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Abstract
This paper presents a MAXIMAL-PLANARIZE algorithm  wsing

EQUIVELANT-GRAPH procedure. The algorithm proceeds by embedding one
or few edges at each stage, without ereating nonplanarity of the resultant graph,
and to construct a maximal planar subgraph G, of G directly.

The present implementation shows that using two planarization algorithms is
unnecessary because of their complexities. It runs in linear time to give a
maximal planar subgraph snd adds the maximum number of edges possible
without creating nonplanarity' ,using only one simple and efficient algorithm.
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L. INTRODUCTION
A GRAPH is planar, if it can be
drawn on a plane with no two edges

refers to the process of adding a
maximal set of edges to G without
causing nonplanarity.

crossing each other except at their end
vertices, A subgraph G, of a nonplanar
graph G is a maximal planar subgraph
of G if G, is planar, and adding any
edge to G , result in a nonplanar
subgraph of G. This process of
removing a set of edges from G to
obtain a maximal planar subgraph is
known as maximal planarization of the
nonplanar subgraph G.

On the other hand, maximal
planarization of a planar subgraph G

Maximal planarization of a nonplanar
graph is an important problem
encountered in the automation design ol
printed circuit boards. If an electronic
circuit cannot be wired on a single layer
of a printed circuit board, then we need
o determine the minimum number of
layers necessary to wire the circuit
Since only a planar circuit can be wired
on a single layer board, we would like
to decompose the nonplanar circuit into
a minimum number of maximal planar
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circuits. In general, for a nonplanar
graph, neither the set of edges to be
removed to maximally planarize it, nor
the number of these edges is unique.

Determining the minimum number
of cdges whose removal from a
nonplanar graph will yield a maximal
planar subgraph is an NP-complete
problem [447)

One of the earliest algorithms was
proposed by Demoucron et al.as cited
by ref® Further improvement is
presented by Rubint™

Recently, Jayakumar et al. ™ have
proposed two planarization algorithm.
These 1iwo algorithms are quite
interesting because at each step of these
algorithms ,as many edges as possible
arg  added. The drawback is the
complexity of such planarization
algorithms and their requirement of
long computation time,

This paper adopts MAXIMAL-
PLANARIZE algorithm based on
Demoucron  planarity testing, the

presented algorithm is an efficient,
simple one. It is found necessary to
generate and evaluate only a few
exterior components at each stage,
usually one 1o construct a maximal
planar subgraph G , which contains the
maximum number of edges possible
without creating nonplanarity of
resultant graph. It runs in linear time,
requires less computation time and
includes larger number of edges than
the two algorithms presented in [*),

2.DEMOUCRON, ALGRANGE,
AND PERTUIST PLANARITY
TESTING ALGORITHM

Consider a simple connected graph
G=(V,E) with n=|V| vertices and m={F|
edges. The algorithm begins with a
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simple circuit G' in the graph G where
G'=(V'\E") adds one path at a time to
build a mesh structure. An exterior
component of G' in G is a maximal
connected subgraph G"={V" ,E") of G
hence the endpoints of an exterior
component G" of G' are the vertices
VIOV,

They noted that at each stage that:1)

some of the exterior components can be
embedded in any of two or more
meshes; 2) others can be embedded in
only one of the meshes; if the graph is
nonplanar, 3)some cannot be embedded
in any mesh. Consequently, if the latter
case oceurs, the graph may immediately
be judged as nonplanar. If the second
case occurs, such a component may be
assigned to that mesh immediately.
But if every component has two or more
possible meshes, then an arbitrary
choice may be made for any one of
them.

In Figl each of the exterior

components {G") 15,1237 and 123489
may be embedded inside or outside of
the eircuit (G 123456, Component 15
Is independent of the others, but an
arbitrary choice for 1237 or 123489 will
force the other to the opposite side of
the circuit.
MNow, it needs to be noticed that in the
Demoucron et al. algorithm, not all the
exterior components are embedded in
the proper mesh because an arbitrary
choice is made for some of them, hence
this algorithm is good for deciding
whether a given graph is planar or not
but it fails for obtaining the maximal
planar subgraph G, of G.
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3.THE EQUIVALENT-GRAPH
PROCEDURE
The central concept of the

EQUIVALENT-GRAPH procedure is
stated in the following definitions.

Definition 1: Equivalent graph

It represents the equivalent graph of
G which contains all the edges of G. Its
vertices are labeled as their counterparts
in G, but they are kept separate; i,e,
there may be several vertices with the
same label,

Definition 2: Maximal Subgraph G,

the maximal cycle of a graph G
containing the maximal vertices or very
veriex of G, in other words G, will
represent a Hamiltonian cyvele if G is a
Hamiltonian graph,

Definition 3: Examining graph (G
The graph G, may represent a
subgraph G-G, or a set of edges only,
where its edges E(G. =E(G)-E(G.).
A chord of G, is a path in G with
endpoints in G. but with no other
vertices in G, . f the chord has only
one edge, then it is called simple, hence
if G, represents Hamiltonian cyele then
the examining graph (G.) contains only
simple chord. The simple chords
(edges) of G, are classified according to
their priorities in the list of the
examined edges as follows:-
1. Type 8: An edge is said to be ype §
if it is obtained by using the
EQUIVALENT-GRAPH procedure, In
the process of implementing  the
MAXIMAL-PLANARIZE algorithm,
these edges of type 5 have priorities to
be examined first, before the next type
of edges.
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2. Type R: An edge is said to be type
R if it is not obtained from the
EQUIVALENT-GRAPH procedure and
it will be examined after examining all
the edges of type 5.

The Procedure

In this section a new and efficient
procedure is presented to obtain the
equivaleni-graph  which contains the
maximal subgraph G, plus the
examining graph G,.

Consider a simple connected graph
G=(V.E) with n= V| vertices and m=|Ef
edges, with the assumption that every
vertex in G should have a degree of al
least three.

The procedure could be obtained by
performing certain operations on the
graph. These operations are:

(1) Determine the degree for each
vertex of the graph G. Choase any
vertex of minimum degree, to he
called xl,and choose a neighbour
vertex for x; which has the
maximum degree corresponding to
the other neighbour vertices of
x,. This vertex will be called X

(2) Select an edge Jjoining two distinet
vertices x,and x, (k< n) such that x,
and ¥, denote the initial and
terminal end points of the maximal
circuit Ge, set i=j,

(3) Examine the neighbours of the
verlex x, accarding to the following
conditions.

a. If a wvertex(x.) appears with
degree one, this gives a notation
that the vertex x, is not contained in
G (%, #G,), then x, will represent
exierior vertex,

b. Now, examining the remaining
neighbour vertices such that this
new wvertex (x.) will have the
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minimum degree according to the
other neighbours to xi(d(x.. )}=2).
Keeping in mind that if the vertex
% 5 one of the vertices
neighbouring x;, is chosen if it is the
only choice. Then stop.

¢. If there exists more than one
veriex with the same minimum
degree, choose any one. The vertex
or vertices which are not chosen
will represent the end vertices of
type S edges, which will be
obtained by connecting every vertex
of them with x,.

(4) Delete all the edges incident to x; to
get the subgraph G;, with vertex set
V(Gii)-x;. hence the degree for each
vertex which is a neighbour to
vertex x; will decrease by one,

(3) If the vertex x, does not represent a
neighbour vertex to x; then go to
step 8,

(6) Detect if the degree of vertex x, is
equal to one (d(x,)}=1). Then choose
its neighbour to the new x,
vertex(x,,). Keeping in mind that
the edge selected in step 2 will be
Joining a new edge with end
vertices (XX}, If X, =X ., then
stop.

(7) Delete the edge incident to vertex ¥ies
replace Xy, by x,.

(8) Detect the neighbour vertices of the
vertex X, such that,

a. if they have degree larger than two
then go to step 10.

b. if a vertex (x,) appears with
degree equal two then choose its
other neighbour to be the new x,
vertex(x,, ). Keeping in mind that
the edges selected in step 2 will be
joining two new edges with end
vertices (Xy,x,) and (XoXg) . If X
=X+ then stop,
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c. If more than one vertex appears
with degree equal two, then choose
any one as jn step b, Then the
remaining vertices  will represent
the exterior vertices, delete the
edges incident to them.

(9). Delete the edges incident to vertex
X, and x,, and replace x,, by x,. If
the degree of x, is equal to one then
go to step 6.If the degree of its
neighbours vertex is equal to two
then go to step 8.

(10). Replace x;,; by xi and go to step 3.

Note:

In the following it is assumed that all
the vertices of the maximal circuit
are represented by horizontal
segments,  with  the  vertices
numbered in an ascending order
starting with the vertex which is
given number 1,

Example 1
The above definitions and procedure
may be further clarified by an example.
The sample graph G consists of 10
vertices, and the connections between
pairs of vertices are as in table No.1.
Table No.2 illustrates  the
EQUIVELENT-GRAPH Procedure. It
is noted that;
A- vertex 3 has the minimum degrec ,
vertex 9 is a neighbour vertex of
vertex 3 with maximum degree.

B- the distinct vertices 3 and 9 are
joining the selected edge,

C- the series of graphs G' (i=1,2,...,7)
represent  the subgraph  after
deleting the edges whose initial
vertex is x' wherex' G, .

D- the vertices assigned by star

represent the neighbour of the
vertex assigned by double stars
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represents the chosen vertex x''' .
The vertices assigned by star and
letter S represent the vertices which
have degree equal to the degrec of
the chosen vertex x'™. Any vertex
of these vertices with the vertex x™
will represent the end vertices of an
edges of type S,
now, label the vertices of maximal
circuit G . in an ascending order,
thus  renumbering the vertices
3,4,5.8,10,1.2.6,7,9 by the numbers
1.2,3,...,10.
In Fig.2a The maximal circuit is 3-
4-5-8-10-1-2-7-6-9-3, The bold
edges represent the edges of type S.
The broken edges represent the
edges of type R.

Now, according to notion E the
obtained equivalent graph s
illustrated in Fig.2b

DISCUSSION
PROCEDURE
The following is a discussion of
the complexity of some stages of the
procedure clarified further by relevant
figures.
L.~ 1f a vertex appears in a specification
as in step (3-a), this gives notion
that the graph is not Hamiltonian.
In step (3-¢) the edges of type S will
play an important role in the
algorithm because any one of them
could be contained in the maximal
subgraph. Hence they will have the
pricrity to be examined first,
In step 6 a detection of the degree
of x, Is very important because if it
has a degree equal one, then it has
only one neighbour vertex and if
this neighbour vertex is chosen then
it will have only one probability
which is x, Then the procedure will

or THE

-

Lk
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stop before searching on the other
verlices.

Algorithm 1: Let G be a simple
connected graph then the
EQUIVALENT-GRAPH procedure will
be as follows. Test the graph, if it is

Hamiltonian, then it construcls a
Hamiltonian circuit. If not then it
constructs a maximal circuit in a

polynomial time.

Let G, be a maximal circuit of a graph
G of order n= 3 and that e is an edge of
G, , where G %,%,%3,....%.% (k <)
and e= x; x, , where x; denotes the
vertex with the minimum degree with
respect to the other vertices ,and x,
denotes the neighbour vertex of x; with
the largest degree,
Let x; denote the vertex with the
minimum degree [d(x;) 22] with respect
1o other neighbour to %, (keeping in
mind that the vertex x, is chosen only if
it is the only choice)then in the
subgraph  generated by Gix -{x;}
examine if the degree of vertex x is
equal to one then choose its neighbour
to the new x; (x;,.). Hence the selected
edge (e} is now joining a new edge (x,,
-"-knj-
Fig.3a illustrates the basis for this
decision, Suppose, to the contrary, that
this decision is not defined, then
according to the procedure, x, is chosen,
so is x will be chosen ,then the
subgraph generated by

Gxo)-{x5,%2,%,} will never contain
the vertex x,, and a Hamiltonian (or
maximal) circuit could not be obtained.
Hence to overcome this problem this
decision must be included in the
procedure.  Also, the neighbouring
vertices of vertex ¥, must be examined,
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where if a vertex of degree two is found
then its other neighbour vertex will
represent the new x (x,).

Fig.3b illustrates the essential use of
this decision. According to the
procedure, vertex x,, must be chasen ,so
will x,, and because il is of degree two
then x; is chosen because it is the only
choice. But %, is not the last choice,
Mow to overcome this problem, the
above decision must be included in the
procedure where accordingly x,, will
become the x,,, then after x; is chosen
s0 will x5 and the selected edge e will
be joining the new path (XXXl
Then, for k=n [x,,%X3,%5....%.%] 15 the
Hamiltonian circuit while for k<n the
maximal circuit is for the Hamiltonian
subgraph {G-v); such that the removal
of a number of vertices creates a graph
with Hamiltonian circuit,

Mext, an example illustrating algorithm
I is presented. First one needs to
determine whether the graph G of Fig.4
is Hamiltonian or not.

A sequence G),Gs,.. . (which is not
unigue) is shown. Since vertex (10) or
the vertices (6 and 7) must be removed,
graph G is not Hamiltonian (actually G
15 Peterson graph).

4.A NEW MAXIMAL
PLANARIZATION ALGORITHM

In this section an efficient algorithm
is presented to determine a maximal
planar subgraph of a nonplanar graph G,
based on the above procedure
EQUIVALENT-GRAPH. The focus of
maximal planarization is how 1o
maximize the number of edges in the
required graph.

On this basis attempts were made to
add G. as many edges as possible
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without affecting the planarity of the
resultant  graph.
Before giving the final form of the
algorithm, a logical sequence of steps
needs to be by definitions and
examples.
Definition 4 : The I (Interior) and O
{(Exterior) Faces

Let (. be a finite subgraph of G,
then the infinite plane is divided into
two faces. The interior is called the |
face of the maximal circuit, and the
exterior is called the O face of the
maximal circuit G, .

Definition 5: Initial Edge

Once the maximal circuit has been
generated, every edge may be
embedded in either faces. Then the
initial edge is that which connects
vertex | to A, . Where A, represents one
of the neighbours (A, A ,...Adof
vertex 1 such that A< A, .. < Al

Definition 6: First, Second,..., !st
edge of a vertex

Let the wvertices be connected to
vertex x by outward edges (type S or
type R ) of ¥ be x5,%,%;,...,.% such that
X1 < X»< X3<...<x;then the first edge of
% which will be examined first is (),
the second is the edge connecting x; to
¥ and so on.

Definition 7: The One, and Only One
Possible Embedding

If two edges A and B whose end
vertices are numbered A A: for BB,
for B such that these wvertices
ALAL,BLBy e V(G,) and A <B,<A,;<B;
or A<B.<A; then if edge A is
embedded in ] face then edge B will be
embedded in O face and vice and versa.
Hence, if only this case occwrs, the
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possible embedding of the examined
edge is only one.

Definition 8: Testing The Examining
Graph

The chords which are only edges are
examined first, by adding one edge at a
time to build a mesh structure. Tt is
noted that at each stage:
. Some of the edges could be
embedded in any of the two faces,
in other words, P(E,G)=2, where P
represents the number of possible
embedding for the examined edge
E in the plane subgraph G, where
G 15 a sequences G,,Gi,....G; of
plane subgraphs of G such that G;
G for(iz1).
Other edges could be embedded
only in one of the faces according
to definition 7. It means that the
number of possible embedding is
one for the examined edge, hence
P(E,Gjy=land if the graph is
nonplanar.
Some cannot be embedded in any
face, where P(E.G,}=0.
Consequently, if the third case
oceurs, the graph will be
immediately judged as ronplanar,
If the second case oceurs, such an
edge will be assigned to the face
immediatelv. But if the first case
occurs, this edge must be re-
examined directly after examining
the next edge in the list of edgss,
until the second case occurs, to
embed the edge in the only one
proper face,

If G, does not represent a
Hamiltonian  circuit then any
exterior vertex (V,) where V, 2G.
will be tested according to its
neighbours and it will be embedded
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in the mesh which contains the
maximum number of its
neighbours. Of course, this case
rarely  occurs in  a  connected
nonplaner graph where there are
enough  edges to  form  a
Hamiltonian circuit™,

Example 2

After placing the maximal circuit
vertices obtained from Example 1. the
edges of the examined graph G, will be
examined in a systematic way starting
with the initial vertex 1 and moving
towards the end vertex. The procedure
is as follows:

A, list the examined edges according
to definition 6 keeping in mind that the
edges of type S must be examined first,

B. add the Initial edge E,, then by
definition 5 the Initial edge is (1,7) to
abtain the subgraph G,

C. we then move to edge E,.

According to definition 8 part | this
edge could not be embedded because
ME.G)= 2.then move to edge E; where
P(E;,G)=2 also.
Now meove to edge E,. According to
definition 8 part 2 this edge will be
embedded in face O  because
FEs,G))=1. Add this edge to obtain a
plane subgraph called G,.

E. now, re- examine the edges E; and
E; of step C. We note that P(E;,G,;)=2
also, but P(E;,G.)=1, hence embed this
edge in the proper face which is the |
face to obtain the plane subgraph Gs.

Similar consideration o the next
edges will apply and the test ends when
all such edges are considered. Fig.6
tllustrates all these steps and determines
Es=(2,6) and E;;=(3,8) are the only seis
of edges io be removed from G to
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maximal planarize it and the spanning
planar subgraph G, is shown in Fig.5

Mow  the maximal-planarization
algorithm is presented which uses the
procedure deseribed so far.

Algorithm 2
l. Let G, be a maximal cycle of G,
such that G, is embedded in the
plane.

. List the edges starting with the
initial edge, the edges of type S, the
edges of type R.

3. Embed the [nitial edge inside the I

face; set j=1.

4. Test the next edge for possible
embeddings. If there are no edges
left, goto Step 9.

5. If P(E.G)=0, then G is not planar,
reassign this edge to be removed
from G.

. If P(E,Gj)=1, goto Step 8.

. If P(E.G;)=2, then this edge will be
re-examined after obtaining the
plane subgrsph G, .,,g0 to step 4.

8. Embed E in the proper face, replace

i by i+1 and go to step 4.

9. If Ge is Hamiltonian, then stop.

.List the exterior vertices, and
examine them, if some of the
outward edges could not be
embedded, reassign them as to be
removed from G.

bt

=1

Theorem ;

Algorithm 2 determines a maximal
planar subgraph Gp of G, if only the
edges of type S are considered for
testing before the edges of type R.

Proof :

Note that the edges of type S were
obtained from the EQUIVALENT-
GRAPH procedure. So it follows that
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any one of these edges may be
contained in the maximal subgraph G,
where in this case they could not be
deleted. This means that they must have
priorities to be tested before the other
edges. Let G be an equivalent-graph of
the non planar graph, It is assumed that
G; is G-extendable (i = 1)and shown
that G.; is G- extendable, since we can
extend the embedding of Gi to a plane
embedding of G. Select E and P, as in
step No&If BE, G.)=1, then E is
embedded in the proper face (I or Q)
then Gy is

G-extendable, Otherwise, P(E,G)=2,
then there are two possible embeddings.
If E is embedded in | face, then, one
again G, is G-extendable.

Suppose, to the contrary, that E is
drawn O face, further, assume that Ex is
an edge of Gi in G that is embedded in [
face whose vertices of Gi belong to the
common boundary of E and Ex.Then E
and Ex must be interchanged across this
common boundary procedure- a new
embedding of G in the plane in which E
is embedded in the I face. Hence to
overcome this permutation procedure
must not be embedded by making an
arbitrary choice in face I or O, until its
testing for the possible embedding
becomes one. Then E is embedded in
the only one proper face,

6. SUMMARY AND CONCLUSION
This paper presents the MAXIMAL-
PLANARIZE algorithm which
constructs a maximal planar subgraph
Ggof a nonplanar graph G. This
algorithm is based on the Demoucrot,
et. al planarity testing algorithm as cited

by ref? and on  the new
EQUIVALENT-GRAPH procedure
which is presented in this paper.
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Procedure EQUIVALENT-GRAPH is
used 10 construct a planar subgraph G.
and determine the type of the examining
edges which play an important role in
constructing the maximal planar graph,

The MAXIMAL-PLANARIZE
algorithm is implemented in BASIC and
tested on several nonplanar graphs. In
Table No.3 the number of edges that
needs to be removed is shown by this
algorithm compared with the result
from™  [n addition, the two algorithms
in "1 do not seem to lend themselves to
easy modification resulting in such
planarization algorithms,

We expect this algorithm to require
on the average, less computation time
since only one algorithm is needed and
less number of removing edges, to
construct a spanning planar subgraph of
4 given nonplanar graph.
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Table-1- Example 1.a sample graph G consists of 10 vertices

2 1217327415461 (71 |82 [92 | 10-1 ]
fat 23 |34 43|56 62176 |84 |93 | 107
16 (263945 586579 |85 |05 |10.8
17 |28 48 (5967|710 | 810 | 9.6 1109 |
14(}}2-9 | ‘6-9 | 97 | |

| I ki | 9-10

Table-2- lllustrates the EQUIVALENT GRAPH procedure

) |G |Gl 1G2 [G3 TG4 [G5 1G6 |G7 |
v
I 5 5* 4 4 | 4** 13 |0
2 5% |4 4 #3 ELD Izm, 0
3 3o | 0 N
a 4% 1351 1 0 _f
5 4 & 3 |0 |
6 5 5 5% 4 4 4% 3™ Lags sto
| p
kn { ngxk }
7 4 4 4 4 4 3% 2,710
| |
9 6%, | 5 5« 14 a* |3 3% ]
|
10 4 4 4 P in
L I |
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Table-3- Comparison between MAXIMAL-PLANARIZE algorithm and the

Muximal Planarization: OF Non-Planar Graphs

result from M7,

[ Graph | No.of | No.of | No.of Edges | No. of edges removed
L Vertices Edges | removed by [4] By this procedure

Gy 10 22 | 3 2

Ga i0 35 18 12

G; 20 &l I 24 13

G, 30 9 | 37 21

Gy 40 125 38 29
| G 50 150 43 13

|

Fig. 1. Graph G
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(b)

(@) (b)

Fig. 3. Tlustrates algorithm 1
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ot onioe | G {123t Buti 0 1)
tewmehice 30, = {1-2-J=bE 105000

Fig. 4. An example illustrating algorithm |
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Ininal Edpe E; (17
E: 124}

The: Figes E1 4.0
af T}'pl:. 5 Ey [5":']’
Es 15.101)

Es ]
Es (7,00
Ej5 18,100

- ‘The Edges Ey 28]
Eig [3.4)

of Type R Eij {310
Ez X

PE,.G=21i=23|
PE, . Cy)=110 Face |

P (B, G =2
P{E: GO =11 Fuee |

P{EI:GJ.II=:
PiEsyGa)= 1| O Face |

Continued on the next page
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M i{E; ,Ggh=12
P {Eg , tig) =1 | O Face j

P (Es, Gs) =2
P (E; . Gg) = 1|1 Face |

FfE:.{i.ﬁ:‘:Z
P (Ey , Ggh =1 [1 Face |

P (Es ,Gsl =2
POE, Ge=@ [i=910 ]
P (E;;.0y) = 1 [O Face

P (Ey, Gs)=1[1IFace]

Continued on the next page
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G: non planar graph
Gy \Gy,...Gp! represent logical sequences of steps to get G,
G,: maximal planar subgraph

Fig. 5. Example 2.

749



