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Abstract:

This study includes the derivation of the stiffness matrix for a haunched
member using the simple bending theory. The derived stiffness matrix covers
most possible geometric shapes for haunched members under different
loading cases and combinations with including transverse shear deformations
effect. The importance of the transverse shear deformation in haunched
members with high depth to span ratios is shown using numerical example.
The accuracy of the proposed analysis technique is verified by comparing the
results of the numerical example with those obtained from the general analysis
program SAP90 using a large number of subelements.
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List of Symbols :
a subdivision length (Fig. 5)
A, B left and right support reaction

Aj, A cross sectional area at [ and §

ends

A(x) ross section arca of the beam

A, min, area of the member cross
section

Aﬂ min. area along the length L

C matrix of the coeff, in 2q.(6)

E modulus of elasticity

F member force vector

F,. Fy member forces

G shear modulus

Iy moment of inertia at 7 and [ ends

I(x) moment of inertia at x from
origin

[, min, moment of inertia of member
cross section

I, ..J; integrals given in eqs.(3) and
(12)

L integral given in ¢q.(25b)

K km stiffness coeff, for Us=1

h k”hﬂiﬂ‘l

neglecting axial deformation

K member stiffness matrix

L length of member

L.L; length in variable left and right
haunches

L, length in the constant mid-
section.

stiffness with

* Engineering College, Liniversity of Baghdad, Baghdud-1RAG.

https://doi.org/10.30684/etj.24.9A.11

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0




Eng. & Technology, Vol.24, No.9, 2005

L subdivision length

M(x) moment function of the beam
M(X) moment function due to span
load (x) of simply supported beam
ngommy,my  factors of the basic
stiffness coefficients

Ny Tfactor of the stiffness coeff. for
length L

P member fixed end forces vector
P,..P; fixed end forces

q{x) addition of q! and g2

qivq: M{(xVEI(x) function due to left
right moment

Q load intensity

Q(x) span load function

U member displacement vector

Uj..Us member disp.

Usipenr shear deflection

Introduction

Haunched members can be used
to shape the members in accordance
with the distribution of the internal
stress. By using these types of
members, one can achieve the
required strength with the minimum
weight and material and also may
satisfy  architectural or functional
requirements. In industrial buildings,
bridges, and high rise buildings, non-
prismatic members with variable
depth or width are usually used.

Different approaches have been
developed for the analysis of non-
pristnatic members {Including
haunched members). Reynolds and
Steedman (1988) published tables and
graphs for analysis purposes. Similar
calculations are also given in other

textbooks, for  example by
limoshenko  and  Young (1965),
Vanderbilt (1978} and Funk and

Wang (1988) calculated the stiffness
matris  and fixed end forces by
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Usaesr total shear deflection of non-
prismatic member at right end

V,(X) function of shear force for

simply supported beam
V, constant shear force due to end
moment

a shape factor for shear

o; @ taper factor at the left and right
haunches

B.I, I;I; shear consideration
factors

AL total axial elongation in length L
8o disp. of point i due to the actual
force Q

8p; disp. of point i due to P1

), 0, rotations at the left and right
supports of the simply support beam
y factor defined in egq.(16)

dividing the non-prismatic member
into subelements.

A refined anaiysis can be
performed by deriving the stiffness
matrix and fixed end forces by
considering the exact variations of the
geometry. Al-Gahtani (1996) derived
the stiffness matrix by using
differential equations and determined
fixed end forces for distributed and
concentrated member loads.
Timoshenko and Young (1965)
concluded that if the variation of the
cross section of a non-prismatic
member is not too rapid, it can be
analyzed with sufficient accuracy by
using the prismatic beam equations.
Al-Mezani  and Balkaya (1991)
demonstrated the problems due to
discontinuity of member axis and
arching effect in analyzing non-
prismatic members,

The use of tables and graphs is limited
o cerain cross sections and span
loads and is also difficult if several
loading may be considered. In the
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case of computer applications,
dividing  the members into
subelements increases the number of
equations and requires a larger

amount of input data. Therefore, most
of latest studies have focused on a
stiffness formulation of non-prismatic
members, which considered the exact
variation of the geometry. The effect
of shear deformations on fixed end
forces has not been considered so far
for non-prismatic members. The
purpose of this study is to develop an
exact solution using the simple
bending theory for non-prismatic
members with a wide range ol span

Stiffness Matrix for Haunched Members
with Including Effect of Transverse
Shear Deformauons

The displacement method yields the

following member  equilibrium
equation:

F=K.U+P ()

where K is the general stiffness

matrix of a non-prismatic member.
Based on the conjugate beam method
(Norriss et. al. 1982), K can be
suggested 10 be as follows:

load variations and finite element
formulation.
EAdy E4y
oy =22 0 0 —n, =2 0 0
L "
0 (ﬂr..+mﬁ+2m,,}%;‘lﬁ {m,,+m,,]-?z—ﬂﬁ 0 ~(m, +m, +2mg)a-i-ﬁ (m, +m}
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0 ~{m,+m, +J.H?i ,6' —lm,,+n:y:|—f—-ﬂ 0 r_m,__w-ml,rq-Zm__l‘j—Lj-ﬁ -(m, + ]
0 (m, +m,},_} ﬁ i, Eﬁh 0 --{mu+mﬂj}£{1ﬁ ml,H—E
L iy L
Stiffness Matrix: where A, and I, are the area and

The haunched members with a
rectangular cross section and length L
as shown in Fig. | is assumed to be
made of homogeneous, isotropic and
linearly elastic materials, Stiffness
Matrix:

The haunched members with a
rectangular cross section and length L
as shown in Fig. 1 is assumed to be
made of homogeneous, isotropic and
linearly clastic materials. Member end
displacements. U, forces F, and fixed
end forces P are shown in Fig. 2.

moment of inertia for the prismatic
part of haunched member respectively
and E is the modulus of elasticity.

The effect of the variation of the
area is expressed by the coefficients
nii and the variation of the moment of
inertia by the coefficients mii , mjj ,
and mij .When the member is
prismatic, nii =1,mii = mjj = 4 and mij
=2. The factors B, I'l, I"2 and I3
account for the shear effect. In the
case of Bernoulli-Euler theory, B=T'i
= T2 = T3 =| (no transverse shear
effect). However, especially for
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members with high depth to span
ratios, shear deformations should be
considered to increase the accuracy.

The coefficients mii, mjj and mij
are determined by using the conjugate
beam method and nii is derived from
the force-deformation. Fig. 3a shows
the corresponding forces and couples
when P = 0, U3 =1, and all other
displacements are zero in eq.( ).
M(x)EI(x) is applied as load to the
conjugate beam as shown in Fig. 3d,

From the equilibrium at the i and j
ends, the following equations are
obtained:

(2)

———dlt = {) {3)

4
s S (2e=n)y  Ely
L Elxn G

—meedx = ) (4)

Denoting the integral as:
L3 L

X |
I = —-dx-,f = |——ify
’ Jf{x‘,l . [-.[h:‘x]
L
X
f', = 5
_ j—”—:;:ir (5)
then equations (3) and (4) can be
rewritten in the form:

[4]

_h[-8ne20 4, LIF—!,]
18} ]

S} I

F
I.ﬂf":

x (6)
L™ |
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where A =-1 and B=0 in this case.

Imposing a unit displacement U,
=1, similar equations can be written in
terms of m; and my for the case of
A=0 and B=1. Denoting the matrix of
the coefficients in eq.(6) by C then for
U; =1, and U; =0 and for Us =0, and
Us =1, the following systems are
obtained:

) [o]

] =[ﬂ1 (M

LMy ]
This yield
'TF
my =
detC
Ll -4
My = 8
" derC ®
S =
- Ll =21l -,
detC
wheredetC = —%"{M; -5) 9

When P=0, and U, =1 and all other
displacements are zero in eq. (1), an
axial force of magnitude n, EA/L is
developed.  Then  the force-
deformation relation gives:

clon EAT 1
AL l—n,,Ldex (10)

Solving eq. (10) for the unknown n;
vields:

u,,:-—L—J_ l ot (11
[ar Ao Al
where :
b
L= 5% (12)
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Determination of the factors ny ,
m; and my of the basic stirfness
coefficients is based on the evaluation
of the integrals of egs. (53) and (12).
The imegrals I} 1. Iy and I for the
selected member types can  be
calculated for different haunch shapes
according to the taper factors oy and
«; at ends(see Appendix (A)). A
hunched member is assumed to be
consisting of three segments as shown
in Fig. |. The moment of inertia and
the area in the regions with length L,
and Lj are variable and in the region
with length L, are constant. The
integrals 1y Iz L and Iy represent the
summation of these three components.
Integrals for the constant and linear
variations can  be  performed
analytically, while for any curved
variation, numerical integration is
suggested to be done.

Stiffness Factors for Shear Effect:
Neglecting axial deformations and
partitioning the matrices into four 2 x

Stittness Matrix for Havnched Mombers
wilth Including Effect of Transverse
Shear Detormarions

The stiffness matrix of the member
shown in Fig. 4 corresponding to the
coordinates Fyand Fy is:

L, m, --Em_,.,_-Jf{l;.,. {im;, +_!J‘i__h.'|Ef¢
_ ] 2
= £ L (14)
3] Ly .J.,.,DI].;-_,_:r m, Efy
L e L

Using the relation between the
transverse shearing deformations and
applied shearing forces, shear
deflection due to unit transverse load
ai end ¢ can be cxpressed as Popov
(1968

where G is the shear modulus and a is
the shape factor of the cross section
for shear.

The foHowing notation is used:

s g_&_{mhmﬂ - m,f]lE:’.L.

(16)

2 submatrices, the beam stiffness G m, L
matrices  can  be  represented
respectively  in the  following Shear deformation can be added to the
simplified forms: inverse of eq. (14), i.e., the flexibility
matrix as:
= - = =
=t ‘[i b |
LT ks ko
{13)
[ mo L3+ w) [m..+m..jL2 1
".I'i_._.__..‘..f _____ N B ot if |
o _ 2 |
Jr_:_] ~ tm“.:,rﬂ —m{.;.]E:fD [ml.émﬂ. "’r’j)ﬂﬂ i[[jj
11 2 :
) (ot -|-n1£f}£. B (mﬂ.+mﬂ+2m{.j.}!_
24 2ip
i (m“m_” _mg]':'ﬂﬂ {.':.:r.‘.mﬂ—m‘..fjﬂ!ﬂ _:
The stiffness matrix &, by inverting eq. (17). The matrix &, can
considering the ftransverse shear be obtained from the eguilibrium

deformation can be obtained by
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conditions of the member. Repeating
the outlined procedure for the
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cantilever, by considering joint i as
fixed end and releasing joint j, k,,and

The

multiplication factors (B, T Tzand I
are wiven as follows:

E can be obtained similarly.

L3
© o= (18)
FJ’,IF {m, +m, +2m, )+ LG
| = ':{'.'JILE.{IIJJ_...:.J_{:‘1|.r3 (197
ar LG
- Bl fylmm, —m,:]
=i 3 yy8020)
L
Eigfylm m mr
R e 11101
)

A

Fixed End Forces Due to Axial
Forces:

Fixed end forces for the axially
loaded non-prismatic member are
derived using the flexibility method.
Referring to Fig. 3, static equilibrium
vields:

P+ P;=-Q (22)
Choosing Py as a redundant and
loading the primary structure with the

actual load Q. the displacement of

point { due to Py is:
A Al
T M, AEIL E
and the displacement of point ¢ due to
the actual force (Q is:

(23)

.0 g
P - R
YomAElL E

where 4

(24)

is the minimum area along
the length I,
— L ]

(25a)
[(17 4ty
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and
L |
“-{'I.' Al x)dx

o

5=

(258)

Using compatibility at point { and the
equilibrium condition (eq. (22)), then:

;=— 26
[ 3 (26}
and

is
B EQ{T—ll 27)

q

Fixed End Forces Due to Bending
and Shear :

The rest of the span loads
considered are perpendicular to the
member axis, therefore P, = P, = 0.
The force Py and Py are calculated
from:

[5]-- E?.[:: i E: }{23}

L Fe | L ao My

where 0, and 6, are the rotations at the
ends of the member due to the span
load Q(x). Using the conjugate beam
method, these rotations, which are
also given by Timoshenko and Young
(1963), can be expressed as:

B | J-M{x}{L %)
EL 1(x)

Bl j_%
EL

29
1) (29)

Where M(x) is the moment function

due to span load Q(x) of the simply
supported beam. The numerical
integration is used for the calculations
of & and 8, in eg. (29). Adding
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rotations for the different loads and
substituting into eq. (28) vields the
fixed end forces Py and Py Then P;
and Pgcan be calculated by adding the
respective simply supported beam and
end rotations and the reactions due to
the end moments.

Deformations of the cross section
due 1o transverse shear will produce
additional  deflection  which s
calculated by using the Bernoulii-
Luler beam theory. The non-prismatic
member shown n Fig.! is subjected
to member forces Q(x). Adding shear
deformations over the length, the net
deflection at end j with respect to
origin / can bhe expressed as:

b

LX)

Alx

—=dr (30)

+ 17
{’Jf' e = -]

[

&
G

where P(x)is the funciion of shear
force for the simply supported beam,
which 1s obtained by differenmtiating
the A7(x)function with respect to x .
and Vs the constant shear force due
to end moments. From eguilibrium,

; 1]
Iy = A-E‘I-ﬂln:m,, +o, 08 = e +am )6 ] (30

Thercfore. ., can be calculated by

using numerical integration.
Additional  fixed end forces

caused by shear effects are the fixed

end forces that will prevent U, in

the beam. If the span load and the
non-prismatic member are symmetric,
then U/, =0 and the additional

fixed end forces will also equal to
zero. Otherwise, a correction factor
due to shear can be determined from
eq. (1) and eq. (2) as follows:

Stiffness Mairix for Haunched Members
wiih [ncluding Effect of Transverss
Shear Deformations

rf";] Il-__[T.1+ﬂ",..*2uluiI
‘f _plh] -tm.emy)

5| 7| (meemy s dm) Uy e 03
LY Tt

“im,, +m, )
Finally, the vector P is determined by
assigning the corresponding
components of the fixed end forces
due to axial forces, bending and shear.

Numerical Example

For the fixed ends haunched beam
shown in Fig .6, the elastic modulus
of concrete, E, is taken as 30 GPa, the
shear modulus. G, as 12 GPa, the
shape factor for shear,a, as 1.2 (for
rectangular cross  section), and
member width is 0.4m.

The beam is analyzed by using
the proposed method for mid-span
heights, b, of 0.5, 0.75, 1.0, 1.25, and
I.5m. Fixed end moments at the left
and right supports are determined
with and without the transverse shear
deformations. The results  are
compared with that obtained using the
well-known finite element analysis
program SAP90. For SAP90 analysis,
the beam is divided into 48
subelements having constant area and
moment of inertia defined at mid-
section of each element with and
without considering the effect of
transverse shear deformations. The
result of analysis is shown in Table
[A and Table IB for both typed of
analysis. When shear deformation is
considered, the end moments increase.
It is clear that the effect of shear
deformations increases as the depth to
span ratio increases.

Conclusions:

1-The derived stiffness matrix is
general and applicable to simple
bending theory, and cover a2 wide
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range of depth variation for haunched
beams.

2-The proposed formulation is also
general and can be used for other
types of non-prismatic or haunched
members.

3-Fixed end forces due to transverse
shear deformations are considered,
therefore more accurate results can be
obtained in the case of high depth to
span ratios,

4-Members with haunches can be
analyzed as one element, This will
reduce the number of cquations, input
data. time and effort compared to the
analysis method of dividing into
prismatic subelements, and that is
very useful in frame analysis with
non-prismatic members.

3-The proposed element is convenient
to use with the general displacement
method. It can be adapted to any finite
clements analysis program.,
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Appendix A :

Depth Equations for Haunches :

{1) Stepped Haunches !

h{x)=h;=const.

forO0=x <L

h{x)=h,=const.
for L x < (Li+Lo)

hix)}=h,=canst.
for (Li: Ly)=x =L

(2) Linear Haunches:
hixy=hra,. for=x < L

hix)=h,=const. for L= x < (L+L;)
hix)=h;-aiy{ L-x} for {L;, L,)= x <L
(3) Parabolic Haunches :
h(x)=a;x/ L; -2, x.+ h;

for0=x <L,

h{x}=h,=const. for L= x < (L,+L,)

h(x)= o x%-2 (L-Lix+(L-L,}/ L; + h,
for {L. La=x =L
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Sutthess Matrix for Haunched Members
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Table 1A: Fixed end moments, kN.m (Proposed Analysis)

h,m 0.5 075 | 10 | 125 1.5

| With f
| Shear 205.3 | 276.7 | 263.9 254.6 247.7
| E | effect

2 | | !
) W/O l
| 2 shear | 290.7 | 269.1 1353.3 241.0 231.0

3 . effeet
r | With 1 '
| Shear -54.7 ]—62,6 -67.1 -69.9 7.7

= | effect |
| E | WIO 1 l

= lshm -588 | -694 -76.7 -82.3 -87.0 l
| &= | effect ] {
L& . | I R

Table 1B: Fixed end moments, kN. (Finite Element Analysis Using SAP90)

h,m 0.5 1075 |10 (125 |15 |
l With | ]
r | Shear 20523 [27691 26394 |25451 |247.94 |
g cffect
3 W/0
| & shear 129044 {26925 | 25340 |24090 |231.13
I__L effect .
| IWith | |

Shear  |-S4.87  -6263 | -67.17 | -69.95 |-71.64
| leffeet | |
| & WO !
= shear |-5892 | -69.45 |-76.66 |-8233 | -86.86
| = effect 1
| |
Log i i
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Fig.6: Numerical example



