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Abstract

In this paper, a new algorithm for accurate optical flow estimation using discrete
wavelet approximation is proposed. The image sequences are always assumed to
be noiseless in the computation of optical Now, since there is always a method that
can perform such task. One of the main application areas of the wavelet
transform is that of noise reduction in images. The basic technique is to transform
the noisy input image imto a domain, in which the main signal energy is
concentrated into as few coefficients as possible, while the noise energy is
distributed more uniformly over all coefficients. The choice of the transform is
represent an important tool in optical flow estimation. In this paper, fast
algorithm of 2-D wavelet transforms is adapted for the estimation of optical flow
for the first time,

Keywords: Optical flow estimation, gradient-based method, 2-D Discrete Wavelet
Transform (DWT).
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Introduction (reference) frame, excepl at scene culs

One of the major issues in video where the current frame is unrelated to
sequence coding is the exploitation of the previous frame. Frame motion can
temporal redundancies. Each frame in a generally be classified as either
typical video sequence is made up of global/camera motion or local/object
some change regions of the previous motion. Global motion refers 1o the
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movement of the entire scene of a frame
due to camera motions such as panning,
zooming, rotation, translation, and
vibration. Local motion, on the other
hand, is due to movements of objects in
a scene. As different objects may
exhibit different types of movement,
local motion estimation is wsually more
difficult to compensate. The main
ohjective of any motion estimation
algorithm is thus to exploit the strong
interframe  correlation  along  the
temporal dimension. If we can estimate
the set of motion vectors that map the
previous frame to the current frame,
then we only need to code and transmit
the motion vectors and possibly the
error  frame associated with the
difference  between the motion-
compensated and the current frame,
fewer hits are needed to convey the
same amount of information [1]. The
purpose ol optical flow measurement is
only to estimate this motion in the
image plane from the knowledge of the
images sequence I(t:x). Optical flow is
defined as the projection of velocities of
3D surface points onto the imaging
plane of a visual sensor.

Many methods for computing optical
flow have been proposed other continue
io appear [2.3]. Lacking, however, are
quantitative evaluations of existing
methods and direct comparisons on a
single set of inputs. These can be
roughly grouped into gradient-based,
correlation-based, energy-based, phase-
bused and wavelet-based techniques.
The wavelet is a mathematical tool used
to describe functions more efficiently
and precisely, Wavelets have been very
popular in signal and image processing
problems. such as  approximation,
estimation and decorrelation [4]. In this
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paper, we take advantage of the
properties  of  wavelet  transform,
sparsness and decorrelation, to improve
the optical flow estimation.
1. Optical Flow (OF)
As defined above, the optical flow is
a velocity field associated with
brightness changes in the image. This
suggests an assumption often made in
methods for optical flow ¢stimation, the
brightness conservation assumption,
which states that brightness of an image
of any point on the object is invariant
under motion.

We denote an image intensity function
by I(x, v, ¢, and the velocity of an
image pixel m=[x, yJ" is:

Vig = = {v.r v,i'}:r = |:dx‘rfdr:| “]

dy/di

The initial hypothesis in measuring
image is that the intensily structures of
local time varying image regions are
approximately constant under motion
for at least a short duration (df),

LE.

Hx+dx, y+dy, 1+dr)= Hx, y.t)

1l x+£x-dr¢ y+f—f£dr, r+a’f] = I{x,y,1)}
ol dt
f{x +V,dt, ¥+ HJ,.:I’.', i+ a’r): I[,r, y,r} ‘
)

If the brightness changes smoothly with
X, ¥, and t, we expand the left-hand-side
by Taylor series:
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Hx,y.0)+ -g;;-,df +%v‘,di B

%;' de+ 0ldr* )= 1{x,y.1)

S0, we have

al a1 il
i s _._:D - s
o 511-'-" s s
i.e
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VIv +—=0 5
Vw2 (5)
’ -
where L | =[g,§—f:| is  image
y

gradient at pixel m, which can be

obtained from images. Also ﬁ—f can
of

also be obtained from images easily.
We call this equation optical flow
constrained equation. Apparently, for
each pixel. we have only one constraint
equation, but we need to solve two
unknowns, i.e., v, and v,, which means
that we cannot determine optical flow
uniquely only from such optical flow
constraint equation [5].

In case of rigid body,
neighboring points of a body move
similarly, their velocities differing only
slightly. This results in a rather smooth
optical flow. Hom and Schunck [6)
were first to make this assumption and
exploit it for determining an optical
flow. As a measure of a field
smoothness  (or, more precisely,
unsmoothness) they used the square of
the magnitude of the wvelocity feld
gradient, i.e.:

(Eu"'lz
—| +
..(3) axJ
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m]z (aﬂ! (ep]l
— | and | — - —
lay a) Aoy
.. (6)
They  wansformed  optical  flow

estimation into an optimization problem
involving a combination of the two
eriteria;

The error in the image brightness
changes measurement:

Ep=lvy+1v, +1 « {7}

The gquantity reflecting a “non-
smoothness™ of the velocity field [4):
]2

» (ouy (ouY [é‘v]z av
El=|—| +|—| #+|=—| +|—
=) o) &) '\
. (B)
A weighted sum of these two quantities
summed over the image
is to be minimized:
£ =Y ¥ (2 +a2E2) - (9)
x )
or
2 e S T,
ES =Y S(VIv+l) +a [v u+V v]

X ¥
Since the input image is corrupted by
noise and quantization error, we cannol
expect £y to be identically zero. This
quantity would have a magnitude
proportional to the noise in the
measurement, therefore the weighting

" 3,
factor &~ in the sum should be chosen
equal 10 the estimate of the noise
variance in the image [5].

2. Wavelet Theory



Eng. & Technology, Yol 24, No. 10, 2006

The multiresolution idea is better
understood by  using a  function
represented by ®(t)and referred 10 as
scaling function. A two-dimensional
family of functions is generated, from
the basic scaling function by [7]:

@, 0)=2"0l/i-) .00
The nesting of the space spanned by
¢[251—§:]I$ achieved by requiring
@lr) 10 be represented by the space
spanned by®(2r). In this case, the

lower resolution function, ®(t), can be
expressed by a weighted sum of shifted
version of the same scaling function at
the next higher resolution, iIJ{?.r). as
follows:

O)=F mk)V2Zo(2r-k) .01
k

The set of coefficients A(k)being the

scaling function coefficients and 2
maintains the norm of the scaling
function with scale of two. ®{r), being
the scaling function which satisfies this
equation, is sometimes called the
refinement  equation, the  dilation
equation, or the multiresolution analysis
equation (MRA) [8-9]. The imporant
features of a signal can be better
described or parameterized, not by
using IIIM{I] and increasing j to

increase the size of the subspace
spanned by the scaling functions, but by
defining a slightly different set of

functions "I‘j.*(l} that span the

differences between the spaces spanned
by the various scales of the scaling
function [10). Since it is assumed that
these wavelets reside in the space
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spanned by the next narrower scaling
function, they can be represented by a
weighted sum of shifted version of the

scaling function tb{?.r}as follows:

W) =3 glk)V2 020 ~k) ...(12)

The set of coefficients g(k)’s is called
the wavelet function coefficients (or the
wavelet filter). It is showa that the
wavelet coefficients are reguired by
orthogonality to be related to the scaling
function coefficients for a finite even
length-N, by (8.10]:

g)=(=1)mN-1-k) .03
Any function f(r) could be written as a

series expansion in terms of the scaling
function and wavelets by [11]:

)= 3 a, k)0, 0+

E==tn

m  m e {] 4
M hj{”"ﬂ,k{f)
i=jp k=-m
where N : Length of filter,
Ja' coarse scale,
a,: Scaling coefficients.
b, : Wavelet coefTicients.
it is shown that the scaling and wavelet
coefficients at scale j are related to the
scaling coefficients at scale (7 + 1) by
the two following relations.

a;(k)=S hlm-2k)a,, (m) ... (15)
"

b (k)=3 glm-2k)a;.,(m) ...16)
m

J. A Proposed Fast Computation

Method of 2D-DWT

For computing fast discrete wavelet
transform  (FDWT), consider the



Eng. & Technology, Vol.24, No.10, 2006

following transformation matrix for
length-2 [12]:

2

I'h{"l] w0 ] 1 3
0 o mod sl
T - [H] i (4] 1] hluj ﬂ”
La -afo) o 0
o 0 M) -uo) 4.
fIW D ﬁ :Ii ------ i) - niod) 8.
(I

and the transformation matrix shown in

equ. (18) for length-4,

To compute a single level FDWT for 2-

[ signal using separable method the

next step should be followed:

. Checking input dimensions: Input
matrix should be of length NxN, where

N must be power of two.

(n(0)  a(t) w2) HE) o

M3) -m2) W) -no)

] 0 0

0 0
(K1) -m0) o o0 0
4. Wavelet-Based Optical Flow
We have developed a new

algorithm for computing optical flow in
the differential framework which
performs comparably to the Hom and
Schunck epproach but with less
computational cost and a higher density
of estimates, The computation of image
velocity can be viewed by these steps:

Step 1: Presmoothing the images 1o
reduce noise and aliasing effect using 2-

0
0 0 o) w1 m(z) wB)

k{lz] mfs] tgu 0 0 0
0 0 A3 -aR) mf]} -;;{u]
0 ¢ 0
0
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Construct a transformation matrix:
using transformation matrices given in
(17)and (18).

Transformation of inpul rows by
apply matrix multiplication to the NxN
constructed transformation matrix by
the NxN input matrix.

Transformation of input columns: can
be done as follows:

Transpose the row transformed
NxN matrix resulting from step 3.

Apply matrix multiplication to
the NxN constructed transformation
matrix by the NxN column matrix.

The final DMW matrix is equal to the
transpose of the resultant matrix above.

o 0 0 0
6c 0 0 0
0 0 ko) M) | g
e o0 o 0
o0 0 0
<+ K3) -2} K1) -#{0)
w00 K3) -h2))
D fast discrete wavelet transform

algorithm stated in section 4. Only 5
input images are required, as shown in
Fig. (1). When a data set is decomposed
using wavelets, filters are used that act
as averaging filters and other produce
details. Some of the resulting wavelet
coefficients correspond to details in the
data set, If the details are small, they
might be omitted without substantially
affecting the main features ol the data
set.
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Step 2: Derivative Calenlation:
Regardless of the optical flow
method used, there is need to compute
image intensity derivatives.
Differentiation  was  done  using
Stmoneelli's [13] matched balanced
filters for low pass filtering (blurring)
[p5 in Table 1] and high pass filtering
{differentiation} [d5 in Table 1]

In this paper to compute fx in 21D,
one  first convolves the smoothing
kernel, p3, in the ¢ dimension to reduce
the 5 images to 1 image, then convolves
the smoothing kemel p5 on  that
resulting in the v dimension and then
convolve the differentiation kernel, d5,
on that resuit in the x dimension to
abtain fx. To compute Jt in 21 for frame
i first p5 is to be convolved in the x
dimension and on that result in the ¥
dimension for frames 1 -2, 0 -1, 1, 1 + ]
and i + 2. This yields 5 smoothed
images in ¥ and y. Then these images
are differentiated in the 1 dimension
using d5 to get it Fig. (2) illustrates the
application of these kernel's filters.

Step 3: Perform Iteration: for each
iteration, the algorithm is outlined as
follows:

a. Initialize u,, and v, for all (x.y)
pixet.

B Estimate the Laplacian of the flow
velocities: The Laplacian of u and v are
approximated by

Vi =i?[x,y_]—u(x.y}
1,;.'31? = 'T’(I_.y}—‘n’(x,y)
Equivalently, the Laplacian of u and v,

v2yand ?Ev._ can be obtained by
applying a 3x3 window operator, shown

. (19)
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in Fig. (3}, to each point in the » and v
planes, respectively.

&, Given the spatio-temporal
derivatives, Ix, Iy and It, computed as
described in step 1, a new sel of

velocity estimates (z;*“"lﬁrk ”]

computed from the  estimaied
derivatives and the average of the

k‘i_’kJ

can be

previous velocity estimates (If
by
S fx[fx‘_‘hﬁ"f_rﬁ"'”rj

u =1
2 Z 2
& +fx4fj, (20)
k k
E41_ —k I},[I‘,M +Iv" +1,
v =W a 3 5 5
a“+I;+13
where:
k : the ileration number.

un.v'}: Initial velocity estimaies (set o
FEr0).

o e
Ly

v

Neighborhood averages of

k

Step 4: Threshold the velocity vectors,
Due to the sparseness of wavelet
coefficients, the potential in denoising
has been studied extensively over the
last decade. The energy of the signal is
concentrated in a small number of
wavelet coefficients. Thus, magnitude
of the coefficients are relatively large
compared to noise which spreads over a
large number of coefficients, The
energy concentrating property  allows
the removal of low amplitude noise
through thresholding. Besides,
thresholding in wavelet domain induces
smoothing (denoising) in time domain.
Threshelding is done by first taking
discrete wavelet transform of the signal.
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Then we will apply threshold 1o the
transformed  coefliciemt  to  remove
those, which are below a certain value,
Finally, we take the inverse discrere
wavelet transform of it to obtain the
signal estimate.

5. Experimental Results

Algorithm  developed in the
previous sections are utilized and
organized to be implemented in a
computer using MatLab 6.5 Program.
The proposed methods in this paper are
applied 1o estimate the optical flow on
real sequences and synthetic sequences,
The regularizing parameter (1) is set to
0.5 for all experiments in this paper.
Most image sequences are downloaded
from fip.csd.uwo.ca.

5.1 Synthetic Image Sequences
Stnusoidal Inpus: This consists of the
superposition of two sinscidal plane
waves

sin(k; - x+wyr)+sinlky -x+wsr)
we (21)

The results reported are based on
spatial wavelengths of 6 pixels, with
orientations of 54° and —27°, and speeds
of 163 and 102 pixel/frame
respectively, which is called Sinsoidall
as shown in Fig. (4). The resulting plaid
pattern  translates  with  velocity
v=(1.5539,0.7837) pixel/frame.
Translating Squares: Other simple test
case involves a translating dark square
(with a width of 40 pixels) over a bright
background as shown in [Fig. (3).
Yosemite Sequence: The Yosemite
sequence is a more complex test case as
shown in Fig. (6). The motion in the
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upper right is mainly divergent; the
clouds translate to the right. This
sequence is challenging because of the
range of velocities and the occluding
edges between the mountains and at the
horizon. There is severe alliasing in the
lower portion of the images however,
causing most methods 1o poorer
velocily measurements.

5.2 Real Image Sequences

Two real image sequences, shown
in Fig. (7) and Fig. (8), were also used:
Rotating Rubik Cube: In this image
sequence a rubic’s cube 5 rotating
counterclockwise on a turntable, The
motion field induced by the rotation of
the cube includes velocities less than 2
pixel/frame
Hamburg Taxi Sequences. In this street
scene there were four moving objects: 1)
the taxi turning the corner; 2) a car in
the lower left, driving from left to right;
3)a van in the loer right driving right to
lefi; and 4) a predestrain in the upper
lefi.

&, Conclusions

The proposed wavelet-based optical
flow estimation framework benefits
from the following useful features:
1. Low computational complexity:
Although the convolution method leads
to full reconstruction computation, it
gives also less complexity, The scalar
methods have (32) multiplications and
{18} additions for transforming a signal
of four input data (N=4), while the
proposed  method  gives (16)
muitiplications and 12 addition
operations for the same input size.
2. Low memory requirement: A
Gaussian 1.5 filter requires the explicit
sterage of 15 frames to compute flow.
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Concerns arise for real-time use when
considering the computational costs and
seven frame delay of the Gaussian 1.5
filter. Temporal delay and storage
requirements are improved significantly
for wavelet filter, giving two frame
latency as given in Table (1).

3. Since a significant number of motion
vectors in the high frequency subbands
can be zero (due to the sparse wavelets
cocfficients in these subbands). no
motion vectors are generated for these
blocks.
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Fig. {1}: Presmoothing images using 3D wavelet transform.
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Fig, (7): a) Rotating Rubik Image. b) Rotating Rubik Flow.
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