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H I G H L I G H T S  
 

A B S T R A C T  

• Journal bearings have a resurgence in usage 

across compressors, motors, turbines, and 

pumps. 

• Advanced diagnostics integrate vibration 

analysis, machine learning, and simulations. 

• Ensemble models, like CNNEPDNN, enhance 

diagnostic metrics by 15-20%. 

• Convolutional autoencoders achieve 91% 

accuracy in wear estimation. 

• Challenges include uniform evaluation criteria 

and comprehensive diagnostic models. 

 This review comprehensively encompasses a range of recent studies on journal 

bearings, emphasizing wear fault diagnostics, condition monitoring, and fault 

diagnosis methodologies. A significant finding reveals a shift back to the 

utilization of journal bearings in various rotating machinery such as 

compressors, motors, turbines, and pumps. Various methodologies employed in 

these recent studies include vibration analysis, machine learning, deep learning, 

and both numerical and experimental simulations. Key findings indicate that 

ensemble models, such as the CNN and deep neural network (CNNEPDNN) 

model, significantly improve convergence speed, test accuracy, and F-Score in 

bearing fault diagnosis by 15-20% compared to individual models. 

Additionally, convolutional autoencoders have demonstrated impressive 

performance, achieving an average Pearson coefficient of 91% in wear 

estimation, underscoring the critical importance of predictive maintenance. 

Despite these remarkable advancements, challenges persist due to the lack of 

uniform evaluation criteria and the focus on specific error types under particular 

operating conditions. Collaborative efforts among researchers are essential for 

developing robust and broadly applicable diagnostic models. Addressing these 

ongoing issues will further enhance condition monitoring and defect detection, 

leading to more reliable and academically rigorous diagnostic methods 

applicable in diverse real-world scenarios. 
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1. Introduction 

Journal bearing fault diagnostics is crucial in numerous sectors where journal bearings are extensively used to support and 

guide rotating shafts in machinery such as compressors, motors, turbines, and pumps. The primary goal of fault investigation in 

journal bearings is to extend their operational life and prevent unexpected failures. Such failures can lead to decreased machine 

performance, shortened service life, and potential safety hazards. A range of observing techniques, including airborne sound, 

surface vibration, and acoustic emission measures, have been used to identify journal-bearing faults at an early stage. As seen 

in Figure 1, several observing techniques include the use of an accelerometer to measure the vibration signal, a microphone to 

measure the near-field acoustic signal, and an AE sensor for every bearing [1]. Furthermore, utilizing simulated vibration 

signals, sophisticated condition monitoring methods such as deep learning algorithms are suggested for categorizing wear 

defects in journal bearings. 80% of the datasets are used for training, and 20% are used for testing. The model used is a CNN 

with three convolutional layers, activation and pooling, and then three fully connected layers. Overfitting can be avoided with 

the use of drop-out layers, as depicted in Figure 2. The data of the test is provided in the trained CNN model for determining 

the probability of every class. Then, the prediction of fault is founded upon the class having the uppermost likelihood. The 

effective fault diagnosis in the journal bearings needs the use of diagnostic tools as well as specifying the crucial fault 

parameters.  

Despite the considerable advancements in fault diagnostics and condition monitoring techniques, several significant gaps 

remain in the literature. 
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Figure 1: Accelerometer, microphone and AE sensor installations [1] 

 

Figure 2: The diagnostics framework of wear fault with convolutional neural network [2] 

Firstly, there is a lack of uniform evaluation criteria, which complicates the comparison and validation of different 

diagnostic methods [2,3]. Secondly, many studies have concentrated on specific error types under narrowly defined operating 

conditions, thereby failing to address the broader spectrum of factors influencing journal-bearing performance [3,4]. These 

limitations highlight the necessity for developing robust and universally applicable diagnostic models that can effectively 

function across diverse and real-world scenarios . Artificial intelligence (AI) and the analysis of vibration take part in observing 

the state and diagnosing the faults in the revolving machinery in the industries. Vibrations in machinery signals provide visions 

into the equipment's functionality and condition. Conventional approaches, such as Fast Fourier Transform (FFT), encounter 

defies in extracting the data of fault from such signals owing to their stationary and nonlinear nature.  To overcome these 

limitations researchers have evolved data of signal processing, like the empirical mode decomposition, wavelet transformation 

and empirical mode decomposition. In addition, Artificial Intelligence (AI) motivated methods, such as Convolutional Neural 

Networks (CNNs) and networks (RNNs) Stacked Autoencoders (SAEs) have been employed for the fault diagnosis throughout 

the analysis of vibration. These AI methods enhance identification accuracy by handling non-stationary and nonlinear vibration 

signals. By combining vibration analysis with AI algorithms, early detection of issues in revolving machinery can be 

improved, leading to maintenance schedules and reduced downtime. Integration of vibration analysis with AI has the potential 

to enhance maintenance strategies and facilitate fault detection.  

The data analysis techniques are categorized into methods of feature extraction and artificial intelligence, as illustrated in 

Table1 [4]. Difficulty in handling changes between training and testing sample distributions impacts model accuracy. 

Additionally, class imbalance, where fault samples are limited, affects the precision of derived models. Furthermore, the 

scarcity of labelled data increases the challenges in the training process, necessitating more advanced techniques and diverse 

data to ensure effective diagnostics. There is also a lack of samples in varied conditions, resulting in insufficient experimental 

data under diverse operating scenarios. This limitation hinders the ability to train models effectively for different conditions. 

Additionally, there is a significant requirement to build a large and diverse dataset for training deep learning models. 

Analyzing non-stationary signals poses a significant challenge due to high noise levels in the data. Effective techniques such as 

wavelet transform, and Hilbert-Huang transform are needed to handle these types of signals efficiently. Additionally, there is a 

gap in the comprehensive comparison and evaluation of various sensor tools (e.g., accelerometers, velocity sensors, optical 

sensors) across diverse operational environments and conditions. Understanding when and how to use each sensor type is 

crucial for improving diagnostic accuracy. 
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Table 1: Advantages and disadvantages of the described data analysis method [4] 

Method Advantages  Disadvantages 

Statistical method Simple and intuitive, and does not rely on empirical 

knowledge 

Only obtain the surface information, easy to be 

disturbed by noise 

Feature extraction It can get deep information and has good robustness Relies on empirical knowledge 

artificial ntelligence realizes end-to-end intelligent diagnosis lacks reliability, model optimization still relies 

on empirical knowledge 

There is a lack of automation in the current systems, highlighting the need to develop an automatic diagnostic system that 

covers all stages, from signal acquisition to result output. Additionally, traditional methods are often time-consuming and 

require performance improvements to be viable for real-time implementation [5-8]. There is also a need to improve diagnostic 

accuracy in the presence of signal interference from other mechanical components. Verifying the effectiveness of the method 

under varied and complex operating conditions is crucial to ensure reliability and robustness in real-world applications. 

Verification in real-world conditions is essential, as there is a need to validate the method in realistic and complex operating 

scenarios. Enhancing model transferability across different environments is crucial for accurate predictive maintenance. 

Identifying suitable quantitative indicators for diagnostics in various systems is also necessary to improve diagnostic accuracy 

and reliability. Furthermore, there is a need to develop accurate diagnostic methods for complex and coupled faults. Improving 

machine learning models to handle diversity in operating conditions and provide accurate results is essential for effective fault 

diagnosis [9-11]. Significant advancements have been made in diagnosing journal-bearing defects, but several gaps and 

challenges remain. There is a lack of uniform evaluation criteria, making it difficult to compare and validate different 

diagnostic methods fairly. Many studies focus narrowly on specific fault types under defined operating conditions, neglecting 

other influencing factors. Models often fail to handle changes between training and testing data distributions and are affected 

by class imbalance due to limited fault samples. The scarcity of varied data and operating conditions further hinders model 

efficacy. Analyzing non-stationary signals is challenging due to high noise levels, and there is a lack of comprehensive 

evaluation of different sensor tools in diverse environments. Improving model accuracy in the presence of mechanical signal 

interference and verifying their effectiveness under realistic conditions is essential. 

2. Vibration analysis in fault diagnosis 

Analyzing vibrations is essential for diagnosing issues in revolving machinery. It offers insights into equipment health. It's 

commonly utilized for proactive maintenance purposes. Numerous methods have been created to examine vibration signals, for 

identifying faults.  These include time-frequency analysis approaches, deep learning methods, sophisticated denoising 

algorithms, and signal decomposition techniques. For instance, Tama et al. address the use of vibration signals and deep 

learning (DL) for problem diagnostics. They go over (DL) and data-driven approaches to vibration-based state observing. 

Furthermore, time-frequency analysis has been investigated by researchers as a means of obtaining defect characteristics from 

vibration data. For example, provide a time-frequency transformer model for defect identification based on the Transformer 

model. Generally, the analysis of vibration gives valuable devices for the defect diagnostics of the rotating equipment if 

combined with cutting-edge approaches [12,13]. 

2.1 Basics of vibration analysis 

The analysis of vibration is a necessary method to monitor the spinning machinery, and it includes seeking the mistakes or 

variations in the status of machines via analyzing the vibration signals' features. In the analysis of the time domain, statistical 

parameters comprising Root-Mean-Square (RMS), kurtosis, crest factor, and peak, are utilized for characterizing the signals of 

vibration. Such characteristics give explanations for the amplitude, spreading, and form of the signal of vibration, which may 

reveal topics or variations in the performance of the machine. The analysis of time-frequency is one more method to display 

the features of vibration signals that vary over time. Such a technique permits specifying the frequency constituents and their 

time-varying features via converting the signal of vibration from the time domain into the time-frequency domain.Via 

incorporating numerous analytical techniques, engineers or maintenance people may analyze the real-time frequency of the 

analysis of machine vibration as well as achieve diagnostic evaluations of the machine's dynamic condition.For the rotating 

equipment, there're (3) rudimentary kinds of the analysis of vibration: The analysis of time-domain, frequency-domain, and 

time-frequency. The analysis of the time domain includes tracking the vibration signal waveform over time to identify the 

characteristics, like the frequency constituents of the shaft, transients, constituents of higher frequency, and modulation of 

amplitude. Statistical indicators, such as the Root-Mean-Square (RMS), kurtosis, crest factor, and peak, may be employed for 

analyzing the signal in the temporal-domain. The frequency-domain analysis is concerned with the frequency content of the 

vibration signal; specific frequency components and their magnitudes are identified using techniques such as the Fourier 

transform. Combining the time and frequency domains yields time-varying aspects of the signal and the instantaneous 

frequency composition of each frequency component in time-frequency analysis [13-15]. The papers serve as instruments for 

state observing and fault detection, which helps in finding journals with faults. Such methods aim to detect and address the  

problems of journal bearing, which can cause catastrophic damage, safety dangers, and financial loss. Among the 

recommended methods in the research are logical combinatorial pattern recognition, analysis of power spectral density joined 

with the Support Vector Machines and K-Nearest Neighbor, analysis of wavelet, and approaches for deep learning. Such 

methods utilize the signals of vibration as well as statistical features for extracting the characteristics and classifying the flaws. 

The researches highlight how significant it is to rapidly forecast as well as diagnose the topics of journal bearing for lowering 

the expenditures and enhancing the outcomes of maintenance. Also, the researches encourage the identification of automated 

bearing damage via the utilization of different techniques [16,17]. 
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2.2 Utilized approaches to the analysis of vibration  

Among the methods of the analysis of vibration utilized in observing and diagnosis of misalignment in a rotor-bearing 

regime are observing the analysis of vibrations, observing the noise, Thermography, Artificial Neural Networks (ANNs), and 

Motor Current Signature Analysis (MCSA). Further methods covered in the literature comprise sparse decomposition, Wavelet 

Transformations (WT), Ensemble Empirical Mode Decomposition (EEMD), Empirical Wavelet Transform (EWT), Local 

Mean Decomposition (LMD), Variational Mode Decomposition (VMD), and Wavelet Transformation (WT). Also, the analysis 

of the time domain utilizes statistical metrics comprising Root-Mean-Square (RMS), kurtosis, crest factor, and peak. Such 

approaches aim to extract information about fault from the signals of vibration signals via accentuating the attributes of 

attention for the identification and diagnosis of fault [18-20]. 

2.2.1 Time-domain analysis 

The analysis of the time domain is the technique for testing the data in terms of time. And, it includes observing the time 

series signal determined from the apparatus for finding the problems. The statistical factors are utilized for generating the 

features of the time-domain from the fresh data of vibration that may appropriately define the variations in the vibration signals 

of bearing through the failures. The attributes of the time domain comprise the Root Mean Square (RMS), kurtosis, skewness, 

peak-to-peak, crest factor, shape factor, impulse factor, and Margin Factor. Also, the benefits of the analysis of the time-

domain are its short calculating period and the easiness of application. These attributes are represented by Equations 1 through 

8. 

 RMS = (
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𝑁
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2.2.2 Frequency-domain analysis 

The analysis of frequency-domain is a usually utilized method in the machinery condition observing for analyzing the data 

of vibration and discovering the mechanical fingerprints of the machine depending upon the features of frequency. It includes 

converting the signals of the vibration of the time domain into the frequency domain via employing methods from the Fourier 

analysis, like discrete Fourier transform, Fourier series, and continuous Fourier transform, as well as supposing that the signal's 

frequency constituents stay fixed during the time, such technique is appropriate for still signals caused via the revolving 

machinery. On the other hand, non-stationary signals might be caused by other variables or changes in the speed of spinning 

machinery. Order tracking and other advanced approaches have been developed to disclose frequency components in time-

varying environments better. The generalized demodulation as well as the cyclic spectrum relationship theory are (2) instances 

of such approaches.  

2.2.3 Time-frequency analysis 

The analysis of time-frequency is a technique to determine the features of the signals of vibration that vary over time. The 

signal of vibration requires to be transformed from the time-domain into the time-frequency domain to be stated utilizing a 

density function of 2D time-frequency. Also, this ascertains the features of time-varying of every constituent of frequency as 

well as the immediate signal frequency. Numerous approaches were evolved for the analysis of time-frequency, comprising the 

chirplet transform-based approaches, short-time Fourier transform, Hilbert-Huang transform, and wavelet transform. Such 

approaches were utilized for the defect’s diagnosis in the rotating machinery, surrounding the bearing malfunctions 

identification. And, they were utilized in deep learning-based fault identification approaches, feature extraction, and network 

structure optimization [19,20]. 

3. Artificial intelligence in fault diagnosis 

AI is acquiring attention from engineering specialists, especially in the field of diagnosing and expecting topics with 

rotating equipment. And, it has been revealed that the fault diagnostics' achievement and flexibility may be augmented via the 

combination of AI methods, comprising SVMs, ANNs, evolutionary algorithms, and fuzzy logic regimes. Such methods of AI 

scrutinize numerous data types, comprising acoustic emission signals, for identifying and diagnosing the topics in intricate 
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manufacturing equipment. Moreover, artificial intelligence-based fault scrutiny frameworks have been made to increase the 

efficiency of rotating apparatus fault detection as well as prognosis models. Employing AI in engineering has the prospective 

for continuing the growing and enhancement owing to the progress in the intelligent info, capabilities of the sensor, and else 

fields [21-23].  

AI methods have extensive utilization in the diagnosis of defects. Such methods, which comprise ANN, genetic GA and 

(SVMs), have displayed encouraging outcomes in the faults diagnosis and machine state observing. Many methods of AI, 

comprising naive Bayes, k-nearest neighbour, and deep learning, have been employed for the spinning apparatus for detecting 

the flaws.The AI implementation for problematic diagnostics is crucial for the dependability as well as the safety of 

manufacturing regimes. Nevertheless, there are difficulties and restrictions, like signals of noise and circumstances of practical 

functioning. In spite of such defies, AI algorithms have been fruitfully employed for identifying the fault in a variety of 

manufacturing uses, providing benefits, comprising the elevated obtainability of apparatus and inexpensive care. The 

upcoming investigation in such field area will focus on obtaining solutions for the topics connected with optimization, the 

collection of data, and the choice of method [23,24].  

3.1 Theoretical and mathematical foundations of AI 

AI algorithms for fault diagnosis of rotating machinery have gained popularity due to their robustness and adaptability. 

These algorithms do not necessitate comprehensive prior physical knowledge, which can be challenging to acquire in practical 

scenarios. Among the various AI algorithms, Support Vector Machines (SVM), Neural Networks (NN), k-nearest Neighbour 

(k-NN), and Naive Bayes classifiers are most commonly applied in fault diagnosis. Additionally, deep learning methods have 

shown significant potential in this field, offering advanced capabilities in learning complex patterns and hierarchies from data, 

thereby enhancing the accuracy and efficiency of fault diagnosis systems. 

3.1.1 Support vector machines (SVM) 

Support Vector Machines (SVM) is a computational learning technique designed for classifying small sample sizes. 

Algorithmically, SVM constructs an optimal separating hyperplane 𝑓(𝑥) = 0 between datasets by solving a constrained 

quadratic optimization problem grounded in structural risk minimization (SRM). As indicated by Equation 9: 

 

 𝑦 = 𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 = ∑  𝑁
𝑖=1 𝑊𝑖𝑥𝑖 + 𝑏 (9) 

 

𝑊 is an N-dimensional vector and 𝑏 is a scalar. The optimal separating hyperplane is defined as the plane that maximizes 

the distance between itself and the nearest data points, referred to as the maximum margin. By transforming the optimization 

problem using the Kuhn-Tucker conditions into the corresponding Lagrangian dual quadratic optimization problem, the 

classifier based on support vectors can be derived. 

3.1.2 Neural Networks (NNs) 

Neural Networks (NNs) are among the most widely used algorithms in machine learning. They primarily consist of three 

layers: the input layer, the hidden layer, and the output layer. The hidden layer contains units called hidden units whose values 

are not directly observed. An NN operates on interconnected nodes or neurons, where each neuron receives inputs x1, x2, x3 

and an intercept term, producing an output y. The output is calculated in Equation 10: 

 𝑦 = 𝑓(𝑊𝑇𝑥) = 𝑓(∑  3
𝑖=1  𝑊𝑖𝑥𝑖 + 𝑏) (10) 

Here, 𝑓 is the activation function, often the sigmoid function, 𝑊 represents the weights, and 𝑏 is the bias term. NNs learn 

by iteratively adjusting the weights based on known input-output patterns, mimicking neurological functions such as learning 

from experience and generalizing from similar situations.The number of hidden layers can be approximated by the formula in 

Equation 11: 

 𝑁ℎ =
𝑁𝑠

(𝑎×(𝑁𝑖+𝑁0))
 (11) 

α typically ranges from 2 to 10, 𝑁0 is the number of output neurons, 𝑁𝑖 is the number of input neurons and 𝑁𝑠 is the 

number of training samples. Empirical formulas to determine the number of neurons in the hidden layer as indicated by 

Equation 12: 

 
ℎ= √𝑖 + 𝑜 + 𝛼
ℎ= log2 𝑖

ℎ= √𝑖𝑜

  (12) 

where 𝑖, 𝑜 and h are the numbers of input, output, and hidden neurons, respectively, and 𝛼 is an adjustment constant ranging 

from 1 to 10. 
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3.1.3 k-Nearest neighbour 

k-NN is an instance-based learning algorithm based on the principle that the instances within a dataset will generally exist 

in close proximity to other instances with similar properties. For a given training set of classified instances 𝑇 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2) … . , (𝑥𝑁 , 𝑦𝑁)}, where 𝑥𝑖 is the feature vector of the unlabeled instance, 𝑦𝑖  is the label and 𝑦𝑖 =
𝑐1, 𝑐2, … , 𝑐K, 𝑖 = 1,2, … 𝑁. For a training sample (𝑥, 𝑦), the k-NN algorithm searches for the 𝑘 nearest instances to 𝑥 based on a 

given distance metric. The neighbourhood containing these 𝑘 instances is represented by 𝑁𝑘(𝑥). Then, the label of test sample 

𝑥 can be calculated based on decision rules In line with Equation 13: 

 y = arg max
cg

 ∑  xi∈Ni(x) I(yi = cj),  i = 1,2, … , N;  j = 1,2, … K (13) 

where 𝐼 is the indicator function. If the instances are tagged with a classification label, then the label of an unclassified instance 

can be determined by observing the class of its nearest neighbours. There are three basic elements in the k-NN algorithm: the 

number of measured instances 𝑘, the distance metric and the decision rule for classification. Compared with other AI 

algorithms, 𝑘-NN shows an advantage of simple implementation. 

3.1.4 Naive Bayes classifier 

The Naive Bayes approach is a classification technique founded on Bayes' Theorem and the assumption of conditional 

independence.  For a given training set 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} with label 𝑦, 𝑦𝑖 = 𝑐1, 𝑐2, … , 𝑐𝐾 , 𝑖 = 1,2, … . 𝑁, 

assume there are 𝑆𝑙 possible values for 𝑥𝐼 , 𝑙 = 1,2, … , 𝑛; and there are 𝐾 possible values for 𝑌. Naive Bayes primarily learns 

the joint probability distribution 𝑃(𝑋, 𝑌) of the input and output by the conditional probability distribution based on the 

conditional independence assumption according to Equation 14: 

   
𝑃(𝑋 = 𝑥 ∣ 𝑌 = 𝑐𝑗) = 𝑃(𝑋(𝑙) = 𝑥(𝑙), … , 𝑋(n) = x(𝑛) ∣ 𝑌 = 𝑐𝑗)

= Πl=1
𝑛 𝑃(𝑋(𝑙) = 𝑥(𝑙)) 𝑗 = 1,2, … , 𝐾

  (14) 

Then, based on the learnt model, the output label 𝑦 with the biggest posterior probability for the given input 𝑥 can be 

calculated via Bayes' Theorem as can be seen in Equations 15 and 16: 

 𝑃(𝑌 = 𝑐𝑗 ∣ 𝑋 = 𝑥) =
𝑃(𝑋=𝑥∣𝑌=𝑐𝑗)𝑃(𝑌=𝑐𝑗)

∑  𝑗  𝑃(𝑋=𝑥∣𝑌=𝑐𝑗)𝑃(𝑌=𝑐𝑗)
  (15) 

and 

 𝑦 = arg max
𝑐𝑗

 𝑃(𝑌 = 𝑐𝑗)Π𝑙𝑃(𝑋(𝑙) = 𝑥(𝑙) ∣ 𝑌 = 𝑐𝑗)  (16) 

The Naive Bayes classifier is widely used for classification due to its simplicity and high efficiency. 

3.1.5 Deep learning 

Deep learning involves learning feature hierarchies through deep architectures with multiple layers of nonlinear 

operations, enabling complex mappings from inputs to outputs.  In models like autoencoders, the objective is to learn a function 

ℎ𝑤,𝑏 ≈ 𝑥, finding low-dimensional data representations. For Restricted Boltzmann Machines (RBM), the energy function 

illustrates in Equations 17,18 and 19: 

 E(v, h) = −b′v − c′h − h′Wv  (17) 

With 𝑊 weights between hidden and visible units and 𝑏 and 𝑐 as biases. The free energy is:  

                                   F(v) = −b′v − ∑  i log ∑  hi
ehi(ci+wiv)  (18) 

RBMs assume conditional independence: 

 
𝑝(ℎ ∣ 𝑣) = ∏  𝑖  𝑝(ℎ𝑖 ∣ 𝑣)

𝑝(𝑣 ∣ ℎ) = ∏  𝑗  𝑝(𝑣𝑗 ∣ ℎ)
 (19) 

Deep Boltzmann Machines (DBM) and Deep Belief Networks (DBN) extend RBMs with more hidden layers, enhancing 

their ability to model complex relationships. Deep learning performance improves significantly with large datasets and strong 

computational resources [15-24]. 

3.2 Machine learning (ML) algorithms 

They're broadly utilized in numerous areas, comprising sensing as well as state observing. Such algorithms enhance the 

data processing's attributes and efficacy, assisting large sensory data scrutiny and clarification. The methods of supervised ML, 

like SVM and ANNs are broadly employed for the categorization as well as regression uses. The approaches of unsupervised 
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ML, especially clustering algorithms, are applied for categorizing the data in the pre-established classes' nonexistence. The (2) 

approaches of deep learning, Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) have depicted 

abundant encouragement in treating intricate sensory input as well as extracting the elevated-level characteristics. And, in the 

actual-period state observing and sensing uses, such algorithms have been utilized for delivering perceptive scrutiny and 

forecasts. Also, the whole regarded things, the sensing and state observing field have been updated via ML algorithms, 

assisting further accurate and effective scrutiny of data scrutiny [13-21]. 

3.2.1 Support Vector Machines (SVMs) 

SVMs are a famous method of ML for identifying the topic and apparatus state observing. An instance of an ultimate 

margin is illustrated in Figure 3. The support vector machines (SVMS) have been confirmed to be active in amending the data 

over--fitting as well as performing elevated accurateness in investigation upon the revolving apparatus problems' diagnosis. 

Investigators have adapted SVMs in numerous methods to fit their specific investigation goals better. And, for example, 

evolved a 2-phase kernel regime employing kernel PCA and ICA beyond evolving a Wavelet Support Vector Machine (W-

SVM) with sturdy generalization capability.Moreover, multiclass approaches, like One-Against-One (OAO) and One-Against-

All (OAA), have been employed for SVM-based categorization. It's crucial to keep in mind that the SVMs might require 

processing power and a big memory, as well as that choosing the correct kernel possesses an influence on how efficiently they 

serve. SVMs are able to manage the difficulties with the data of the sensor and are valuable to diagnose the faults in the 

rotating equipment with fewer datasets; nevertheless, they mightn't be suitable for large manufacturing datasets [19-23]. 

 

Figure 3: The optimal hyperplane for a binary classification by SVM [19] 

3.2.2 Neural networks 

Neural networks find extensive applications in a variety of fields, such as pattern recognition and machine fault detection. 

They provide advantages like fault tolerance, adaptive parallel processing, distributed information storage, and nonlinear 

mapping capabilities. Figure 4 depicts the fundamental architecture of an artificial neural network [11]. 

 

Figure 4: Basic structure of artificial neural network [11] 
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Additionally, MATLAB was used for modelling and simulation, as seen in Figure 5. Neural networks' hidden layers 

essentially function as information processors, taking in inputs from layers above and sending processed outputs to layers 

below. There is no direct communication between these layers and the outside world. As shown in Figure 6, nodes in the 

network use nonlinear activation functions to handle the nonlinear relationships between inputs and outputs. Neural networks 

can be utilized as classifiers in fault diagnosis to distinguish between various defects in rotating machinery. In order to provide 

quick and precise defect detection in gearboxes and bearings, researchers have developed enhanced neural network techniques 

that can accept raw signals as input without requiring preprocessing. Neural networks have also been used for tasks like blood 

pressure calculation, picture categorization, fall detection, and filtering and prediction. They have also been used in domains 

such as RNA sequence analysis, 3D object detection, and solar irradiance prediction. Neural networks have shown to be 

reliable and successful instruments across a range of fields, providing excellent performance and accuracy in jobs involving 

data processing and prediction [25-27].  

 

Figure 5: Architecture of artificial neural network [25] 

 
Figure 6: Typical three layers ANN [26] 
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3.2.3 Decision trees 

Models called decision trees employ a sequence of if/else queries to forecast the value of a target variable. With the 

intention of producing precise and timely predictions, these questions divided the data into smaller groups. One of the 

algorithm's termination criteria is the user's choice of how many questions to ask. A node is any group that the questions form, 

and a node's size can be used as a criterion for termination. Every data feature is used in the training procedure [28].  

3.3 Deep learning (DL) techniques 

Deep learning (DL) methods have garnered significant interest recently, particularly in diagnosing problems in rotating 

equipment. DL, a subset of machine learning, utilizes large-scale deep neural networks to automatically detect features from 

raw data without the need for manual feature engineering. This approach offers several advantages over traditional machine 

learning techniques, notably its ability to extract abstract and high-level features from diverse data sources such as audio, 

video, and sensor data. Convolutional neural networks (CNNs), a type of DL model, have been successfully applied in various 

domains, including image classification, speech recognition, and defect diagnostics. These models are well-suited for real-time 

status monitoring and intelligent systems because they can learn complex functions and establish strong correlations between 

multiple input signals [12-27]. 

3.3.1 Convolutional neural networks (CNN) 

Applications for image processing and pattern identification make extensive use of Convolutional Neural Networks or 

CNNs. Convolutional, pooling and fully linked layers make up their composition. CNNs are used in equipment failure 

detection and are very good at extracting features. Better CNNs have looked toward expanding their capabilities to include 

scenarios with changing speeds throughout time. These include residual learning techniques, multi-scale kernel algorithms, 

nuisance attribute projection, Pythagorean spatial pyramid pooling, cascade CNNs with progressive optimization, and the 

integration of intraclass and interclass restrictions with adaptive activation functions. For intelligent failure detection and 

Remaining Useful Life (RUL) prediction, CNNs have also been integrated with other deep learning architectures, such as 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. The structure is separated into two 

parts: the first extracts features made up of Max pooling, ReLU, and convolutional layers. As depicted in Figure 7, the data 

classification segment is comprised of a completely connected network [12-30]. 

3.3.2 Recurrent Neural Networks (RNN) 

One kind of DL architecture called recurrent neural networks (RNNs) uses feedback connections from hidden or output 

layers to analyze dynamic input. RNNs are useful for tasks like time series analysis and natural language processing because 

they can detect temporal connections in sequential data. The Long Short-Term Memory (LSTM) network is one particular kind 

of RNN that solves the issue of vanishing and exploding gradients that can arise in conventional RNNs. With the memory cell 

included in LSTMs, long-term dependencies can be preserved more effectively because it keeps the state intact when the 

network is not in use. Applications such as gear defect diagnostics, bearing problem detection, and remaining useful life 

prediction have drawn interest in RNNs, particularly LSTMs. as shown in Figure 8 [15-30]. 

 

Figure 7: Typical CNN architecture 
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Figure 8: RNN architecture unfolded: feedforward version of networkof arbitrary length depending on a  

                         sequence of inputs 
                           

3.4 Hybrid AI models 

Systems that integrate several artificial intelligence techniques to enhance machine learning performance are referred to as 

hybrid AI models. Neural networks, evolutionary computing, fuzzy logic, support vector machines (SVMs), Bayesian 

networks, and statistical learning are among the methods that these models frequently make use of. Hybrid AI systems aim to 

improve on the strengths of different approaches. For instance, it has been demonstrated that hybrid neural network regression 

models that incorporate fuzzy clustering techniques perform better than standalone techniques like K-means and Fuzzy C-

means in some scenarios. An additional instance is a hybrid regime that joins the SVM algorithms, ANNs, naive Bayes, and 

fuzzy logic for obtaining more than (99%) rate of recognition as well as detection for the species recognition and illness 

diagnosis. Such hybrid models join the numerous AI methods' advantages for increasing the performance in a diversity of uses 

[27-31].   

4. Integration of vibration analysis and artificial intelligence 

The analysis of vibration and the AI incorporation have harvested care in the rotating apparatus topic diagnosis field. 
Investigators have studied numerous methods of AI, comprising ANNs, fuzzy logic regimes, and Deep learning (DL), in a trial 
for improving vibration-based topic identification. ANNs have been broadly employed in such manufacturing; an investigation 
has concentrated on optimizing the network topology as well as integrating the time-frequency mapping of the signals of 
vibration. Via increasing the deep learning designs with the methods of period-synchronized re-sampling for including the 
analysis of vibration as a restriction, greater diagnostic accurateness has been reached. In addition, the improved ANN models 
have evolved, like the dynamic fuzzy NN and the multi-scale residual generative adversarial network, for handling the 
difficulties, comprising the lost specimens and the unbalanced data of fault. The progressions in practices of AI have 
manifested the ability to augment the accurateness as well as the efficacy of vibration scrutiny-based topic detection. 

AI and analysis of vibration join efficiently for enhancing the spinning apparatus failure diagnosis. Employing AI-based 
approaches, like ANNs, for characteristic extracting and detecting the defect from the signals of vibration can enhance the fault 
diagnosis accurateness. Additionally, the analysis of time-frequency pictures may be utilized with the approaches of AI for 
finding concealed features and producing exceptionally dependable and widely implementable diagnostic models. The methods 
of AI adaptive decomposition can effectively denote the signals transiently via automatically decomposing the signals and 
stressing the resident characteristics reasoned via the faults. Moreover, the data of vibration may be assessed, and the fault info 
can be taken out employing the algorithms of AI, which can overwhelm the non-fixed signals as well as numerous 
simultaneous failures. Collected, the analysis of vibration and the AI assist further precise and effective defect diagnosis in the 
spinning equipment [12-22]. 

Combining techniques in machine learning models has several advantages. Combining data or pertinent information from 

several sources improves the resilience and accuracy of the models. Overall performance is improved by combining the 

predictions of many classifiers using ensemble approaches like boosting and bagging. By integrating the benefits of many 

techniques, ensemble approaches may effectively manage extremely nonlinear and non-stationary data. The disadvantages of 

individual techniques, such as complexity, interpretability, power and time consumption, can also be helped by combining 

methodologies. In general, combining techniques in machine learning models can result in predictions that are more 

predictable and accurate, which makes them valuable tools in a range of applications, including defect diagnostics and 

prognostication. 

Some of the challenges and limitations in this subject are the focus on diagnostic rather than prognostic techniques, the 

complexity of implementing real-time predictive maintenance in different application areas, and the effect of unknown 



Nazik A. Jebur & Wafa A. Soud Engineering and Technology Journal 43 (01) (2025) 25-41 
 

35 

 

components and sources on prediction outcomes. For academics, accurately and correctly estimating the lifespan of a machine 

or piece of equipment is a challenging issue. However, this technique might be used in the future to spot anomalies instantly 

and prevent more damage to machinery or processes [21-30]. 

5. Case studies and applications 

The topics of journal bearing have been fruitfully diagnosed employing the analysis of vibration and AI. The analysis of 

vibration is a famous method to locate the concealed signs of failure in the rotating equipment like the journal bearings. For 

identifying the irregularities and the flaws' initial warning signals, comprising the misalignment, wear, and fractures, the 

analysis of vibration signs has to be tested. AI-based approaches like ML algorithms, such as SVM and K-Nearest Neighbors 

(KNN), founded upon the data of vibration, have been employed for classifying the fault conditions of journal bearing. Such 

methods depend upon training classifiers utilizing categorized data and deriving characteristics from the Power Spectral 

Density (PSD) of the signals of vibration.  

The analysis of vibration, joined with the algorithms of AI can offer a precise detection of fault for the journal bearings. This 

creates the foretelling upkeep of the spinning equipment likely as well as improves the state observing [16-20]. The following 

tables provide a comprehensive overview of recent studies on journal bearings, categorized based on their specific focus areas and 

methodologies. These tables offer detailed insights into various aspects of wear fault diagnostics, fault diagnosis in bearings, 

advanced machine learning techniques, simulation and experimental studies, and case studies and applications. Table 2 

summarizes studies focusing on the detection and monitoring of wear faults in journal bearings. Table 3 this table highlights 

research on fault diagnosis methodologies for bearings, including integrated wear debris analysis, vibration data, and temperature 

analysis, as well as the application of deep learning algorithms. Table 4 presents studies that leverage advanced machine learning 

techniques for condition monitoring and fault diagnosis in journal bearings, emphasizing the use of convolutional neural networks, 

autoencoders, and other AI models. 

Table 5 outlines simulation and experimental research on journal bearings, focusing on the impact of micro-grooves, 

misalignment, and lubrication performance and providing guidelines for optimal bearing design. Table 6 lists case studies and 

practical applications of journal bearings research. It details simulation methodologies, wear model evaluations, and the effects 

of bearing design parameters on system performance. 

Table 2: Wear fault diagnostics in journal bearings 

Focus Methodology Key Findings  Ref. 

Wear fault diagnostics in 

journal bearings 

Simulation-driven deep learning 

with CNN 

Simulated data used for real-world wear severity prediction [32] 

Wear monitoring of 

journal bearings 

Acoustic emission for 

qualitative wear estimation 

Challenges in quantitative wear volume estimation highlighted [33] 

Monitoring lubrication 

conditions in bearings 

Contact potential-based method 

for diesel engine bearings 

The relationship established between contact potential and asperity 

contact; novel method for accurate wear monitoring 

[34] 

Monitoring tribe-
dynamic interaction in 

journal bearings 

Vibration analysis to assess 
induced friction and tribological 

performance 

Importance of monitoring tribological performance and lubrication 
regimes in journal bearings under heavy load and high rotational 

speeds 

[35] 

Particle contamination 

detection in bearings 

Acoustic emission (AE) and 

vibration monitoring 

Quantitative evaluation of particle sizes and concentrations effective 

condition monitoring using AE and vibration 

[36] 

Table 3: Fault diagnosis in bearings 

Focus Methodology Key Findings Ref. 

Bearing fault diagnosis Ensemble CNN and deep 
neural network (CNNEPDNN) 

model 

Improved convergence speed, test accuracy, and F-Score in 
bearing fault diagnosis compared to individual models 

[ 73 ] 

Fault diagnosis in hydropower plant 
bearings 

Integrated wear debris analysis, 
vibration data, and temperature 

analysis 

Abnormal temperature and vibrational energy increase 
identified fault; successful rectification through bearing 

block replacement 

[38] 

Vibration characteristics in 
hydrodynamic journal bearings 

Investigation of Tribofilm-
Asperity Interaction (TAI) for 

early wear monitoring 

Analytical expressions for microscopic pressure 
fluctuations derived; SPSD used for analyzing microscopic 

pressure fluctuations providing effective techniques for 
early wear monitoring of journal bearings 

[ 93 ] 

Fault detection in floating bush 

bearings 

Time and frequency domain 

vibration analysis 

Various parameters including waveform, form factor, and 

kurtosis are effective for identifying external and internal 
defects in floating bush bearings 

[40] 

Influence of journal bearings on 

gearbox dynamics of a wind turbine 
drivetrain 

Multibody simulation (MBS) 

model comparison for journal 
bearings versus roller bearings 

The investigation aims to clarify the advantages or 

disadvantages of using journal bearings in wind turbine 
gearboxes. 

[41] 

Fault diagnosis in journal bearings Deep learning and vibration 

analysis 

Enhanced fault detection accuracy using deep learning 

algorithms on vibration data 

 [42] 
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Table 4: Advanced machine learning techniques 

Focus Methodology Key Findings Ref. 

Identifying ovalization faults in 

bearings 

Deep convolutional neural network 

(CNN) using simulated data 

CNN algorithm demonstrated efficacy in identifying 

ovalization faults; statistical evaluations supported its 

effectiveness for training with simulated data 

[43] 

Stochastic analysis of 
lubrication in misaligned 

journal bearings 

Polynomial chaos expansion (PCE) to 
analyze stochastic Reynolds equation 

Misalignment in hydrodynamic journal bearings introduces 
stochasticity affecting lubrication performance; significant 

effects of misalignment and stochastic parameters identified 

[44] 

Vibration-based wear condition 

estimation of journal bearings 

Convolutional autoencoders for 

feature extraction 

Convolutional autoencoders achieved impressive 

performance (91% average Pearson coefficient) in wear 

estimation, highlighting the importance of predictive 
maintenance 

[45] 

Bearing fault diagnosis based 

on deep learning and health 
state division 

Deep learning and health state 

division with Xi’an Jiaotong 
University (XJTU-SY) dataset 

Improved network model demonstrated effective fault 

diagnosis and noise immunity under complex working 
conditions, achieving high diagnostic accuracy and 

efficiency 

[46] 

Condition monitoring of 
hydrodynamic journal bearings 

Machine learning and signal 
processing 

Implementation of advanced signal processing techniques 
combined with machine learning for improved condition 

monitoring 

[ 74 ] 

Table 5: Simulation and Experimental Studies 

Focus Methodology Key Findings Ref. 

Transient lubrication 

behaviour of loaded journal 

bearings with micro-groove 

Numerical investigation with a 

mixed lubrication model 
Micro-grooves impact bearing performance; study 

offers guidelines for optimum design of dynamically 

loaded micro-groove bearings 

[ 84 ] 

Minimizing misalignment 

effects in finite-length 

journal bearings 

Finite difference method-based 

numerical solution with a three-

dimensional misalignment model 

The edge modification approach improves lubricant 

layer thickness, reduces pressure spikes, and 

decreases friction coefficient under misalignment 

[ 94 ] 

Mixed lubrication 

performance of journal 

bearings with misalignment 

and thermal effects 

Experimental and numerical study 

introducing a misaligned journal 

mixed lubrication model 

Visible wear phenomena observed on the bush and 

shaft contributed to the understanding of mixed 

lubrication mechanisms in misaligned journal 

bearings 

[50] 

Continuation analysis of 

rotor-bearing systems 
Direct solution of the Reynolds 

equation for sliding contact 

bearings 

Practical approach for examining the dynamics of a 

rigid rotor bearing system without relying on 

approximations 

[51] 

Experiment and simulation 

analysis of vibration 

response in rotor-bearing 

systems 

Investigation of unbalanced mass 

effects on vibration response 
Insights into amplitude variations and trends under 

different conditions are valuable for fault diagnosis 

and dynamic characteristics analysis 

[52] 

Table 6: Case studies and applications 

Focus Methodology Key Findings Ref. 

Simulation methodology for identifying 

critical conditions of planetary journal 

bearings 

Simulation tool chain 

coupling multibody 

simulation (MBS) and 

elastohydrodynamic 

(EHD) model 

Methodology aids in identifying critical 

operating conditions of planetary journal 

bearings early in the design phase, supporting 

reliable bearing design for wind turbines 

 [53] 

Wear models for journal bearings in 

planetary gears 

Evaluation of wear 

models under wind 

turbine-like conditions 

Insights into where model selection for 

calculating wear in planetary gear journal 

bearings addressing challenges in wind turbine 

drive systems 

 [54] 

Effects of bearing design parameters on 

rotor-bearing systems with 3D 

misalignment 

Investigation of dynamic 

response with linear and 

parabolic bearing 

profiles 

Both profiles enhanced system performance, 

reducing the adverse effects of misalignment on 

lubricant layer thickness and pressure 

distribution 

 [55] 

Statistical features-based approach for 

bearing fault diagnosis 

Statistical features of 

vibration signals in time 

and frequency domains 

The proposed method using statistical features 

achieved over 95% reduction in features and 

demonstrated high accuracy in roller bearings' 

fault classification 

 [56] 

Intelligent fault diagnosis of rotating 

machinery 

Deep learning 

applications 

A comprehensive review of deep learning 

techniques in fault diagnosis, highlighting 

recent advancements and practical applications 

 [ 75 ] 

6. Comparative analysis 

6.1 A comparison between AI-based and conventional approaches 

Conventional and artificial intelligent-based practices have been compared in the diagnostics as well as the fault 

prognostics domains. Techniques utilizing deep learning have the potential to attain greater recognition rates compared to 
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conventional methods that rely on specialized expertise. An illustration of a conventional method is artificial feature extraction. 

Even though these traditional methods are simple to use and efficient in terms of processing, they struggle to distinguish 

features from non-stationary signals when speeds change over time. But AI-based methods, such as those that make use of 

deep learning, could be able to directly extract characteristics from signals, doing away with the requirement for labor-

intensive human work and specialized knowledge. However, further study is required to identify faults under time-varying 

speeds, and deep learning-enabled approaches' accuracy needs to be improved for industrial use. Various data sources, 

including vibration/kinematic, acoustic, and visual data, are employed in the field of rotating machinery for fault prognostics 

and diagnostics. Neural networks and support vector machines, two AI-based techniques, have been effectively used in these 

fields. When compared to traditional methods, AI-based solutions generally show promise in improving fault diagnosis and 

prognostics; nonetheless, further study and advancements are required [12-30]. 

6.2 Effectiveness and efficiency 

The efficacy and efficiency of several intelligent techniques for diagnosing faults in rotating machinery are demonstrated 

through comparative analysis. While computationally efficient and easy to use, artificial feature extraction-enabled techniques 

may not be able to extract deep distinguishing characteristics from non-stationary data and necessitate previous information. 

However, deep learning-enabled techniques are more straightforward to use, and by fusing deep learning models with signal 

processing techniques, they are able to discover more intricate characteristics. The paper highlights that automated diagnosis 

should not just rely on data-driven AI techniques but also make use of defect characteristics and prior knowledge. It also 

emphasizes the necessity of thorough reference points and fault-wise analysis for rotor problems, including fault simulation in 

test beds. By retrieving characteristics from hidden layers, deep neural networks like autoencoders  can increase the accuracy of 

fault categorization [12-58]. 

7. Future trends and directions 

Numerous future trends and directions in the field of intelligent fault analysis of rotating machinery can be researched. 

First of all, real-world datasets that consider operational and environmental factors are needed, as the majority of datasets 

currently in use were developed in lab conditions  [14]. This will make it possible to create IFDP models that are adaptable to 

variations in these parameters. Second, instead of making generalizable models, it could be advantageous to construct the 

constituent- and fault-particular models to decrease the problem's intricacy. And, it's likely to evolve further active methods of 

IFDP via concentrating upon specific constituents as well as adapting factors based upon the fault type. Finally, it's crucial to 

assess the efficiency of the methods of IFDP in manipulating compound failures, which are the failures occurring in numerous 

discrete or alike constituents. It's essential to perform more investigation upon such a topic, which hasn't acquired abundant 

care in literature. 

7.1 Emerging technologies 

The diagnosis, as well as the prognosis of the defect for the revolving apparatus, is an issue shedding light upon the 

prospective upcoming tendencies and technical directions. The joining (AI) with the methods of ML, like the DL, has come to 

be further famous for the identification of faults. Since such algorithms can efficiently use the historical data's enormous 

volumes and increase the accurateness of recognition, they're appropriate for utilization in clever industrial uses. Also, Cyber-

physical systems (CPS), in addition to the integration of sensors, have assisted the practices of Prognostics and Health 

Management (PHM), which are necessary for the industry (4.0). The progress in the collection of data, the approaches of data 

fusion, and also the choice of algorithm have resulted in the Intelligent Failure Detection and Prognosis (IFDP) models 

formation for revolving equipment. The general upcoming tendency of developing techniques is the employment of PHM, 

CPS, DL, ML, and AI to the identification as well as prediction of fault for the revolving apparatus [12- 59] 

7.2 The prospective progress in AI and the analysis of vibration for the detection of fault 

The following tendency, as well as directions in the analysis of vibration and artificial intelligence (AI) for the diagnosis of 

defect, is the progress of DL approaches motivated via the simulation for the journal-bearing state observing. Such approaches 

using the dynamic models for estimating the vibration reactions of journal bearing at different scenarios of failure can be more 

reasonable than collecting more training data throughout the area field of observations or the physical experimentations. 

Furthermore, there is growing interest in the application of intelligent fault diagnosis and prognosis (IFDP) models and 

artificial intelligence-based fault analysis for rotating machinery. Model evaluation, applicability to real-world scenarios, 

development of fault-specific models, existence of compound faults, data source, data collecting, and method selection are 

among the difficulties in this field. For IFDP of rotating machinery components, including bearings, gears, rotors, stators, and 

shafts, to be effective, these issues must be resolved. These developments in AI and vibration analysis could lead to better fault 

diagnosis and detection in rotating machinery, improving industrial system reliability and safety [21- 60]. 

8. Conclusion 

This comprehensive review highlights the significant progress that has been made in fault diagnosis and condition 

monitoring in journal bearing. Progress has been made by incorporating machine and deep learning techniques, especially 

ensemble models such as CNN and CNNEPDN, which have shown improvements of 15 to 20 per cent in Test accuracy and 

convergence speed in detecting errors compared to individual models performance, achieving an average Pearson correlation 

factor of 91% in fatigue estimation. 
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 The need to use a variety of data sets is necessary because it is empirical and realistic.  

  Future research should include different types of defects and different operating conditions to improve the 

representativeness of the data set. 

 One essential is common evaluation criteria to improve program reprogramming and enable consistent comparisons 

between studies. 

 Comprehensive models covering a wide range of operating conditions and malfunction scenarios must be developed 

in order to improve diagnostic accuracy. 

 Physical computing and advanced data integration techniques to develop intelligent models for defect diagnosis and 

prediction. Key extraction processes: Constant and nonlinear. 

Future developments will benefit from the integration of deep learning, physical computer systems, and advanced data 

integration techniques to develop intelligent models for defect diagnosis and prediction. By addressing these areas, future 

research can significantly enhance the reliability and effectiveness of control conditions and fault diagnosis in magazine 

holders, leading to improved maintenance strategies and reduced downtime in various industrial applications. By addressing 

these areas, future research can significantly enhance the reliability and effectiveness of control conditions and fault diagnosis 

in magazine holders, leading to improved maintenance strategies and reduced downtime in various industrial applications. 
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