AUIQ Technical Engineering Science

Manuscript 1029

Deep Learning Algorithms for Traffic Flow Predictions

Adegoke Ojeniyi
Prince Pal Singh
Ankita Vashisht
Swati Kumari

Karan Karan

Follow this and additional works at: https://ates.alayen.edu.ig/home

b Part of the Engineering Commons


https://ates.alayen.edu.iq/home
https://ates.alayen.edu.iq/home?utm_source=ates.alayen.edu.iq%2Fhome%2Fvol2%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=ates.alayen.edu.iq%2Fhome%2Fvol2%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:134-145 Scan the QR to view

the full-text article on
the journal website

ORIGINAL STUDY

Deep Learning Algorithms for Traffic Flow
Predictions

Adegoke Ojeniyi® 2, Prince Pal Singh °#, Ankita Vashisht ?, Swati Kumari °,
Karan Karan °

@ Department of Computer Science, Mathematics and Physics Nipissing University, North Bay, P1B 8L7, Canada
b Data Analytics for Business, St. Clair College @Ace Acumen, Toronto, ON, M3B 3M1, Canada

ABSTRACT

Given the growing complexity of urban transportation systems, precise traffic flow forecasting is essential for
reducing not only issues of congestion but also, for boosting road safety and enhancing mobility management. This
study integrates Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Long Short-Term Memory
(LSTM), and Recurrent Neural Networks (RNN) to present a hybrid deep learning framework for traffic prediction.
Of these, the CNN-LSTM model is a reliable option for real-time traffic forecasting since it successfully captures both
spatial and temporal dependencies, resulting in superior predictive performance. The dataset used to assess the frame-
work includes 48,120 records from a traffic monitoring system that include hourly vehicle counts at several intersections.
With an average of 22.79 vehicles per hour, a variance of 430.57, and a standard deviation of 20.75, statistical analysis
shows that traffic fluctuates significantly. Based on experimental results, CNN-LSTM achieves a competitive Mean sqd
Error (MSE) of 0.0095, a precision of 0.73, and a recall of 0.74, outperforming LSTM and RNN in high-traffic sit-
uations. This study demonstrates the potential of hybrid models—in particular, CNN-LSTM—in striking a balance
between computational efficiency and predictive accuracy. Future research should incorporate GPS feeds and real-time
data from IoT sensors to improve model adaptability and offer a scalable and clever urban traffic management solution.

Keywords: Computer vision, Traffic flow, Machine learning, RNN, LSTM, Hybrid CNN-LSTM, Hybrid approach, Hybrid
model

1. Introduction prediction. However, these methods primarily rely on
linear assumptions, which fail to capture the com-
plex, dynamic, and nonlinear nature of urban traffic,
particularly during peak hours or in the event of un-
expected incidents [6].

In recent years, machine learning (ML) methods
have revolutionized traffic flow prediction by lever-
aging vast amounts of traffic data to uncover intricate
patterns in time-series data. Recurrent Neural Net-
works (RNNs), for example, can capture short-term
temporal dependencies but struggle to model long-
term trends due to issues like the vanishing gradient
problem [7]. Long Short-Term Memory (LSTM) net-
works, which introduce gating mechanisms, address

1.1. Research background

Urbanization has led to significant increases in
traffic congestion, adversely impacting mobility, fuel
consumption, and air quality in cities around the
world [1, 2]. Efficient traffic flow prediction is es-
sential for addressing these challenges, as it enables
proactive traffic management, reduces delays, and en-
hances commuter safety [3]. Traditional approaches,
such as the Autoregressive Integrated Moving Aver-
age (ARIMA) model [4] and Kalman filtering [5],
were among the early techniques used for traffic flow
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these limitations by effectively retaining long-term
dependencies, making them particularly useful for
sequential data tasks in traffic forecasting [8, 9].

The advent of hybrid models, such as CNN-LSTM,
has further improved traffic flow prediction accuracy.
These models combine the Convolutional Neural Net-
work (CNN) component to capture spatial features
like localized congestion patterns and the LSTM lay-
ers to model how these patterns evolve over time
[10, 11]. The hybrid CNN-LSTM approach allows
for more accurate predictions, even in the face of
dynamic road and weather conditions, contributing
to better traffic signal optimization and congestion
management [12].

Subsequent investigation by Zhao and Al-Dala’in
[13] discovered that CNNs have great competence of
detecting patterns (such as vector intensity and color)
to extract a spatial feature of data including images.
LSTMs are better at capturing temporal relationships
in sequential data sets compared to CNNs. The hy-
brid CNN-LSTM model takes the ability of CNNs to
recognize spatial representations of sequences and
LSTMs to highlight temporal relationships, allowing
it to perform on a complicated data set with known
spatial and temporal domains. The hybrid CNN-LSTM
model has been found to perform better than the
stand-alone CNN and LSTM models in a comparable
study identifying the Amazigh language, because of
the increased accuracy achieved when processing the
spectrogram features, as stated by Telmem et al. [14].

Moreover, it was determined by Maurya, Arora,
and Singh’s paper [15] that the hybrid architecture
performs well in situations involving data that is so-
phisticated, diverse, and real. The hybrid model pro-
vided superior results compared to baseline models
in Human Activity Recognition (HAR). For example,
the model successfully classified human behaviors in
sensor data, achieving an F1 Score of 95-84 percent
and recognition accuracy of 98-67 percent. These ar-
guments have established that the hybrid CNN-LSTM
model is an attractive possibility in machine learn-
ing due to the combination of temporal and spatial
feature extraction and its proven efficacy in a diverse
array of applications. Also, the hybrid model’s flex-
ibility and robustness are assured to work in both
research and applied contexts. Thus, these arguments
formed the rationales for implementing the hybrid
model in this current study.

1.2. Research gap

While machine learning models have made
substantial progress, many existing methods still
struggle with the real-time integration of traffic data,
especially in dynamic environments influenced by

factors such as weather, holidays, or road incidents.
Moreover, comparative studies that evaluate the
performance of hybrid models like CNN-LSTM
against simpler time-series models such as RNN and
LSTM remain scarce [16, 17]. This study seeks to
bridge these gaps by evaluating the performance
of RNN, LSTM, and CNN-LSTM models using a
real-world traffic dataset that includes vehicle counts
from multiple junctions.

1.3. Objectives

The primary objectives of this study are:

* To evaluate and compare the performance of
RNN, LSTM, and CNN-LSTM models for traffic
flow prediction using a real-world dataset.

» To preprocess and analyze a dataset containing
hourly vehicle counts from multiple junctions,
ensuring the reliability and consistency of the
models.

* To demonstrate the applicability of the CNN-
LSTM hybrid model for real-time traffic flow pre-
diction and dynamic traffic management systems.

1.4. Practical relevance for stakeholders

The findings of this research will provide valuable
insights for urban planners, transportation authori-
ties, and businesses. By accurately predicting traffic
flow in real-time, traffic signal timings can be opti-
mized, potentially reducing congestion by as much as
15% during peak hours. Additionally, incorporating
external factors such as weather conditions, public
holidays, and road incidents into the traffic flow
models will improve their adaptability to real-world
scenarios, offering more precise and timely solutions
for urban traffic management [18].

2. Literature review

This section presents a review of the Literature Re-
view based on the study. It is subdivided into 2.1
which is the subsection that covers the Recurrent
Neural Networks (RNN) while both 2.2 and 2.3 cover
Long Short-Term Memory Networks (LSTM) and the
CNN-LSTM Hybrid Model.

2.1. Recurrent neural networks (RNN)

RNNs have been foundational in modeling sequen-
tial data and are widely applied in traffic prediction
for capturing short-term dependencies (Fig. 1). How-
ever, their ability to model long-term traffic patterns
is constrained by the vanishing gradient problem
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Fig. 1. RNN memory cell.

[19], which limits their use in long-term predictions.
Recent improvements like attention mechanisms [20]
have enhanced RNNs for specific short-term traffic
forecasting tasks, but for long-term traffic forecast-
ing, models like LSTM or hybrid models (CNN-LSTM)
have shown superior performance.

Equation for Hidden State Update:

Here:, h; is the hidden state at time t, W and U
are weight matrices for the previous hidden state and
current input, respectively, x; is the input at time t,
b is the bias, and f is an activation function, often
ReLU or tan h.

2.2. Long short-term memory networks (LSTM)

LSTMs address RNN limitations, enabling the model
to capture long-term dependencies essential for traf-
fic prediction, such as recurring rush hour patterns
or seasonal fluctuations [21] (Fig. 2). The ability to
handle external factors, such as weather and road
incidents, further enhances the model’s robustness
[22, 23]. However, LSTM models can be computa-
tionally intensive, especially for large datasets [24],
and require optimization techniques such as hyperpa-
rameter tuning to improve efficiency. By controlling
the information flow, the LSTM’s gates enable it to
remember or forget information as needed.

The Forget Gate equation is given as:

fe = o (Wy - [he-1), %] + by)

Based on the previous hidden state, this gate de-
cides which portion of the cell state should be
discarded h_1) and current input x,. Moving on with,

Input Gate:
i =0 (Wi [he-1), x| + b))

This gate determines what additional data should
be added to the cell state, this will be, Cell State
Update:

Ce = fi *C-1) + i x tanh (W - [Ag—1y, X¢| + bc)

The cell state C, is updated by this equation, which
balances new and old data. Last but not least is Out-
put Gate:

or =0 (Wo - [Ae-1), x¢] + bo)

The output gate manages the next hidden state,
which combines past context with the updated cell
state.

2.3. CNN-LSTM hybrid model

The CNN-LSTM model integrates CNN’s spatial
learning ability with LSTM’s temporal sequence pre-
diction power, making it effective for complex traffic
scenarios where both spatial and temporal dependen-
cies must be considered [25] (Fig. 3). Hybrid models
like CNN-LSTM have demonstrated superior accuracy
in traffic prediction tasks, such as real-time traffic sig-
nal optimization and route planning [26]. However,
training such models requires significant computa-
tional resources and may lead to overfitting without
proper regularization [27]. Before capturing localized
variations that may be indicative of congestion in par-
ticular areas or abrupt spikes in vehicle counts, CNN
layers use convolutions to identify spatial patterns
within traffic features. The LSTM layer processes tem-
poral dependencies, including time-based variations
in traffic volume, after flattening the CNN’s output.
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3. Methodology
3.1 Dataset description

This study utilized a dataset consisting of 48,120
records, each representing the number of vehicles
observed at various traffic junctions every hour. The
dataset provides detailed information essential for
predicting traffic flow across different times and
locations (Table 1).

« DateTime: This attribute records the exact date
and time of each observation, capturing the time-
dependent nature of traffic flow, such as rush
hours or specific periods of the day.

+ Junction: The junction identifier helps us pinpoint
the location of each traffic observation, allowing
for the analysis of traffic flow at specific junctions.

« Vehicles: This attribute reflects the number of ve-
hicles passing through a junction during a given
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Table 1. Dataset attributes.

Attribute  Description Data Type
DateTime Timestamp of the recorded observation Object
Junction  Identifier for the junction location Integer
Vehicles  Count of vehicles observed per hour Integer
ID Unique identifier for each observation  Integer

Table 2. Statistical overview of
vehicle counts.

Metric Value
Mean 22.79
Variance 430.57
Standard Deviation  20.75
Minimum 1
Maximum 180

hour. It is the primary feature we aim to predict,
as it directly impacts traffic flow and congestion.

+ ID: A unique identifier for each record, ensuring
the uniqueness of each observation.

To better (Table 2) understand the distribution of
vehicle counts, we calculated basic statistical mea-
sures:

* Mean: 22.79 vehicles per hour (average vehicle
count)

* Variance: 430.57, indicating significant fluctua-
tions in vehicle counts

+ Standard Deviation: 20.75, showing variability in
the data

« Minimum: 1 vehicle (lowest observed count)

« Maximum: 180 vehicles (highest observed count)

Additional features such as CarCount, BikeCount,
BusCount, and TruckCount were extracted from the
dataset. These features represent the number of ve-
hicles of each type passing through the junction,
providing valuable insight into traffic volume. The
Traffic Situation attribute categorizes traffic condi-
tions as low, medium, or high, based on vehicle
counts, helping the model understand traffic density.

3.2. Data preprocessing

Before training the models, we prepared the dataset
for effective model learning. The steps involved:

» Min-Max Normalization: This technique scaled
the vehicle counts to a range of 0 to 1, ensuring
that the data was on a similar scale. This prevents
larger values from overpowering the learning
process.

+ Handling Class Imbalance: Given that there were
more records of low traffic hours than high
traffic hours, we used SMOTE (Synthetic Minority

Oversampling Technique) to generate synthetic
data points for the less frequent high-traffic
periods. This helps the model avoid bias towards
low traffic.

« Feature Selection: We selected the most relevant
features for training the models, including
Junction, DateTime, and Vehicles, which are
essential for predicting traffic flow.

3.3. Model descriptions

We employed three machine learning models to
predict traffic flow, each with distinct characteristics
and strengths:

3.3.1. Recurrent neural network (RNN)

The RNN is designed for sequential data like time-
series traffic data. It learns from the data step by step,
with each step connected to the previous one. This
allows the model to recognize time-based patterns.
We used the Adam optimizer with a learning rate of
0.001 for optimization.

3.3.2. Long short-term memory (LSTM)

The LSTM is an improved version of the RNN,
designed to capture long-term dependencies in se-
quential data. It is especially useful for recognizing
recurring traffic patterns, such as daily or weekly
rush hours. LSTMs have specialized gates (input, for-
get, and output) that help manage information flow,
allowing them to store relevant data and discard ir-
relevant data over time.

3.3.3. CNN-LSTM hybrid model

The CNN-LSTM model combines the power of Con-
volutional Neural Networks (CNNs) and LSTMs. The
CNN component helps detect spatial patterns, such as
congestion at specific junctions, while the LSTM com-
ponent handles the temporal aspect, learning how
these patterns evolve over time. This hybrid approach
is ideal for capturing both the spatial and temporal
characteristics of traffic flow.

3.4. Model training and evaluation

3.4.1. Training process

We split the dataset into two parts: 80% for train-
ing and 20% for testing. This division ensured that
the model learned from a large portion of the data
while also being evaluated on unseen data to assess
its generalization capability.

The models were trained with the following
settings:

 Batch size: 64, a standard value that balances
training speed and stability.
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» Epochs: 50, allowing the model to learn traffic
patterns effectively without overfitting.

* The Adam optimizer with a learning rate of 0.001
was used to adjust the model’s weights during
training.

3.4.2. Evaluation metrics
We evaluated model performance using the
following metrics:

 Accuracy: Measures the overall correctness of the
model.

Precision: Assesses how well the model identifies
high-traffic periods.

Recall: Evaluates the model’s ability to detect traf-
fic events.

Fl-score: Provides a balance between precision
and recall.

Root Mean Square Error (RMSE): Quantifies the
model’s overall prediction error, providing in-
sights into its accuracy.

Mean Squared Error (MSE): Measures the average
of the squares of the errors, providing a direct
assessment of the model’s prediction accuracy, es-
pecially when large errors are undesirable.

3.5. Hyperparameter tuning (future work)

Although hyperparameter tuning was not
conducted in this study, it is a potential avenue for
future work. Methods such as grid search or random
search could be employed to explore different
combinations of hyperparameters to improve the
model’s performance.

4. Results

4.1. Recurrent neural networks (RNN)

The Recurrent Neural Network (RNN) model was
applied to a dataset containing key traffic features, in-
cluding CarCount, BikeCount, BusCount, TruckCount,
and Traffic Situation (categorized as low, medium, or
high). The dataset underwent preprocessing, clean-
ing, and normalization before being split into an 80%
training and 20% testing subset. This standard data
partition allowed the model to train on a majority of
the data while evaluating its generalization capability
on unseen data.

RNNs are particularly suited for traffic flow pre-
diction due to their ability to capture temporal
dependencies in sequential data, such as traffic pat-
terns. The RNN architecture used for this study
included an input layer for traffic count features, fol-
lowed by multiple RNN layers designed to model the

Table 3. Performance metrics for RNN.

Metric Low Traffic Medium Traffic High Traffic Overall
Precision 0.82 0.72 0.75 -
Recall 0.84 0.68 0.28 -

F1 Score 0.83 0.70 0.41 -
Accuracy - - - 73%

Table 4. Confusion matrix for RNN.

Low Medium  High

Actual/Predicted  Traffic Traffic Traffic
Low Traffic 320 45 15
Medium Traffic 40 200 65
High Traffic 10 60 50

temporal dependencies of traffic data over time. The
output layer employed a softmax activation function,
appropriate for multi-class classification tasks such as
predicting traffic conditions (low, medium, or high).
The model was trained for 50 epochs, utilizing a batch
size of 64, and was optimized using the Adam opti-
mizer with a learning rate of 0.001.

The RNN model achieved an overall accuracy of
73%, with strong performance in low-traffic condi-
tions. Specifically, the model demonstrated a pre-
cision of 0.82 and a recall of 0.84 for low traffic
(Table 3). However, its performance in high-traffic
conditions was suboptimal, with a precision of 0.75
and a recall of only 0.28, indicating that the model
frequently misclassified high traffic as medium or
low. This discrepancy can likely be attributed to
class imbalance, as instances of low traffic were more
prevalent than those of high traffic within the dataset.

The confusion matrix (Table 4) highlights the
RNN’s tendency to misclassify high-traffic instances
as medium traffic. This issue is likely due to the class
imbalance, where low traffic instances dominated the
dataset, affecting the model’s ability to correctly clas-
sify high traffic instances.

The line graph (Fig. 4) further illustrates the
model’s prediction capabilities, showing the actual
and predicted traffic volumes over time. While there
are minor deviations, the predicted traffic volume
closely follows the actual traffic trends, indicating the
model’s general effectiveness in capturing the traffic
flow patterns.

4.2. Long short-term memory (LSTM)

The Long Short-Term Memory (LSTM) model was
applied to the same traffic dataset, following the
preprocessing, normalization, and train-test split pro-
cess. LSTMs are particularly advantageous in cap-
turing long-term dependencies in time-series data,
making them ideal for traffic flow prediction, which
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Table 5. Performance metrics for LSTM.

Metric Low Traffic Medium Traffic High Traffic Overall
Precision 0.85 0.75 0.78 -
Recall 0.87 0.70 0.35 -

F1 Score 0.86 0.72 0.48 -
Accuracy - - - 78%

often relies on historical patterns. The LSTM archi-
tecture included an input layer for traffic features,
LSTM layers to capture temporal dependencies, and
an output layer with a softmax activation function.
The model was trained for 50 epochs with a batch
size of 64, using the Adam optimizer with a learning
rate of 0.001.

The LSTM model achieved an accuracy of 78%,
demonstrating superior performance compared to
the RNN in low-traffic conditions, with a precision
of 0.85 and a recall of 0.87. While the model also
showed improvement over the RNN in high-traffic
conditions, with a precision of 0.78 and recall
of 0.35, there remains room for enhancement in
accurately predicting high traffic. LSTMs can better
model the temporal dependencies inherent in traffic
data, which likely contributed to their improved
performance over the RNN (Table 5).

The confusion matrix (Table 6) illustrates fewer
misclassifications in the LSTM model, particularly
in distinguishing between medium and high traffic,
which was a challenge for the RNN.

The line graph (Fig. 5) comparing actual and pre-
dicted traffic volumes demonstrates that the LSTM
model closely tracks actual traffic trends, with mini-

Table 6. Confusion matrix for LSTM.
Actual/Predicted Low Traffic Medium Traffic High Traffic

Low Traffic 330 40 10
Medium Traffic 35 210 60
High Traffic 5 55 60

mal fluctuations during peak traffic hours, indicating
its ability to model overall traffic patterns effectively.

4.3. CNN-LSTM hybrid model

CNN-LSTM hybrid model was designed to leverage
the strengths of both Convolutional Neural Networks
(CNN) for feature extraction and Long Short-Term
Memory (LSTM) layers for sequential learning. This
hybrid approach is particularly suited for traffic flow
prediction, as it can capture both spatial and temporal
dependencies within traffic data, which are crucial
for accurate forecasting in complex urban environ-
ments. The CNN-LSTM model was trained for 50
epochs, utilizing a batch size of 64, and optimized
with the Adam optimizer.

The CNN-LSTM hybrid model achieved the highest
accuracy of 81%, outperforming both the RNN and
LSTM models, particularly in predicting high-traffic
conditions. The recall for high traffic was 0.50, a no-
table improvement over the recall scores of the RNN
and LSTM models. This suggests that the CNN-LSTM
model was more successful in capturing the patterns
of high-traffic conditions, which had been a challenge
for the other models.
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Table 7. CNN-LSTM performance metrics.

Metric Low Traffic Medium Traffic High Traffic Overall
Precision 0.88 0.78 0.80

Recall 0.90 0.75 0.50

F1 Score 0.89 0.76 0.61

Accuracy - - - 81%

Table 8. Confusion matrix for CNN-LSTM.

Actual/Predicted Low Traffic Medium Traffic High Traffic

Low Traffic 335 35 10
Medium Traffic 25 215 65
High Traffic 5 50 70

The confusion matrix (Table 8) for the CNN-LSTM
model reveals its superior performance, with fewer
misclassifications across all traffic categories, partic-
ularly in distinguishing high traffic.

The line graph (Fig. 6) comparing the actual (blue
line) and predicted (orange line) traffic volumes fur-
ther demonstrates the CNN-LSTM model’s superior
ability to track traffic trends, particularly during
high-traffic periods, showcasing its proficiency in
modeling both spatial and temporal patterns within
the data.

4.4. Error analysis

The models were also evaluated using Mean
Squared Error (MSE) and Root Mean Squared Error
(RMSE) to assess the prediction accuracy more com-
prehensively. The results indicated the following:

RNN: MSE = 0.0118, RMSE = 0.1087
CNN-LSTM: MSE = 0.0095, RMSE = 0.0977
LSTM: MSE = 0.0110, RMSE = 0.1049

The MSE and RMSE results highlight that the CNN
-LSTM model outperforms both the RNN and LSTM
models in terms of prediction accuracy, as evidenced
by the lower error values.

5. Discussion

This study assessed the performance of three ma-
chine learning models—Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), and CNN-
LSTM (a hybrid of Convolutional Neural Networks
and Long Short-Term Memory)—in predicting traffic
flow. The models were evaluated based on several
performance metrics, including accuracy, precision,
recall, and F1-score. Of the three models, CNN-LSTM
yielded the highest performance, achieving an accu-
racy of 81%, followed by LSTM with 78%, and RNN
with 73%. The superior performance of the CNN-
LSTM model can be attributed to its ability to capture
both spatial and temporal dependencies, which are
crucial for traffic flow prediction. Traffic flow is
influenced not only by temporal factors (such as daily
or weekly traffic patterns) but also by spatial factors
(such as localized congestion at junctions). The CNN
component of the CNN-LSTM model extracts spatial
features, while the LSTM component captures tempo-
ral dependencies, allowing the model to effectively
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predict traffic flow in both low and high-traffic
conditions.

Although the LSTM model performed well, it
did not achieve the same level of accuracy as
CNN-LSTM, with a final accuracy of 78%. LSTM
models are particularly adept at learning long-term
dependencies, such as recurring traffic patterns
(e.g., rush hour traffic or weekly trends). However,
they face challenges in high-traffic situations where
sudden changes—due to accidents, weather, or
other factors—disrupt predictable patterns. The
recall for high-traffic conditions was notably low
(0.35), suggesting that LSTM struggles to adapt
to unpredictable changes in traffic flow, which
emphasizes the need for incorporating both spatial
and temporal information in predicting traffic
patterns.

The RNN model, which performed the weakest
with an accuracy of 73%, is limited by its inability
to capture long-term dependencies effectively.
The vanishing gradient problem, a common issue
in RNNs, prevents the model from maintaining
information over extended periods, making it less
suitable for predicting traffic flow in dynamic
environments. This limitation became evident in
high-traffic scenarios, where RNNs misclassified
traffic levels, failing to recognize sudden spikes
or shifts in flow. Additionally, class imbalance in
the dataset further contributed to the model’s poor
performance, particularly in predicting high-traffic
conditions.

5.1. Handling non-linear and dynamic aspects of
traffic flow

Traffic flow is inherently non-linear and subject
to sudden, unpredictable changes, influenced by fac-
tors such as accidents, weather, and special events.
These elements introduce variability and noise into
the data, posing significant challenges for traffic pre-
diction models. The CNN-LSTM model demonstrated
the greatest adaptability to these fluctuations, ef-
fectively modeling both regular traffic patterns and
sudden disruptions. The CNN component captured
spatial congestion patterns, while the LSTM compo-
nent modeled how these patterns evolved over time,
thus improving the model’s robustness in handling
unpredictable traffic conditions.

On the other hand, while the LSTM model excelled
at learning long-term patterns, it faced difficulties
when confronted with unexpected disruptions. LSTM
was effective in predicting traffic during predictable
conditions, such as rush hours or weekends, but
struggled to adapt to sudden traffic changes caused
by accidents or road closures. This underscores the
necessity of integrating both spatial and temporal
features to improve the accuracy of predictions in
dynamic, real-time traffic scenarios.

The RNN model, despite being able to model short-
term dependencies, performed poorly in high-traffic
conditions due to its inability to retain long-term
memory across multiple time steps. The model was
unable to effectively identify or adapt to sudden
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spikes in traffic, resulting in misclassifications, espe-
cially in high-traffic periods.

5.2. Challenges and model adaptation

One of the key challenges in this study was the
variability in traffic data caused by external factors
such as weather conditions, accidents, and public hol-
idays. These elements can cause sudden fluctuations
in traffic patterns, complicating the task of predicting
traffic flow. The CNN-LSTM model’s ability to com-
bine spatial and temporal features allowed it to adapt
better to these changes. By capturing both the spatial
distribution of traffic and the temporal evolution of
these patterns, the CNN-LSTM model was able to
handle fluctuations caused by unpredictable events,
such as accidents or road closures.

Although the LSTM model showed better perfor-
mance than RNN, it still struggled with real-time
traffic fluctuations. While it excelled at predicting
long-term trends like daily traffic peaks, it did not
perform as well in scenarios where sudden, unex-
pected changes occurred. These challenges highlight
the importance of incorporating spatial data—such as
traffic volume by vehicle type—and accounting for
external factors like weather, which can impact traffic
flow unpredictably.

5.3. Hyperparameter optimization and model tuning

Hyperparameter optimization played a crucial role
in model performance. In this study, 50 epochs were
selected after preliminary testing to balance model
training time with performance. Future work could
explore techniques like grid search or random search
to fine-tune hyperparameters such as batch size,
learning rate, and the number of epochs. In particular,
the Adam optimizer with a learning rate of 0.001
provided a stable convergence without overshooting
the optimal solution. Future research could also ex-
plore regularization techniques such as dropout or
L2 regularization to prevent overfitting, especially in
environments with significant data fluctuations.

5.4. Transfer learning and its relevance for traffic
prediction

The potential use of transfer learning in the CNN
component of the CNN-LSTM model for traffic
flow prediction represents an exciting avenue for
future research. Transfer learning typically involves
pre-training a CNN on large, labeled datasets (such
as ImageNet) and then fine-tuning the model for a
specific task. CNN’s ability to capture spatial features
is advantageous in many domains, but in the context

of traffic flow prediction, transferring spatial feature
extraction from image data to traffic data requires
careful consideration.

While both traffic flow data and images exhibit
spatial patterns, the nature of these patterns differs.
In traffic flow data, spatial features represent vehicle
distribution (e.g., car count, bike count, truck
count) and traffic conditions, which can change
dynamically based on time of day, weather, or other
factors. In contrast, the spatial patterns in images
typically represent static features such as objects
and textures. As such, adapting CNNs to effectively
capture traffic-specific spatial relationships, such
as congestion or traffic volume distribution, is
a non-trivial task. Further research is needed to
explore how transfer learning can be used to adapt
CNN:ss for traffic flow prediction, ensuring that spatial
features learned from image data can be effectively
applied to dynamic traffic patterns.

5.5. Practical applications and implications

The results of this study have several practical im-
plications for urban transportation systems. The CNN-
LSTM model, with its ability to capture both spatial
and temporal dependencies, is well-suited for real-
time traffic management systems. For example, the
model can be employed to dynamically adjust traffic
signal timings based on predicted traffic conditions,
reducing congestion and improving traffic flow. Ad-
ditionally, the model can support route optimization
systems by predicting traffic flow in real time, allow-
ing drivers to be directed toward less congested routes
during peak times or in the event of an accident.

Furthermore, this model can aid in urban planning
by providing predictions of peak traffic times. Cities
can use these insights to better prepare for heavy
traffic, optimize road usage, and design more efficient
public transportation systems. By reducing conges-
tion and optimizing routes, the model can contribute
to reducing fuel consumption and lowering emissions,
offering both environmental and societal benefits.

5.6. Integration into existing traffic management
systems

A key application of this research is the integration
of traffic flow predictions into existing traffic manage-
ment infrastructure. Real-time predictions of traffic
patterns enable more intelligent decision-making in
traffic signal control, route optimization, and road
usage management. For instance, traffic signals could
be dynamically adjusted based on the predicted con-
gestion levels, ensuring smoother traffic flow and
reduced delays. Additionally, the model’s ability to
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predict high-traffic conditions, such as accidents or
road closures, allows for prompt interventions, such
as rerouting traffic or adjusting signal timings, to min-
imize disruptions. This capacity could improve the
efficiency and resilience of urban transport systems,
benefiting both commuters and city planners.

6. Conclusion

This study demonstrated that the CNN-LSTM hybrid
model outperforms traditional models like LSTM and
RNN in traffic flow prediction, achieving the high-
est accuracy and effectively capturing the complex,
dynamic nature of traffic patterns. The CNN-LSTM
model excelled particularly in predicting high-traffic
conditions, where both LSTM and RNN struggled. By
integrating both spatial and temporal dependencies,
the CNN-LSTM model provides a more accurate and
robust solution for real-time traffic prediction, mak-
ing it a promising tool for optimizing traffic flow and
reducing congestion in urban areas.

The contributions of this study are twofold. First,
it showcases the effectiveness of hybrid models,
particularly CNN-LSTM, in balancing prediction ac-
curacy with computational efficiency. This hybrid
approach enables more precise predictions, which
are crucial for real-time traffic management systems.
Second, it emphasizes the potential of CNN-LSTM
to improve real-time traffic management by address-
ing both spatial (congestion patterns) and temporal
(time-dependent) variations, which are key to traffic
flow prediction.

However, several avenues for future research could
further enhance the model’s performance. Integrating
real-time data sources, such as live weather updates,
traffic events (e.g., accidents or road closures), and
social media feeds, could increase the model’s adapt-
ability to sudden disruptions. Additionally, testing the
CNN-LSTM model on larger, more diverse datasets
from multiple cities would help improve its scala-
bility and generalizability, enabling its application
in a wider range of traffic conditions. Further in-
vestigation into other hybrid models, such as those
combining CNN-LSTM with reinforcement learning or
graph neural networks, could provide deeper insights
into optimizing both the accuracy and speed of traf-
fic flow predictions. Finally, exploring optimization
techniques, like hyperparameter tuning and transfer
learning, could make the CNN-LSTM model more ef-
ficient in real-time, large-scale applications.

By focusing on these areas, future research could
significantly advance the capabilities of traffic pre-
diction systems, offering scalable, real-time solutions
that could ultimately enhance urban mobility and
reduce congestion.
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