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H I G H L I G H T S  
 

A B S T R A C T  

• FEA and ANSYS Fluent were used for wind 

tunnel simulations. 

• ANN was utilized to predict stress 

distributions. 

• ANN predictions were compared with real 

distributions using RMSE. 

• High agreement between ANN predictions 

and real stress levels, with RMSE of 12%. 

• ANN methods enhanced computational 

efficiency over traditional FEA methods 

 Wind tunnels are instrumental in the aerodynamic analysis of aircraft model 

structures, enabling the replication of real circumstances for better design and 

performance evaluation. This paper presents a novel enhancement to stress 

distribution predictions in wind tunnel simulations by combining Finite Element 

Analysis (FEA) and Artificial Neural Networks (ANN). First, the research focuses 

on analyzing ANSYS Fluent data, which provides insights into the complex fluid 

dynamics inside the wind tunnel. The proposed approach combines the best 

available FEA and ANN techniques regarding prediction accuracy and 

computational efficiency. Such findings are those that evidence that predictions of 

real stress levels using ANN are quite near, with RMSE 12%, and, hence, quite 

accurate. The results indicated agreement between the functions generated by 

ANN and real stress levels and, therefore, were considered to manifest a very low 

error percentage. The methodology shows that it is significant for being 

computationally efficient since the ANN works much quicker compared to the 

conventional FEA approach. In addition, the methodology is significant in 

computations since the ANN works quicker than conventional FEA. These results 

thus indicate that the integrated FEA-ANN approach is beneficial and holds much 

promise in accurately and efficiently predicting stress distributions. Herewith, the 

provided method advances engineering simulations by making exact predictions 

of stress distributions necessary to improve design and structural analysis. 
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1. Introduction 

Innovation and development in aerospace are constant efforts to gain larger magnitudes of safety, efficiency, and 

performance for an airplane [1]. The tension distribution in a model during wind tunnel testing is vital to aircraft design and 

operation [2]. Aerospace engineering, in its crux, is still dependent on the technology of wind tunnel testing, which allowed for 

exhaustive research in aerodynamics and structural behavior under controlled conditions [3,4]. To achieve optimal aircraft 

design, it becomes highly important that the analysis of stress distribution is carried out with high accuracy to ensure that the 

form and function of the structure are optimized [5]. 

The present paper explores an integrated approach that joins the Finite Element Method (FEM) with Artificial Neural 

Networks (ANN) to enhance the prediction of stress distribution with a higher order in aircraft models through wind tunnel 

simulations. Finite Element Analysis (FEA) has served as a common tool for engineering sciences for decades, allowing 

engineers to approximate complex structural behavior by subdividing problems into manageable elements [6–9]. From that 

moment on, developing complementing methodologies was necessary to assure predictions and, more importantly, shorten 

simulation time. The last decade has been characterized by the emergence of ANNs, which revolutionized the approach to many 
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complex problems dramatically [10,11]. Since ANNs can find complex relationships in data, they make them suitable for tasks 

associated with pattern recognition and prediction [12–14]. 

Despite the advancements in FEA and ANN individually, there are several drawbacks and research gaps: 

 FEA alone can be computationally expensive and time-consuming, especially for complex models. 

 ANNs, while powerful, require large amounts of training data and may not inherently understand the physical 

constraints of engineering problems. 

 There is a lack of comprehensive studies that effectively integrate FEA and ANN to leverage the strengths of both 

methods for improved prediction accuracy and computational efficiency. 

This paper aims to fill these gaps by demonstrating how integrating FEA and ANNs can lead to better stress distribution 

predictions in wind tunnel simulations. The main contributions of this paper are: 

 Developing a novel methodology that combines FEA and ANN for stress distribution predictions in wind tunnel 

simulations. 

 A detailed sensitivity analysis will be provided to show how combining FEA with ANN enhances the accuracy of the 

developed model. 

 Demonstrating the significant computational efficiency gained by using ANN alongside traditional FEA methods. 

 Presenting a comprehensive comparison between ANN-based predictions and real stress distributions, showcasing a 

low RMSE of 12%. 

 Highlighting the potential of the integrated FEA-ANN approach to revolutionize stress distribution analysis for aircraft 

models 

In this paper, sensitivity analysis has been performed to show how the best accuracy of the developed model can happen 

when combining FEA with ANNs in the stress distribution for the aircraft models exposed to wind tunnel testing. Methodology: 

This integration means how FEA results can be used as training data for ANNs. We aim to illustrate the potential benefits of 

using artificial intelligence to enhance conventional engineering evaluations. The methodology uses FEA results as training data 

for ANNs, illustrating the potential benefits of using artificial intelligence to enhance conventional engineering evaluations. 

To describe the paper’s remaining sections, details of the FEA procedure are discussed in Section 2, where the findings of 

this assessment describe how the complex structural characteristics of aircraft models could be broken down into manageable 

pieces for modeling. Section 3 discusses using ANNs, specifically how these networks could be trained using FEA-derived data 

to enhance stress distribution prediction. Section 4 presents the results of our combined FEA-ANN technique and conducts a 

thorough discussion with a comparison to standard FEA-based predictions. Finally, Section 5 concludes and synthesizes our 

findings and discussions to provide insightful conclusions that underline the potential of the FEA-ANN synergy to revolutionize 

stress distribution analysis for aircraft models in wind tunnel simulations. 

2. Finite element analysis 

Engineers use FEA as one of the backbone methods in structural engineering and simulation to analyze and predict the 

detailed behaviors of complex structures under diverse loading circumstances [15,16]. The importance of FEA lies in the fact 

that the analytical and computational cost-effective tool is used to understand stress distribution, deformation, and related 

essential mechanical characteristics. The complex system breaks down into discrete pieces, leading to a thorough knowledge of 

localized behavior, and design optimization and improvement in structural integrity result from that. In this section, basic 

concepts behind FEA are discussed, through which application in the context of aircraft models during wind tunnel simulations 

can be affected. A step-by-step process is mentioned in developing the finite element models, assigning materials, and 

considering boundary conditions to represent real-life situations. Benefits and limits are also discussed to understand the function 

of being a cornerstone in the integrated approach. 

2.1 Computer-aided design 

Computer-aided design (CAD) has transformed engineering by allowing the development, modification, and analysis of 

complex designs in a virtual environment [17]. CAD is critical in wind tunnel simulations because it generates precise geometric 

representations of the wind tunnel and the aircraft prototype model. The simulation will use a 3-meter-long wind tunnel with a 

cross-section of 0.8 meters by 0.8 meters, as indicated in Figure 1, with Figure 1a as the dimensions and Figure 1b as the tunnel. 

The work is an advancement and aenhancement to a previously published work [18]. The simulation will be done using software 

developed by ANSYS. A wind tunnel is important in ensuring that the flow characteristics' observations and reactions over the 

structural models are accurate. It also allows the dimensions of the aircraft and wind tunnel models to be accurately portrayed. 

The figure also indicates the dimensions in mm of the prototype model for the aircraft, which will be the subject of analysis 

during modeling in the wind tunnel using ANSYS. These will form the bedrock for further finite element analysis and distribution 

of stress prediction, which is crucial to ensure the safety and performance of the model within the wind tunnel. However, the 

inlet boundary condition is 5 m/s2, with a pressure outlet chosen. 
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(a)                                                                                                                           (b) 

Figure 1: Geometrical approach: (a) Aircraft model geometry dimensions; (b) Geometry of the wind tunnel in the  

simulation analysis [6] 

2.2 Computer-Aided Engineering 

CAE has revolutionized the practice of engineering analysis with powerful tools to simulate and evaluate complex systems 

realistically. A foundation of CAE in this study is ANSYS software, which, in turn, can integrate fluid dynamics with structural 

analysis to examine the interaction regarding aerodynamics and structural integrity fully. As seen in Figure 2, the computation 

process is carried out in a coupled collaboration between ANSYS Fluent and ANSYS Mechanical: the coupling of an expert in 

fluid flow and an expert in static structure analysis. Such coupling allows for a detailed study of the interaction of aerodynamic 

forces with the associated stress distribution on the model of the aircraft prototype. Prediction of improvement in stress accuracy 

with fluid flow accords with the coupled simulation approach, allowing a better understanding of the interactions between fluid 

flow and the structural model behavior. This is one of the possible ways to improve the prediction of stresses. For further 

clarification, the mesh properties are added in Table 1 below. 

 

Figure 2: ANSYS program widgets [6] 

Table 1: Mesh properties 

Parameter Value 

Nodes 1106 

Elements 506 

Preference Mechanical 

Element size Program controlled 

3. Artificial neural network 

Owing to their capability to scan large datasets for complex relationships, ANNs have come to find more and more 

applications in the field of predictive modeling and machine learning [19-22]. Section 3 deals with using ANNs to enhance 

further the stress distribution prediction in a wind tunnel simulation. The elementary mechanism of an ANN is depicted in Figure 

3 and is composed of a series of operations to simulate the working of cells in the brain. Input features have weights given to 

them and are then passed through an activation function, described below in Equation 1, after an offset transformation in the 

form of bias. This function introduces nonlinearity in the network, which makes it able to make readings of overtly fine patterns 

in the input data. The changed input is finally passed through the information represented in the data. The network develops and 

learns to extract information through multiple levels, where it is finally passed. Table 2 elaborates on the parameters of the 

utilized shallow neural network, chosen using a try-error approach. 
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 tanh(x)  =  
sinh(x)

cosh(x)
 =  

e𝑥 − e−𝑥

 e𝑥 + e−𝑥 (1) 

 

Figure 3: Neural Network Parameters [17] 

Table 2: ANN parameters 

Parameter Value 

No. of hidden layers One 

No. of neurons of hidden layer 6 

Solver Adam 

Activation Function Tanh 

 

In determining the real-world applicability of any predictive model, two of the most significant variables are accuracy and 

dependability. A notable quantitative assessment of the forecast's correctness is necessary for stress distribution prediction to 

determine the technique's robustness. Such analysis benefits from the Root Mean Square Error (RMSE) as in Equation 2, a well-

known assessment statistic providing an insightful understanding of the model's predictive ability. The RMSE measures the 

average size of deviations in results, giving a single result explaining the model’s overall accuracy. The calculation involves 

squaring the mean error, taking the square root, and thus provides information on both the magnitude and distribution of errors. 

RMSE will be useful in the present study because it does not exclusively tell us how well the model captures the studied 

phenomena. More vitally, it indicates instances when the difference between the predicted value and the actual result is 

disproportionately large. We will use this knowledge in the next part of the study, where we perform an RMSE-based accuracy 

validation of the integrated method regarding stress distribution predictions in wind tunnel simulations. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑𝑖=1

𝑚  (𝑥𝑖 − 𝑦𝑖)2 × 100  (2) 

4. Results and discussion 

In particular, pressure and velocity distribution over the aircraft prototype model inside the wind tunnel were carefully probed 

to appreciate the fluid mechanics within the ANSYS Fluent simulations. This test, the results of which are shown in Figure 4, 

helped to understand the complexities of the airflow interactions. Figure 4a is the 3D view and Figure 4b is the 2d view. As it is 

obvious from the results, the velocity magnitudes show a complex pattern that blankets the surface of the prototype model within 

the limits of the wind tunnel, even though the input velocity was low. The variations in the velocity are oscillating within a 

dynamic range from 1 m/s to 12 m/s2, which is significantly prone to the complex turbulence dynamics that unravel over a 3-

meter length of the wind tunnel. Such a vastly varying output indicates the complexities of the aerodynamic environment and 

the ability to generate dynamic flow characteristics with even a small beginning velocity. 

Furthermore, the pressure distribution across the wind tunnel simulation depicts a pressure range from 0.2 Pa to 5 Pa. The 

measured pressure differentials are evidence of the dynamic aerodynamic forces in the simulation system. These pressure 

fluctuations justify the impact of fluid flow dynamics on the aircraft prototype model and the exacting nature of accounting for 

these complex interactions within stress distribution assessments. The distinct pressure and velocity profiles observed suggest 

significant implications for the aerodynamic performance of aircraft models, aligning with findings by [6], who reported similar 

complex interactions in wind tunnel tests under varied flow conditions. Such comparisons validate our simulation settings and 

enhance the credibility of our computational approach. 

In the case of the ANSYS Fluent simulation, the results show a very delicate interaction of velocity and pressure distributions, 

with an exacting environment in the aero-dynamic regime experienced inside the wind tunnel. In this case, the results ensure an 

intensive fluid flow study to understand the mechanical behavior of the aircraft prototype model while testing. The elaboration 

provided in this discussion builds further on tying this fluid flow data into the overall FEA and ANN model to enhance stress 
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distribution forecasts. This integration of FEA and ANN to predict stress distribution is a pioneering approach, potentially 

reducing computational times drastically, as demonstrated by recent studies such as those by [23-25]. 

 

(a)                                                                                                                               (b) 

Figure 4: Pressure and velocity distribution across the aircraft prototype: (a) Static pressure; (b) velocity magnitude 

Moreover, the stress in Pa and deformation in mm of the structure of the prototype when utilizing static structural analysis, 

is depicted in Figure 5, where Figure 5a is the stress and Figure 5b is the deformation. The deformation ranges from a value of 

0.006 mm in the midsections to a value of 0.012 mm in the front and back sections. The stress, however, ranges from 1000 Pa 

in the front and back sections to 5000 Pa in the midsection. 

  

(a)                                                                                                                                          (b) 

Figure 5: Deformation and stress across the aircraft model: (a) Stress distribution; (b) Deformation 

The tabulated results in Table 3 offer an interesting comparison between real stress levels and the corresponding expected 

stress values created through the integration between FEA and ANN. Each entry in the table represents a given aircraft span 

value and indicates the stress related to the span and the predicted stress, where an RMSE value of 12% is carried through the 

analysis. When the real stress levels are matched with their expected counterparts, it is obvious that the integrated method offers 

a significant amount of accuracy. The low percentages of mistakes seen in each entry support the present thesis. The mistake 

percentages offer the proportional difference between predicted and real levels of stress; in this way, they offer a clear insight 

into prediction performance. It should be highlighted that those percentages range from 0.00% to 2.06%, which underlines the 

model's level of accuracy in predicting stress distribution patterns. Finally, the calculation efficiency of the two methods is 

provided; it is another dimension to compare. While the FEA method needs nearly 2 hours to conduct the stress simulation within 

the ANSYS environment, the ANN method needs just 10 seconds. The regression line and error histograms are depicted in 

Figures 6 and 7, respectively. Figure 7a is the error frequency and Figure 7b is the box plot of it. 

Furthermore, the computational efficiency of the ANN approach not only underscores its utility in real-time applications but 

also aligns with the push toward more agile and adaptive simulation methods within the aerospace industry, as discussed by (Al-

Haddad and Mahdi [11]. The huge difference in these data highlights the agility and reactivity of the ANN method as a real 

option. It opens possibilities concerning tasks that must be solved in real-time or with quick responses. In summary, the values 

reported in the above table result in a full stress distribution prediction analysis, reflecting the integrated approach's advantage. 

The computational efficiency of the ANN approach transforms stress analysis into an operation that is time-efficient and instantly 

suitable for current engineered simulations, as demonstrated by the low, incredibly low values of error percentages. 
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Figure 6: Regression line for the forecasts 

 
(a) 

 
(b) 

Figure 7: Error histogram for the predictions (a): Error frequency; (b) stress box plot 



Ahmed A. Al-Mulla Khalaf et al. Engineering and Technology Journal 43 (01) (2025) 17-24 

 

23 

Table 3: Forecasts and error percentages 

Aircraft span value (m) Stress (Pa) Forecasted stress (Pa) Error percentage (%) 

0 1022 1001 2.06 

0.05 2050 2060 0.49 

0.1 3035 3035 0.00 

0.2 4233 4299 1.56 

0.25 4899 4901 0.04 

0.3 4230 4219 0.26 

0.4 3032 3032 0.00 

0.45 2052 2050 0.10 

0.5 1025 1032 0.68 

5. Conclusion 

This work presented a robust method that can improve the predictive ability of stress distribution in wind tunnel experiments 

using scale models of aircraft. A robust predictive model was derived from a stringent evaluation of ANSYS Fluent results and, 

further, employment of the ANN. Indeed, the tabulated comparison analysis, alongside the error percentages calculated, confirms 

the evaluation of the RMSE, indicating the integrated approach's feasibility. The remarkable predictions from ANN have shown 

great comparison with the real stress levels, and the measured RMSE of 12% has clearly shown that the model has good predictive 

reliability. Moreover, the ANN approach proved to be very effective in quick processing ability, and it gives new revolutionary 

insights into stress analysis, being very suitable for real-time and iterative applications. This last point is developed strategically 

because it opens the way for a bright trend in engineering simulation, aligning itself with the increasing demand for an optimum 

combination of accuracy and efficiency in predicting stress distribution toward designing a robust aircraft structure. 
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