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GENERALISATION OF COEFFICIENT METHOD
FOR ROUTING A FLOOD THROUGH A RESERVOIR

By
Dr. G. AL MASHIDANI

ABSTRACT

The coefficient method has been generalised by assuming a nonlinear relationship between storage and outil-

ow. An empirical procedure for the solution of general equation has been developed. The method of solution was
found to yield reasonable resulis.
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INTRODUCTION

Coefficient method''*  of reservoir routing is well known. It is easy to apply since there is no need of initial
curves to be prepared as is required in other graphical procedures . The method is based on the general continuity
cauation as used in other techniques, but. further, assumes that storage is directly proportional to the outflow . An
equation can thus be derived which gives theoutflow atagiven time step as a function of average inflow. outflow
at previous time step and the constant of propoprtionality, K.of storage outflow relationship. The assumption
that storage is directly proportional tothe outflow isusually not true inareal field problem. hence it is customary
o use, K, as avarable ( Chow 1964 ) the values of which can bedetermined for various segments ofstorage versus
discharge curve, although inso doing the ease with which coefficient method can beapplied is lost. The present
paper is an attempt to modify the coefficient method by assuming anon-linear relationship between storage and
outiiow .

‘elopment of the method ¢ )
Assuming a non - linear relationship between storage, 8. and outiflow, Q. one can write

se .. and (K. sre constants which can be determined by usual regression technique given inequations(2) and
some outflow values are known lor the correspondine storage values.

T(InS-InS )(InQ - 1nQ)
(InQ —-1nQ)?

dK =8 =nlnQ s (3)

i continuity equation for reservoir routing is written as follows

1 :
+I,-+l)t——2(Q[.+Q,.+1}t=sl.+,—s[. ......... (4

fiix | and i + 1 represent the state of inflow I outflow Q and storage Sbefore and after a chosentime
nbining eq. (1) and (4) it can be shown that

- - 2K
B 0= (L + L)+ (_1_ Q" — Q, ) ......... (5)

unknown in eq. (5) is, Q,. ,, which can be solved by trial and error.

n of eq. (5) by trial and error although straight forwa=d is time consuming. such that an empirical
=dure wnich gives reasonable results has been developed.

edure for solution

‘Fewritien as :

2K
{li+l+li]+(r—Q?_QI) %

K % ] F ol o S e (6)
_t_ e in+;.J
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3
lue of. -:‘— Jis much larger than. Q. . hence even if the value of

In eq. (6) if a small time step is chosen the va
2/ 1+ inthe denominator is replaced by an approximate value, itdoes not affect the result significantly. Thus.
the value of .Q '_['-in denominator of eq. (6) is repiaced by. 03y PT (hEvalie ol which can again be caleulated
from eq. (6) by replacing the unknown term’ Q [ in the denominator by its value at previous ume intervilasis

shown in eq. (7) and (8). Thus an approximate solution ofeq.(5) can be written as ©

2

(ilzeg = 1) 36 (—-%(-—Q': —Q; ) ik
oy = ‘: qK\' J e < (7
..I -—'-,—{QI-_]}:' "
where.
2K
[ Ty o= 1) A= Q= 4, -
(Q i 1= [ : }EK{+(; ; )} ............ (N}

Two numerical examples have been solved by following the above procedure. the solutions have been comp-

ared with results obtained from other procedures.

Details of numerical example

Ist Exumple - The value of inflow flood hydrograph is <hown in table 1 for Ist example. The storage outllow

relationship for this example can be writlen as |

& < SRIIGOGIRET,

Thus the value of -k = 302200 -und -n = (20554 time step ol 12 hours (= 12 % 3600 see ) has beenchosen

for analysis.
alues of - Q. 4, -caleulated by step by step method

The values of Q ., and Q _; along with corresponding

beseen that the two values are very close toeach other. The valuesof

( Varshney. 1977) are given in table 1. Tt can
Q,., . calculated in Col. (4) has also been found to satisfy eqg. (50

cample s based on the data taken from Bekhme Reservoir ( Urban. 1967 on

Tind Example @ -The second e
is given in table 2 and can be

Greater Zab river in North of Irag. The storage outflow relationship for this case
represented by
§ = 419529.86 QUH4 T 4+ 195 % 10"

Thus the value of K and .n.are 419329.56 and 08476393 The value of time step chosen here aguinis 1 2hours,
The outflow hydrograph for this cxample has also been caleulated by conventional® coeflicient method using
variable value of K ( details are shown in table? 1 The values of outflow. Qs calculated from eq.(7) hereagain

has been found to satisfy eq. (3).

2
ent method means herein the cocflicient method  in general use as 0 =0,% (
IR + 17

+  The conventional coeffict

L]
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Results of Example | : —

Outflow Qi

Approx . values Values of Q. ,
B m 3:,'36(; by step by step method
0 0 0

14.77 14.77 14.2

95.70 80.11 110

253.18 243.96 241.0

725.36 695.80 695.0

1020.03 1003.67 977.0

951.16 951 74 905.0

795.71 801.78 780.0

625.94 632.36 651.0

469.22 474.81 " 481.0

337.73 342.12 3400

233.81 237.03 227.0

155.73 157.96 142.0

102.06 103.49 99.3

69.08 69.92

47.99 48.50

Storage K Coeflicient 1
3 C=
m i
(K/Ar+jr)
10 140000 0.2673
107 130000 0.28496
10 115000 0.31625
107 95000 0.3705
107 75000 0.4473
109 70,000 0.4176
5 109
s of example 2.
Inf ow 1 Approx . values Gutflow Outflow by conventional
m 7sec Qs Q;+1 coefficient method
ed. (8) eq. (7 method
1000 1000 1000 1000
1250 1038 1037 1033
2000 1218 1214 1202
3500 1705 1691 1643
7000 2900 2861 2671
10200 4951 4877 4546
8000 6488 6435 6233
5600 6576 6572 6487
4500 5986 6003 5844
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156 3950 5328 3346 3244
168 3600 4759 / 4774 4700
180 3300 4286 4299 4237
192 3100 3899 3909 N33

Discussion and Conclusions :

It can be seen that the method requires no graphs to be plotted . as errors due 1o graphical plotting . choice of
scale etc . are eliminated . Besides . the method appears 10 be sufficiently general and can be easily programmed.
Eor the two examples worked out in the present case the results obtained are comparable to those obtained by
other methods . The values calculated by Eq . (7) satistied eq. (5) reasonably well . even the approximate values

worked out by eq . (8) give results which are close to thatof eq . (7). 3
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Nomenclature :

5 = Storage

Q = Outflow

K = Constant of proportionality instorage outflow relationship
n = Exponent of outflow in storage out{low erlationship

I

= Inflow
i and i+1 are suffixes indicating state of event belore and after a time step t
t = time slep

In'S = average value of nytural loga rithm of storage
1n Q = average value of natural Jogarithm of outflow vitlues
Q Approximate value ol outflow Q.




STRESS DISTRIBUTION IN A WEDGE INDENTOR

BY
Dr. M.I. Ghobrial




S i 861 sl i
oli

—  Jp el (subzme 4 S
Sidiy— &> § 551 dnalodl

cAUWEL Lo

las ks s ¢ S Lo 3la) &M@rm1wdw$iag.w1&im bl e Al Sl Sy B

s Q;ﬂ'.-o'}"' & <ol &S Jem & a5 dulys Condl L r-\.ﬁ.v_, "-b:\.p‘léf Sy V'h""‘ 358 Slgzl 4 udu)

G A D B Sl dly LIS SVl S e Sl ol gl ada uladl Slslgr) i 4w
bl ke 1 N s e i

STRESS DISTRIBUTION IN A
WEDGE INDENTOR

by
Dr.M.I. Ghobrial

Summary :

Plasticity analysis for orthogonal wedge indentation of plastic rigid material suggests that the faces of the wed~
ge will be subjected to uniformly distributed pressure and tangential stress over the contact length. In the present
work the stress distribution at the tip of an infinitely deep wedge is obtained when the wedge is subjected to such a
stress distribution. The problem simulates the industrial scoring process for the manufacturing of €asy open can

tops. The solution is obtained in integral form using amethod proposed by Tranter, which is based on the applica-
tion of Mellin Integral Transform.

Notation:
B, normal pressure
K shear yield strength
E modulus of elasticity
T shear stress
Ty frictional shear stress
i coefficient of friction
gy, 0, normal stresses
T shear stress polar co-ordinates
Y radial co-ordinate
G, 36, normal stresses
Tk shear stress } cartesian co-ordinates
o,y¥,0  angles
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1-INTRODUCTIN -

The industrial Scoring* process presents u number of unsolved problems related to the wear or fracture of
= 200l tip. For these problems to be solved it will be necessary to abtain detailed information on the stress dist
Wonin theindentingtool under surface loadingsimilar to those encountered in the scoring process. In industry it
Been usual to effect scoring of the can ends by the use of a Crank press in which a scoring tool is fixed rigidly
i ;am which is caused to penetrate can ends. The process. is therefore.approximately a plane strain indentation
»em. The most conventional tool profile used for scoring aluminium can ends was the trapezoidal wedge ‘!’
e an included angle of 50° and a flat width of 0.002 in to 0.007 in. Tools with such profile were found. in
Liice. to have a relatively short life when used for scoring ferrous metals such as tin-plate and to be subject in
mcture at the corners. It has therefore, been replaced in the last few yearsby sharp-edged wedgcﬁ'—z'\- having a
included angle of 90 . This. however. proved also to be not very satisfactory "'

=zion where fatigue-crack nucleation or surface wear occurs. For this reason the general equations for stress
sbutions throughout a sharp-edged wedge are evaluated for boundary ¢onditions approximating to the loads
sarpedged wedge indenter. The distributions of stress are represented in terms of trigonometricintegrals with
id of a method proposed by Tranter *' which is based on the application of the Mellin Integral Transforms.

Ssscription of this method is contained in references'3'and*/and. therefore. details are not repeated here.

= STRESS BOUNDARY CONDITIONS IN SHARP-EDGED WEDGE INDENTATION :

A8 process to be considered is one in which a flat strip or sheet of plastic-rigid material is indented by meu-
2 tool. The tool spans the width of the strip and the width thickness ratio of the stripis iarge enough for edge
%S ‘0 be neglected The flow is confined to planes perpendicular to the tool and the deformation is assumed (o

ce under plane - strain conditions . As the tool advances into the material . two stages of the operation can
sstincuished:

(¢ ) Surface indentation.
{b) Deep Penetration.

Serface indentation is an elastic-plastic mode of deformation and at this stage the bulk of the indented mater -
eiastic. However. after a certain critical depth the plasticallv stressed region reaches the foundation. This stage
as Deep-penetration. Hill.Lee and Tupper '*'initiated aslip-line field solution forthe surface indentation of

inite block of plastic rigid material by frictionless acute angled wedge . This field is shown in figure'" andis
erised by two isosceles triangles and a fan. The configuration is geometrically similar at every stage and the

Berely changes in size as the deformation proceeds, This filed suggests that the normal pressure acting on the
&s of the tool.will be uniformly distributed over the contact length and is given by the equation. %1

p=2k(1 4+ y)

= o the indusirial name for the indentation process of metal can ends |



where ‘K is the shear vield stress of the indented material. The angle* ¥ *of the slip-line field is related to the wed:
semi-angle* ' ° by the relatiori'™:

h : . 5
T:{cosa—sm(ﬂt—'ﬁ)} ;

Thus, the magnitude of the uniformly distributed pressure acting on the wedge faces depends on the tool geomet
and the yield stress of the material and is not affected by the variation of the depth of indentation.

Grunzweig, Longman and Petch'® have given the solution for plane strain surface indentation of a plasticrig:
material by a rough (Coulomb friction) wedge. The slip-line field of this solution is shown in figure 2)and the relat:
lonship between %.%.A.u- and c which are given by Grunzweig'® can be found from the requiremen:
of continuing geometrical similarity and incompressitility. The normal compressive stress ‘p’ and the shearin
stress 'r’  acting on the wedge are given by the relations:

P=k(1+ 2§ + sin2})

T =kcos2/

Consequently the coefficient of friction is given by :

p=cos2i/(1 + 24 + sin 21)

A limit occurs in this field when (2 — 1) > n/4, since the yield criterion should not be violated in
the rigid region near the point B, Figure 2. If « > m/4  then the indenter will be covered witha 90" wedge sha
ed dead metal cap.The slip-line field for this case has been presented and calculated by Johnson,Mahtab and Had
dow'”1t should be noted, however, that for wide angled wedges ¢lastic effects become important. This has been
discussed by Mulhearn * and March ' whereasHirst and Howse !’ idealised the process of blunt-wedge inde

ntation by the elastic expansion of cylind rical cavity in an infinite medium.

It is therefore, possible to conclude that the theoretical plasticity analysis suggessts that for frictionless acute
angled wedge indentation the normal pressure acting on the wedge face is uniformly distributed and fo rough acus
tetangled wedge indentation (Coulomb frictionl}'both normal pressure and tangential stresses are uniformly distri
buted. However, two conditions 2re to be satisfied ;

a- The included angle of the wedge must be acute.
b- Theratio E/Y for the indented material must be high(i.e. plastic — rigid mate

In the following work, Tranter’s method is used to find the stress distributions in an infinite wedge when
subjected to such boundary conditions. The method could be applied directly to the problemof finding the stresses
in the wedge for uniform distribution of normal pressure and shear stress. However, the algebra involved in reduc-
ing the Mellin inversion integrals to trigonometric form is considerably simplified by first solving for uniformly
distributed normal pressure and then for uniformly tangential boundary stresses.

The solution for the stress distributions in wedge indentation is then obtained by superposition of the two solut-
ions. The procedure is represented schematically in Figure (3). :



3~ THE SOLUTION

A— Application of Uniform Normal Pressure to The Faces of an Infinite Wedge :

Using polar coordinates the distribution of stress in an infinite wedge of semiangle "7 when its faces are each
~subjected to a uniform pressurepg, acting on both laces of the wedge for a distance A measured from the vertex,
found to be represented by the following equations :

: 2 n g

= B (g, — a0, )= ——-——rSmaC_DSH — P (u) sin [uin (——) du G )
2 AP, 3 20 + sin 2z & r A

nr — 7 sin (z) cos () [" U A
—_— = == — _ T P = ] ST Sl
IAP, (o5 +a,] S iy [ Pu) uQ{u})]smhun( ; ):l
A du
_[Q[u)+uP(uJ|]cos[uln(—I_—)]——-l+uz 2]

5 A
Axr T J‘ R (u) cos [uln ( = ) ]du ......... {3)
50 :

o

where the functions P (u), Q (u)and R (u) are given by

1usin2a+sinh2cxu)Pu(u}=sin{cc—0]c08h(oc+UJu+sin(:r+chosh(ac—u]u

tusin2cx+sinh2au]Q[u]= cos(a — 0)sinh(x+ 0)u + cos(x +0)sinh(x — 0y

-Iusinj!rx—|—sinh2rxu]R[u}=sin(:x-U)sinh[a+ ) )u -sinlz—i—(i}sinhi:{—'n]u

The values of the stress components were evaluated num
n formula was used for high ratios of A r. Computations

equal intervals of () from () = » to ! = — v and the stress distribution in the form of

{ Oy — a, "'GH{! Ey |
. were evaluated. This enabled the constructi

on of contours of equal maximum shear stress ¢ Isochromat
#nd the results are shown in Figurs(4: and (5). The contours of equal directions of principal stressest Isoclin
ora (90 wedge are presented in Figure(6) und it enabled the construction of the Isostatic pattern presented
re (7) Several theoretical results are of interest. An isotropic region is seen to extend ucross the wedge to
‘ihe two points at the two faces of the wedge wherer = A Above this isotropic region the maximum sheur

increases sharply and reaches its peak value on the a_is of symmetry at adistance equal to Af sin 24 cos 5
the apex.

- the 1sotropic region . the order of isachromaue increases continuously tow

ard theapex . It s clear from
smspection of Figure (7) that within this region both radial

and tangential stresses are compressive .

b %



s distribution on the faces of a wedge were evaluated numerically from either of equations

(1)orld ses of 22 — gprand 2e= J0°and the results are shown in Figures (8) and (9). It canbe seen
that a ntinuity of magnitude P exists atr = A. In practice, such stress discontinuity would not
be exp is reasonable to assume that the radial stress drops rapidly at asmall distance within

maximum shear stress across different sections perpendicular to this axis of symmetry are
:4%8) and (9). T'he variation of radial and tangential stress along the axis of symmetry are
ares. and because of symmetry the shear stress 7,4 is equal to zero. Except for a small
! siresses 0, are compressive all along the axis of symmetry. Within the small region
tial stresses tend to be infinite. This physically unrealistic result represents a breakd-
1on within a small region enclosing the apex. However, in practice this region mav
pient plastic deformation.

orm Shear Stress to the Faces of an Infinite Wedge : .

od. the stress distribution in an infinite wedge loaded on both Faces on the
stress was found to be represented by the following equations :

e |

| 7 COS 0 CO¢ A
- cos o cos {! B J [z(u]—uY(u}][sinkum )
: b r

2% + sin 2o

. : A du
ucos| uin e W

L — mcosacosd " {vw [{Z(u].q,y(u]]sin(ulnTA)

2a + sin 2o J o

5
+[—uz[u)+Y{u}]cos(u]n TA)}%

Y

k- : A : | A du
K(u) ] COSuln? + usin .u n—r e

V2~ f)cosh(o—f)u+cos(ee —8)cosh(ax+6)u
|2 — #)sinh (¢ + 0)u+sin(e+6) sinh(e —8)u
— & )sinh (¢ +80)u —cos(a+ 0)sinh({e—@)u
#= &) cosh (z—fB)u —sin(or —B)cosh{a 4+ 8)u

| were again evaluated for wedge angles of 2o = 60° and 2u = 90°.
c=d by this system of loading. High order of maximum shear




: 1 r
SITESS 1s seen to occur around the points on the wedge face at i I. The neutral axis originates at the apex

§nd coincides with the axis of symmetry. The features of this isochromatic pattern are similar to those observed
- = Photoelastic experiments with point loading at the apex''",

i~ Buperposition of the Normal Pressure and Shear-stress Solutions to Simulate the Stress Boundary Condi-
tions on a Scoring Tool:

The normal pressure and shear stress solutions are superimposed to simulate the stress boundary conditions
o= 2 Wedge indenter. However, from plasticity analysis ( Ref 6 ) it is evident that with increasing ratio of shear

#iress to normal pressure a limit occurs when the frictional stress T, reaches the shear yield stress K of the indented
material. For a wedge of L0° included angle. this limit is reached at a ratio of 0.359. whereas fora wedge of 40

limit is reached at a ratio 0f0.27. Wide-angled wedges are limited by the formation of a dead metal nose ( Ref. 6.
Therefore, to simulate the indentation process a ratio of shear stress to normal pressure equal to 0.2 would appear
=0 be fairly representative of wedge indentation process. This ratio is high enough to show the influence of fric-
Istresses and iow enough v ot to exceed the fore-mentioned limitations. In this section. a solution for combined
r stress and normal pressure in the ratio 0.2 is obtained by superposition of previous solutions for P, ynd

1 ; X i
T, 2 = P, acting over a distance A’ from the wedge apex .

Figure (11) shows the resulting isochromatic lines obtained for the case of a 90 wedge under the combined
% of normal pressure and shear stress. An interesting feature of this pattern is the presence of maximum shear
along the wedge face at r = A . The effect of frictional stress is also to shift the positionof neutral axis
rds the apex.

Ficures'( 12 /and (13 jshow the distribution of rectangular stress components in 4 60 and90 wedges respe
. The effect of frictional stress is to induce more compressive stress to both 7, and ¢. without much effect
shape of the curves.

4- CONCLUSIONS

Srevious investigators showed that during the indentation process of semi — infinjte plastic rigid material by
» wedge indenter, the faces of the wedge will be subjected to uniform normal and tangential stresses, In this
ihe stress distribution in a wedge when subjected to such boundary conditions has been examined. It is
from the present theoretical solution to predict the influence of frictional stresses on the distibution of
= in the wedge. Comparison of theoretical results with photoelastic results will be presented in later work .
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INITIAL SURFACE

DISCOMYINUITY M= T - —m— = —m——— =

F." = 2K(1+¥)!

Fig.! FRICTIONLESS WEDGE INDENTATION

RBpy=K(1+2y+sin 2))

T'ZEK cos 2N

Fig. 2 ROUGH (COULOMB FRICTION )
WEDGE INDENTATION
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