graphs.9 The assignment calculations are based on
the Cexp average across numerous ladders graphs10

significantly the one-sided step graph, diamond lad-
der graph, and the meanness of graphs derived from
various graph operations established by Rajesh Kan-
nan et al. The vertex assignment function δ and edge
assignment function δ∗ are called a Cexp average as-
signment of the graph G with p vertices and q edges
if δ is injective and δ∗ is bijective and the correspond-
ing relations are δ : V → N − {q+ 2, . . . ,∞}, δ∗ :
E → N − {1, q+ 2, . . . ,∞} and is defined by edge
label δ∗ is δ∗(uv) = d 1

e ( X (v)
X (u) )

1
Y (u,v)
e where X (u) =

δ(u)δ(u),Y (u, v) = δ(v)− δ(u) and N is the set of all
natural numbers. If G(p, q) accepts Cexp average as-
signment then it is called a Cexp average assignment
graph. Fig. 1 offers an interesting memorable illustra-
tion of a Cexp average assignment with graph S3.

Fig. 2. Flow chart for Cexp average assignment graph.

A flow chart for Cexp average assignment graph is
given in Fig. 2.

A Cexp average assignment for the graphs related to
chains has been examined here.

Results and discussion

Based on the Cexp average assignment definition,
the following theorems were proved.

Theorem 1: Every cycle Cn is a Cexp average assign-
ment graph, for n ≥ 3.

Proof: Let {va : 1 ≤ a ≤ n} be the nodes of the cycle.
Let n ≥ 4. The point assignment of the cycle Cn is
given in Table 1.

The line assignment of the cycle Cn is given in
Table 2, and δ∗(vnv1) = d 1

e (X (v1)
X (vn) )

1
Y (vn ,v1)

e = 3. A Cexp
average assignment of C12 is given in Fig. 3.

For the special case, n = 3 labeling is given in
Fig. 4.

Thus, every cycle Cn is a Cexp average assignment
graph, for n ≥ 3. �

The cycle C3 is one of the interesting and simple
graph. In the above proof, a Cexp average assignment
for cycle for n ≥ 4 has been discussed. Also for
n = 3, the cycle c3 and its assignment values have
been represented.
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Table 1. The point assignment of the cycle Cn.

The point assignment δ is {1,2,3, . . . , n+ 1}

δ(v) 1 ≤ a ≤ 2 3 ≤ a ≤ b n2 c + 1 a = b n2 c + 2 b
n
2 c + 3 ≤ a ≤ n

δ(va) 2a− 1 2a− 2 n+ 1 2n+ 5− 2a

Table 2. The line assignment of the cycle Cn.

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ 2 3 ≤ a ≤ b n2 c + 1 a = 2+ b n2 c b
n
2 c + 3 ≤ a ≤ n− 1

n is even n is odd

δ∗(vava+1) =
⌈

1
e ( X (va+1 )

X (va ) )
1

Y (va ,va+1)
⌉

2a 2a− 1 n n+ 1 2n+ 4− 2a

Table 3. The point assignment δ(ua) of the graph Cm ∪ Pn.

The point assignment δ is {1,2,3, . . . , n+m}

δ(v) 1 ≤ a ≤ bm2 c a = bm2 c + 1 b
m
2 c + 2 ≤ a ≤ m

δ(ua) m+ n+ 2− 2a n −1+ 2a−m+ n

Table 4. The point assignment
δ(vb) of the graph Cm ∪ Pn.

The point assignment δ

δ(v) 1 ≤ b ≤ n− 1 b = n
δ(vb) b -
δ(vn) - 1+ n

Fig. 3. A Cexp average assignment of C12.

Theorem 2: The graph Cm ∪ Pn is a Cexp average as-
signment graph, for n ≥ 2.

Proof: Let {ua, vb : 1 ≤ a ≤ m,1 ≤ b ≤ n} be the nodes
of the cycle and path. The point assignment δ(ua) of
the graph Cm ∪ Pn is given in Table 3.

The point assignment δ(vb) of the graph Cm ∪ Pn is
given in Table 4.

The line assignment δ∗(uaua+1) of the graph Cm ∪ Pn
is given in Table 5.

Table 5. The line assignment δ∗(uaua+1) of the graph Cm ∪ Pn.

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ bm2 c a = bm2 c + 1 b
m
2 c + 2 ≤ a ≤ m− 1

m is odd m is even

δ∗(uaua+1) =
⌈

1
e ( X (ua+1 )

X (ua ) )
1

Y (ua ,ua+1)
⌉

m+ n− 2a+ 1 n+ 1 n+ 2 n−m+ 2a

Table 6. The line assignment δ∗(vbvb+1) and
δ∗(umu1) of the graph Cm ∪ Pn.

Line Assignment δ∗

δ∗(e) 1 ≤ b ≤ n− 1

δ∗(vbvb+1) =
⌈

1
e ( X (vb+1 )

X (vb) )
1

Y (vb,vb+1)
⌉

1+ b

δ∗(umu1) =
⌈

1
e ( X (u1 )

X (um ) )
1

Y (um ,u1)
⌉

n+m

Fig. 4. A Cexp average assignment of C3.

Fig. 5. A Cexp average assignment of C12 ∪ P7.

The line assignment δ∗(vbvb+1) and δ∗(umu1) of the
graph Cm ∪ Pn are given in Table 6.

A Cexp average assignment of C12 ∪ P7 is given in
Fig. 5.
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Table 7. The point assignment δ(va) of the graph Tn ∪ Cm.

The point assignment δ is {1,2,3, . . . , n+m}

δ(v) 1 ≤ a ≤ bm2 c a = bm2 c + 1 b
m
2 c + 2 ≤ a ≤ m

δ(va) 2+m− 2a+ n n −1+ n+ 2a−m

Table 8. The point assignment
δ(ua) of the graph Tn ∪ Cm.

δ(v) 1 ≤ a ≤ n− 2

δ(ua) a+ 1

Table 9. The point assignment
δ(un) of the graph Tn ∪ Cm.

δ(un−1) n+ 1

δ(un) 1

Thus, the graph Cm ∪ Pn is a Cexp average assign-
ment graph, for n ≥ 2. �

The union operation preserves its Cexp average as-
signment property for Cm and Pn.

Theorem 3: For, n ≥ 2 andm ≥ 3, the graph Tn ∪ Cm
is a Cexp average assignment graph, where Tn is a T graph.

Proof: Let Pn−1 be the path having nodes as
{ua : 1 ≤ a ≤ n− 1} and {va : 1 ≤ a ≤ m} be the nodes
of the cycle and un be the pendent vertex identified
with u2. The point assignment δ(va) of the graph
Tn ∪ Cm is given in Table 7.

The point assignment δ(ua) of the graph Tn ∪ Cm is
given in Table 8.

The point assignment δ(un) of the graph Tn ∪ Cm is
given in Table 9.

The line assignment δ∗(vava+1) of the graph Tn ∪ Cm
is given in Table 10.

The line assignment δ∗(uaua+1) of the graph Tn ∪ Cm
is given in Table 11.

The line assignment δ∗(u2un) and δ∗(u2un) of the
graph Tn ∪ Cm are given in Table 12.

A Cexp average assignment of T7 ∪ C6 and T4 ∪ C3
are given in Figs. 6 and 7 respectively.

Thus, for, n ≥ 2 and m ≥ 3, the graph Tn ∪ Cm is a
Cexp average assignment graph. �

Table 10. The line assignment δ∗(vava+1) of the graph Tn ∪ Cm.

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ bm2 c a = bm2 c + 1 2+ bm2 c ≤ a ≤ m− 1
m is odd m is even

δ∗(vava+1) =
⌈

1
e ( X (va+1 )

X (va ) )
1

Y (va ,va+1)
⌉
−2a+ n+ 1+m n+ 1 n+ 2 −m+ 2a+ n

Table 11. The line assignment δ∗(uaua+1) of the graph
Tn ∪ Cm.

δ∗(e) 1 ≤ a ≤ n− 2

δ∗(uaua+1) =
⌈

1
e ( X (ua+1 )

X (ua ) )
1

Y (ua ,ua+1)
⌉

a+ 2

Table 12. The line assignment δ∗(u2un) and
δ∗(v1vm) of the graph Tn ∪ Cm.

δ∗(u2un) =
⌈

1
e ( X (un )

X (u2 ) )
1

Y (u2 ,un )
⌉

2

δ∗(v1vm) =
⌈

1
e ( X (vm )

X (v1 ) )
1

Y (v1 ,vm )
⌉
−1+ n+m

Fig. 6. A Cexp average assignment of T7 ∪ C6.

Fig. 7. A Cexp average assignment of T4 ∪ C3.

Even though Cm and Tn are Cexp average assignment
graphs, their union preserves its Cexp average assign-
ment property.

The graph G∗(p1,p2, . . . ,pn) is obtained from
n cycles of length p1,p2, . . . ,pn by identifying
consecutive cycles at a vertex as follows. If the bth

cycle is of odd length, then its ( pb+3
2 )th vertex is

identified with the first vertex of (b + 1)th cycle and
if the bth cycle is of even length, then its p j+2

2 vertex
is identified with the first vertex of (b + 1)th cycle.

Theorem 4: The graph G∗(p1,p2, . . . ,pn) is a Cexp
average assignment graph for any pb, for 1 ≤ b ≤ n.
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Table 13. The point assignment δ(v(1)
a ) of the graph

G∗(p1,p2, . . . ,pn).

The point assignment δ is {1,2,3, . . . ,
∑n

b=1 pb + 1}

δ(v) 1 ≤ a ≤ b p1
2 c + 1 b

p1
2 c + 2 ≤ a ≤ p1

δ(v(1)
a ) −1+ 2a 2p1 + 4− 2a

Proof: Let the points of cycles of frequency n be
{v(b)
a : 1 ≤ b ≤ n,1 ≤ a ≤ pb} and for 1 ≤ b ≤ n− 1,

the bth cycle and (b+ 1)th cycle are identified by
a vertex v(b)

pb+3
2

and v(b+1)
1 while pb is odd and v(b)

pb+2
2

and v(b+1)
1 while pb is even. The point assignment

δ(v(1)
a ) of the graph G∗(p1,p2, . . . ,pn) is given in

Table 13.
The point assignment δ(v(b)

a ) of the graph
G∗(p1,p2, . . . ,pn) is given in Table 14.

The line assignment δ∗(v(1)
a v(1)

a+1) of the graph
G∗(p1,p2, . . . ,pn) is given in Table 15.

The line assignment δ∗(v(b)
a v

(b)
a+1) of the graph

G∗(p1,p2, . . . ,pn) is given in Table 16.
The line assignment δ∗(v(1)

p1
v(1)

1 ) and δ∗(v(b)
pb v

(b)
1 ) of

the graph G∗(p1,p2, . . . ,pn) are given in Table 17.
A Cexp average assignment of G∗(10, 9, 12, 4, 5)

is given in Fig. 8.
Thus, the graph G∗(p1,p2, . . . ,pn) is a Cexp average

assignment graph for any pb, for 1 ≤ b ≤ n. �

The graph G′(p1,p2, . . . ,pn) is obtained from n cy-
cles of length p1,p2, . . . ,pn by identifying consecutive
cycles at an edge as follows: The ( pb+3

2 )th edge of bth

cycle is identified with the first edge of (b + 1)th cycle
when b is odd and the ( p j+1

2 )
th

edge of the bth cycle is

Table 14. The point assignment δ(v(b)
a ) of the graph G∗(p1, p2, . . . , pn).

δ(v) 2 ≤ b ≤ n

2 ≤ a ≤ b pb2 c + 1 a = b pb2 c + 2 b
pb
2 c + 3 ≤ a ≤ pb

pb is odd pb is even

δ(v(b)
a )

b−1∑
c=1

pc + 2a− 1
b−1∑
c=1

pc + 2a− 2
b−1∑
c=1

pc + 2a− 4
b−1∑
c=1

pc + 2pa − 2a+ 4

Table 15. The line assignment δ∗(v(1)
a v(1)

a+1) of the graph G∗(p1,p2, . . . ,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ b p1
2 c a = b p1

2 c + 1 b
p1
2 c + 2 ≤ a ≤ p1 − 1

p1 is odd p1 is even

δ∗(v(1)
a v(1)

a+1) =

⌈
1
e ( X (v(1)

a+1 )

X (v(1)
a )

)
1

Y (v(1)
a ,v(1)

a+1)

⌉
2a 2p1 − 2a+ 3

Table 16. The line assignment δ∗(v(b)
a v(b)

a+1) of the graph G∗(p1,p2, . . . ,pn).

δ∗(e) 2 ≤ b ≤ n

1 ≤ a ≤ b pb2 c a = b pb2 c + 1 b
pb
2 c + 2 ≤ a ≤ pb − 1

pb is odd pb is even

δ∗(v(b)
a v(b)

a+1) =

⌈
1
e ( X (v(b)

a+1 )

X (v(b)
a )

)
1

Y (v(b)a ,v(b)a+1)

⌉
b−1∑
c=1

pc + 2a
b−1∑
c=1

pc + 2pb − 2a+ 3

Table 17. The line assignment δ∗(v(1)
p1 v

(1)
1 ) and

δ∗(v(b)
pb v

(b)
1 ) of the graph G∗(p1,p2, . . . ,pn).

δ∗(e) 1 ≤ a ≤ m1 − 1

δ∗(v(1)
p1 v

(1)
1 ) =

⌈
1
e ( X (v(1)

1 )
X (v(1)

p1 )
)

1
Y (v(1)

p1 ,v
(1)
1 )

⌉
3

δ∗(v(b)
pb v

(b)
1 ) =

 1
e ( X (v(b)

1 )
X (v(b)

pb
)
)

1
Y (v(b)pb

,v(b)1 )


b−1∑
c=1

pc + 3

Table 18. The point assignment δ(v(1)
a ) of the graph

G′(p1,p2, . . . ,pn).

The point assignment δ is {1,2,3, . . . ,
∑n

b=1 pb − n+ 2}

δ(v) a = 1 2 ≤ a ≤ b p1
2 c + 1 b

p1
2 c + 2 ≤ a ≤ p1

δ(v(1)
a ) 1 2a 2p1 + 3− 2a

identified with the first edge of (b+ 1)th cycle when
b is even.

Theorem 5: The graph G′(p1,p2, . . . ,pn) is a Cexp
average assignment graph if all pb’s are even or all pb’s
are odd, for 1 ≤ b ≤ n.

Proof: The points of G′ be {v(b)
a ;1 ≤ b ≤ n,1 ≤ a ≤

pb}. Assume that all pb is odd. For 1 ≤ b ≤ n− 1,
the bth and (b+ 1)th cycles are identified by the
edges v(b)

pb+1
2
v(b)
pb+3

2
and v(b+1)

1 v(b+1)
pb+1

while b is odd and

v(b)
pb−1

2
v(b)
pb+1

2
and v(b+1)

1 v(b+1)
pb+1

while b is even. Take t =∑b−1
c=1 pc. The point assignment δ(v(1)

a ) of the graph
G′(p1,p2, . . . ,pn) is given in Table 18.

The point assignment δ(v(b)
a ) of the graph

G′(p1,p2, . . . ,pn) is given in Table 19.
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Fig. 8. A Cexp average assignment of G∗(10, 9, 12, 4, 5).

Table 19. The point assignment δ(v(b)
a ) of the graph G′(p1,p2, . . . ,pn).

δ(v) 2 ≤ b ≤ n

b is even b is odd
2 ≤ a ≤ b pb2 c b

pb
2 c + 1 ≤ a ≤ pb − 1 2 ≤ a ≤ b pb2 c + 1 b

pb
2 c + 2 ≤ a ≤ pb − 1

δ(v(b)
a ) t − b+ 2a+ 2 −2a+ t − b+ 2pb + 3 t − b+ 2a+ 1 t − 2a− b+ 2pb + 4

Table 20. The line assignment δ∗(v(1)
a v(1)

a+1) of the graph G′(p1,p2, . . . ,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ b p1
2 c b

p1
2 c + 1 ≤ a ≤ p1 − 1

δ∗(v(1)
a v(1)

a+1) =

⌈
1
e ( X (v(1)

a+1 )

X (v(1)
a )

)
1

Y (v(1)
a ,v(1)

a+1)

⌉
2a+ 1 2p1 + 2− 2a

Table 21. The line assignment δ∗(v(b)
a v(b)

a+1) of the graph G′(p1,p2, . . . ,pn).

δ∗(e) 2 ≤ b ≤ n

b is even b is odd
1 ≤ a ≤ b pb2 c b

pb
2 c + 1 ≤ a ≤ pb − 1 1 ≤ a ≤ b pb2 c b

pb
2 c + 1 ≤ a ≤ pb − 1

δ∗(v(b)
a v(b)

a+1) =

⌈
1
e ( X (v(b)

a+1 )

X (v(b)
a )

)
1

Y (v(b)a ,v(b)a+1)

⌉
t − b+ 2a+ 3 t − 2a+ 2pb + b+ 2 t − b+ 2a+ 2 t − 2a+ 2pb + b+ 3

Table 22. The point assignment δ(v(1)
a ) of the graph

G′(p1,p2, . . . ,pn).

The point assignment δ

δ(v) a = 1 2 ≤ a ≤ b p1
2 c b

p1
2 c + 1 ≤ a ≤ p1

δ(v(1)
a ) 1 2a 2p1 + 3− 2a

Table 23. The point assignment δ(v(b)
a ) of the graph

G′(p1,p2, . . . ,pn).

δ(v) 2 ≤ b ≤ n

2 ≤ a ≤ b pb2 c b
pb
2 c + 1 ≤ a ≤ pb − 1

δ(v(b)
a ) 1− b+ t − b+ 2a −2a+ t + 2pb − b+ 4

Table 24. The line assignment δ∗(v(1)
a v(1)

a+1) of the graph G′(p1,p2, . . . ,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ b p1
2 c b

p1
2 c + 1 ≤ a ≤ p1 − 1

δ∗(v(1)
a v(1)

a+1) =

⌈
1
e ( X (v(1)

a+1 )

X (v(1)
a )

)
1

Y (v(1)
a ,v(1)

a+1)

⌉
2a+ 1 2p1 + 2− 2a

The line assignment δ∗(v(1)
a v(1)

a+1) of the graph
G′(p1,p2, . . . ,pn) is given in Table 20.

The line assignment δ∗(v(b)
a v

(b)
a+1) of the graph

G′(p1,p2, . . . ,pn) is given in Table 21.
Assume that all pb is even. Take t =

∑b−1
c=1 pc and

for 1 ≤ b ≤ n− 1, the bth and (b+ 1)th circuits are
merged by v(b)

pb
2
v(b)
pb+2

2

and v(b+1)
1 v(b+1)

pb+1
. Take t =

∑b−1
c=1 pc.

Then, the point assignment δ(v(1)
a ) of the graph

G′(p1,p2, . . . ,pn) is given in Table 22.
The point assignment δ(v(b)

a ) of the graph
G′(p1,p2, . . . ,pn) is given in Table 23.

The line assignment δ∗(v(1)
a v(1)

a+1) of the graph
G′(p1,p2, . . . ,pn) is given in Table 24.
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Table 25. The line assignment δ∗(v(b)
a v(b)

a+1) of the graph G′(p1,p2, . . . ,pn).

Line Assignment δ∗

δ∗(e) 2 ≤ b ≤ n
1 ≤ a ≤ b pb2 c b

pb
2 c + 1 ≤ a ≤ pb − 1

δ∗(v(b)
a v(b)

a+1) =

⌈
1
e ( X (v(b)

a+1 )

X (v(b)
a )

)
1

Y (v(b)a ,v(b)a+1)

⌉
t − b+ 2a+ 2 t + 2pb + 3− b− 2a

Table 26. The line assignment δ∗(v(1)
p1 v

(1)
1 ) of the graph

G′(p1,p2, . . . ,pn).

δ∗(v(1)
p1 v

(1)
1 ) =

⌈
1
e ( X (v(1)

1 )
X (v(1)

p1 )
)

1
Y (v(1)

p1 ,v
(1)
1 )

⌉
2

Table 27. The point assignment δ(v(1)
a ) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn).

The point assignment δ is {1,2,3, . . . ,
∑n−1

b=1 (pb +mb)+ pn − n+ 2}

δ(v) 1 ≤ a ≤ b p1
2 c + 1 b

p1
2 c + 2 ≤ a ≤ p1

δ(v(1)
a ) 2a− ‘1 2p1 + 4− 2a

Table 28. The point assignment δ(v(b)
a ) of the graph Ĝ(p1,m1, . . . ,mn−1,pn).

The point assignment δ

δ(v) 2 ≤ b ≤ n
2 ≤ a ≤ b pb2 c + 1 a = b pb2 c + 2 b

pb
2 c + 3 ≤ a ≤ pb

pb is odd pb is even
δ(v(b)

a ) −b+ t + 2a −1+ t + 2a− b t + 2a− b− 3 t + 2pb − 2a− b+ 5

Table 29. The point assignment δ(u(b−1)
a ) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn).

The point assignment δ

δ(v) 3 ≤ b ≤ n,2 ≤ a ≤ mb − 1

δ(u(b−1)
a )

b−2∑
c=1

(pc +mc)+ pb−1 + a+ 2− b

Table 30. The line assignment δ∗(v(1)
a v(1)

a+1) of the graph Ĝ(p1,m1, . . . ,mn−1,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ b p1
2 c a = b p1

2 c + 1 b
p1
2 c + 2 ≤ a ≤ p1 − 1

p1 is odd p1 is even

δ∗(v(1)
a v(1)

a+1) =

⌈
1
e ( X (v(1)

a+1 )

X (v(1)
a )

)
1

Y (v(1)
a ,v(1)

a+1)

⌉
2a 2p1 − 2a+ 3

The line assignment δ∗(v(b)
a v

(b)
a+1) of the graph

G′(p1,p2, . . . ,pn) is given in Table 25.
The line assignment δ∗(v(1)

p1
v(1)

1 ) of the graph
G′(p1,p2, . . . ,pn) is given in Table 26.

Fig. 9, displays a Cexp average assignment
of G′(7,5,9,13). A Cexp average assignment of
G′(4,8,10,6) is represented in Fig. 10.

Thus, the graph G′(p1,p2, . . . ,pn) is a Cexp average
assignment graph if all pb’s are even or all pb’s are
odd, for 1 ≤ b ≤ n. �

The graph Ĝ(p1,m1, . . . ,mn−1,pn) is obtained
from n cycles of length p1,p2, . . . ,pn and (n − 1)
paths on m1,m2, . . . ,mn−1 vertices respectively by
identifying a cycle and a path at a vertex alternatively
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Fig. 9. A Cexp average assignment of G′(7,5,9,13).

Fig. 10. A Cexp average assignment of G′(4,8,10,6).

Fig. 11. A Cexp average assignment of Ĝ(8,4,5,6,10).

Table 31. The line assignment δ∗(u(1)
a u(1)

a+1) of the graph
Ĝ(p1,m1, . . . ,mn−1,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ m1 − 1
δ∗(u(1)

a u(1)
a+1) p1 + a+ 1

Table 32. The line assignment δ∗(v(1)
p1 v

(1)
1 ) of the graph Ĝ(p1,

m1, . . . , mn − 1,pn).

Line Assignment δ∗

δ∗(v(1)
p1 v

(1)
1 ) 3

as follows: If the bth cycle is of odd length, then its
( pb+3

2 )th vertex is identified with a pendant vertex of
the bth path and if the bth cycle is of even length,
then its ( pb+2

2 )th vertex is identified with a pendant
vertex of the bth path while the other pendant vertex

of the bth path is identified with the first vertex of the
(b + 1)th cycle.

Theorem 6: The graph Ĝ(p1,m1, . . . ,mn−1,pn) is
a Cexp average assignment graph for any pb’s and
mb’s.
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Table 33. The line assignment δ∗(v(b)
a v(b)

a+1) of the graph Ĝ(p1,m1, . . . ,mn−1,pn).

Line Assignment δ∗

δ∗(e) 2 ≤ b ≤ n
1 ≤ a ≤ b pb2 c a = b pb2 c + 1 b

pb
2 c + 2 ≤ a ≤ pb − 1

pb is odd pb is even

δ∗(v(b)
a v(b)

a+1) =

⌈
1
e ( X (v(b)

a+1 )

X (v(b)
a )

)
1

Y (v(b)a ,v(b)a+1)

⌉
t + 1+ 2a− b 2pb − 2a− b+ 4+ t

Table 34. The line assignment δ∗(v(b)
pb v

(b)
1 ) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn).

Line Assignment δ∗

δ∗(e) 1 ≤ a ≤ m1 − 1
δ∗(v(b)

pb v
(b)
1 ) t − b+ 4

Table 35. The line assignment δ∗(u(b−1)
a u(b−1)

a+1 ) of the graph Ĝ(p1,
m1, . . . ,mn−1,pn).

Line Assignment δ∗

δ∗(e) 2 ≤ b ≤ n,1 ≤ a ≤ mb−1 − 1

δ∗(u(b−1)
a u(b−1)

a+1 ) =

⌈
1
e ( X (u(b−1)

a+1 )

X (u(b−1)
a )

)
1

Y (u(b−1)
a ,u(b−1)

a+1 )

⌉
b−2∑
c=1

(pc +mc)+ pb−1 + a+ 3− b

Proof: Let {v(b)
a ;1 ≤ b ≤ n,1 ≤ a ≤ pb} and

{u(b)
a ;1 ≤ b ≤ n− 1, 1 ≤ a ≤ mb} be the circles and

paths of frequency n and n−1. If 1 ≤ b ≤ n− 1, the
bth cycle and the bth path is identified by a vertex v(b)

pb+2
2

and u(b)
1 while pb is even and v(b)

pb+3
2

and u(b)
1 while pb is

odd and the bth path and (b+ 1)th cycle are identified
by a vertex u(b)

mb and v(b+1)
1 . The point assignment

δ(v(1)
a ) of the graph Ĝ(p1,m1, . . . ,mn−1,pn) is given

in Table 27.
Take t =

∑b−1
c=1(pc +mc). The point assignment

δ(v(b)
a ) of the graph Ĝ(p1,m1, . . . ,mn−1,pn) is given

in Table 28.
The point assignment δ(u(b−1)

a ) of the graph
Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 29.

The line assignment δ∗(v(1)
a v(1)

a+1) of the graph
Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 30.

The line assignment δ∗(u(1)
a u(1)

a+1) of the graph
Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 31.

The line assignment δ∗(v(1)
p1
v(1)

1 ) of the graph
Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 32.

The line assignment δ∗(v(b)
a v

(b)
a+1) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 33.
The line assignment δ∗(v(b)

pb v
(b)
1 ) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 34.
The line assignment δ∗(u(b−1)

a u(b−1)
a+1 ) of the graph

Ĝ(p1,m1, . . . ,mn−1,pn) is given in Table 35.

An example of a representation of a Cexp average
assignment is shown in Fig. 11.

Thus, the graph Ĝ(p1,m1, . . . ,mn−1,pn) is a Cexp
average assignment graph for any pb’s and mb’s. �

Corollary 1: Tadpole T(n, k) and triangular snake
graphs are Cexp average assignment graph.

Conclusion

This paper has discussed a novel approach to Cexp
average assignments on chain graphs, leveraging
the concept of chain graphs to efficiently compute
average assignments. The approaches of Cexp average
assignment of the cycle, the union of path and
cycle, the union of T-graph and cycle, the graph
G*, the graph G′, the graph Ĝ and tadpole have
been given. This labeling scheme aims to encode the
structure and properties of the chain graph into the
numerical values assigned to its vertices and edges.
The assigned values should respect the structural
constraints imposed by the chain graph, ensuring that
the average values are consistent with the underlying
dependencies among variables. By integrating
techniques from graph theory, optimization, and
statistical analysis, it was developed a method that
offers significant advantages over existing approaches
in terms of computational complexity and accuracy.
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By utilizing Cexp average assignment, researchers can
effectively capture the characteristics of chain graphs
and use them for various purposes, such as inference,
optimization, or analysis of complex systems. This
approach provides a powerful tool for modeling
and understanding relationships in datasets where
variables exhibit both direct and indirect dependen-
cies. Our results demonstrate the effectiveness and
scalability of the proposed approach across various
datasets and scenarios. Moving forward, there are
several avenues for future research. Further investi-
gation could explore enhancements to the algorithm
to handle larger datasets or to incorporate additional
constraints. Examining the Cexp average assignment
of several chain graphs would be quite interesting.
The Cexp average assignment of other graph classes
is still being open, and it will be done in the future.
One can also look at the unique uses of a Cexp average
assignment graph in real-world challenges.
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 المتوسطة على الرسوم البيانية المتسلسلة Cexp نهج جديد لتخصيصات

 

انيأ. راجيش كن  

 .، تاميل نادو، الهند005 626 -قسم الرياضيات، كلية الهندسة ميبكو شلينك )ذاتية الحكم(، سيفاكاسي 

 

، الرسوم البيانية المتسلسلة، وضع العلامات على expCتخصيص، الرسم البياني لمتوسط expCتخصيصمتوسط  ك :الكلمات المفتاحية

 .الحواف الحواف، وضع العلامات على

 

 ةالخلاص

الأسي عدداً الأسي لعددين موجبين عدداً صحيحًا. ولهذا السبب، يجب أن يكون المتوسط بشكل عام، ليس من الضروري أن يكون المتوسط 

 دالةأسي، حيث يمكن ليمكن تسمية الرسوم البيانية بمتوسط  ها بحيثالأرضية أو السقف. لقد تم تعريف دالةصحيحًا يأخذ في الاعتبار 

تسميات  سوف يتم وضعالأسي على الرسوم البيانية، تسميات الحواف. لتأسيس تعيين المتوسط  ها علىالسقف تطبيق دالةو الأرضية أ

  expCبتخصيص متوسط ∗𝛿 تعيين الحافة دالةو  δتعيين قمة الرأس دالة. تسُمى لاعتبارفي ا الحواف التي تنشأ من دالة السقف وحدها

 المكافئةوتكون العلاقات  متباينة ∗𝛿 و شاملة δ إذا كانت q وحواف p مع رؤوس G للرسم البياني

 𝛿: 𝑉 → 𝛮 − {𝑞 + 2, ⋯ , ∞}, 𝛿∗: 𝐸 → 𝛮 − {1, 𝑞 + 2, ⋯ ,  كما يلي: *δ ويتم تعريفه بواسطة تسمية الحافة {∞

   𝛿∗(𝑢𝑣) = ⌈
1

𝑒
(

𝑋(𝑣)

𝑋(𝑢)
)

1

𝑌(𝑢,𝑣)
𝑋(𝑢) حيث, ⌈ = 𝛿(𝑢)𝛿(𝑢), 𝑌(𝑢, 𝑣) = 𝛿(𝑣) − 𝛿(𝑢)وN  الأعداد الطبيعية. هي مجموعة جميع

يقُترح في هذه الورقة متوسط  expC .تخصيص، فإنه يطلق عليه رسم بياني لمتوسط  expCإذا كان الرسم البياني يقبل تعيين متوسط

والرسم  والدورة،  T، ويتم استكشاف خصائصه في الدورة، واتحاد المسار والدورة، واتحاد الرسم البياني expCتخصيص الرسوم البيانية لـ

 .والشرغوف Ĝ ، والرسم البياني'G ، والرسم البياني*G البياني
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