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Abstract- Recent advances in genetics have increased the sensitivity and reliability of the forensic sciences.
Therefore, there is a need for efficient forensic investigation techniques. Deep learning is becoming increasingly
important in forensic science as it offers the potential to increase the accuracy and effectiveness of various forensic
tasks like paternity testing, missing person identification, and potentially connecting suspects to crime sites. Although
it’s performance at solving many problems, the deep learning model may suffer from overfitting problems that
occur when it fails to generalize well and instead fits more precisely to the training dataset. This work presents
two deep learning models, Deep Neural Network (D-DNN) and Gated Recurrent Neural Network (D-GRU), for
human identification based on Deoxyribonucleic Acid-Short Tandem Repeat (DNA-STR) as the input sequence.
These models are built and tested in such a way as the best performance since two regularization techniques are
introduced: dropout and data augmentation to avoid overfitting problems. Two datasets are used: one with a size of
53530 and another with a size of 151580. Whereas 80% for training purposes of the first dataset is equal to 42824,
while it is equal to 121264 in the second dataset. A comparison of performance was held between these two models
by using dropout or not. The results show that D-GRU using dropout has the best performance with overfitting
invisibility, training and testing accuracy equal to 1.0, the loss equal to 1.5276 ×10−8, and the validation loss equal
to 6.1561 ×10−6.

keywords: DNA, STR, Deep learning, Regularization technique.

I. INTRODUCTION

Deoxyribonucleic Acid (DNA) profiling analyses sequences of individual or mixed DNA profiles to identify the persons

to whom these profiles belong. In forensic science, one of the most crucial applications of DNA profiling is to find a match

between a suspect’s blood sample and their DNA profile recovered at the crime scene. There are also other applications

including: paternity testing, identifying disaster victims, locating missing persons, and mapping hereditary illnesses [1].

DNA profiling involves the analysis of specific sequences of DNA, known as genetic markers. Short Tandem Repeat (STR)

is the most genetic marker commonly used [2]. Approximately 3% of the human genome consists of STRs, which are

highly repetitive sequences of 2-6 base pairs. When assessing individuals for identification purposes, the variation in the

number of repetition units provides a powerful discrimination factor [3].

This paper presents a deep learning model for forensic investigation cases such as paternity testing, missing person

identification or determining the criminal in a crime scene by finding the similarity between DNA profiles of suspects

with reference samples. It proposes a deep learning system using the DNA-STR profile as input data that stores human

identity consisting of 15 loci with two alleles in each locus. Output from this system is the value that indicates whether
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the person belongs to the reference samples or not. Besides introducing the deep learning model to perform optimally, the

structuring and management of the creating dataset play a key role in system development.

Fig. 1 presents the general overview of the proposed system, where the identification model assumes two deep learning

models called the DNA-deep Neural Network (D-DNN) and the DNA-Gated Recurrent Neural Network (D-GRU). These

two models are built with and without the aid of two common regularization techniques: dropout and data augmentation

for efficient learning performance. A comparison will be made between the two systems; both are structured to ensure

efficient accuracy with minimum loss.

Figure 1: The proposed forensic system.

The rest of this paper is organized as follows. Section II gives a brief overview of DNA in forensic investigations.

Section III presents deep learning in general and describing the regularization techniques. Section IV presents the proposed

methodology. Section V shows the dataset distribution. Section VI gives the main results and discussions. Finally, the

conclusions are presented in Section VII.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 73

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0


www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 8, Issue 1, April 2025

ISSN: 2222-758X
e-ISSN: 2789-7362

II. RELATED WORKS

This paper introduces deep learning technique for identifying an unknown person by finding his or her correct family.

Based on the survey, some researchers concentrate their works on identifying DNA in human profiling, as follows.

Michael A. Marciano et al. 2017 [4] employed a probabilistic support vector machine technique to estimate the number of

contributors in a DNA mixture with 96% accuracy. Miyake, et al. 2018 [5] employed a deep learning autoencoder to extract

the properties of Human Leukocyte Antigen (HLA)-A long-chain DNA, perhaps aiding in the creation of a vaccine. The

authors looked at the HLA-A DNA sequences. In terms of obtaining features from the human leukocyte antigen (HLA-A),

deep learning autoencoders have demonstrated potential. Maria Anggreainy et al. 2019 [6] developed a technique to use

fuzzy similarity to gauge how similar human DNA profiles are. DNA profile information is used as an input in this fuzzy

system to record a person’s identification in addition to their DNA profile. The information entered is the outcome of

an electropherogram made up of 16 loci, each of which has two alleles, and was identified using the Polymerase Chain

Reaction (PCR). The value of each individual’s similarity to the reference and to the three other similarity levels-small,

medium, and high is the output of this fuzzy system.

Corina C.G. et al 2019 [7] used machine learning techniques to extract as much value as possible from profile data. Utilizing

the advantages of machine learning, they put forth a probabilistic method for determining the total number of contributors

in a DNA mixture. They demonstrated a performance accuracy of 83% using the random forest as their classifier. Yao-

Yuan Liu et al. 2020 [8] introduced Fragsifier, a machine learning method for detecting and extracting STR sequences

from massively parallel sequencing data. This method finds the longest repeat stretches on each read, then uses k-mers

in a machine learning sequence model to predict the locus to identify STRs on each read. Viviane Siino et al. 2020 [9]

presented an Artificial Intelligence (AI) system that employs a prediction cascade using gradient descent logistic regression.

This enables the iterative resolution of cases involving several missing persons. In addition, the AI has the ability to assess

the level of confidence associated with likelihood ratios for various pedigrees, irrespective of the quantity of genetic data

accessible and the number of individuals whose information is missing. Hamdah Alotaibi et al. in 2022 [1] created a

software application, named TAWSEEM, that uses PROVEDIt dataset to estimate the number of unknown contributors in

DNA mixture profiles using a Multi-Layer Perceptron (MLP) as a neural network deep learning model. The accuracy of

the suggested method is equivalent to 97%.

However, this study introduces a deep learning framework designed for forensic investigation scenarios, including but not

limited to paternity testing, missing person identification, and criminal identification in crime scenes. The proposed model

aims to identify similarities between DNA profiles of suspects and reference samples.

III. DNA IN FORENSIC INVESTIGATIONS

DNA, or deoxyribonucleic acid, is also referred to as "blueprint of life" due to the fact that it carries all the information

necessary for the proper functioning and reproduction of an organism [10]. Since the discovery of DNA’s use in forensic

investigation, it has played a significant role in the criminal justice system. In the majority of criminal cases, the DNA

profile of an evidence sample collected from the crime site is compared to the DNA profile of a reference sample. However,
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when no reference sample is available for comparison, familial DNA analysis can provide crucial investigation leads by

identifying an individual during a criminal investigation. In addition, this analysis is proving effective in identifying an

individual’s ethnicity and ancestry [11], [12]. Typically, forensic biological materials obtained from a crime site are typed

for autosomal STR loci [13]. The human genome has less than 25,000 genes, which are coded for proteins, among its 3

billion bases, which are distributed across the 23 chromosomes [14], and the repetitive sequences may be located in the

non-coding regions of the genome [15]. In forensic DNA typing, STR markers are used to identify the human remains of

missing people, confirm familial relationships, and possibly link suspects to crime scenes [16], [17]. Although different

genetic markers are used for different purposes in forensic DNA analysis, STR typing is still the mainstay [3]. This is

because each person’s repetition of the pattern is unique. This variation provides a high level of discrimination and creates

an individual profile from each person’s STR pattern [18].

IV. EFFICIENT DEEP LEARNING

The term "deep" in "deep learning" refers to any type of deeper understanding acquired by the technique; rather, it

refers to the concept of successive layers of representations. The multilayer architecture of deep neural networks echoes

the structure of visual neuroscience, and nonlinear modules can transform the data representation into a more abstract form

[19], [20]. The input layer, with several hidden layers, and an output layer comprise the fundamental architecture of deep

neural networks. Since many difficult problems can be resolved by training deep neural networks, they have attracted an

incredible amount of attention from scientists. Good performance results are possible for deep neural networks if enough

data is provided during training. However, overfitting and underfitting issues arise in the predefined neural network model

if training data are insufficient [21]. In order to address these issues, a number of regularization approaches have been

developed and put into widespread use in the fields of application development and data analysis [22], [23]. Regularization

is one of the key components of deep learning, which is a method for making minor adjustments to the learning process

to improve the model’s ability to generalize. This enhances the model’s performance on the unobserved data as well [24],

[25]. Regularization consists of different techniques and methods used to address the issue of overfitting by reducing the

generalization error without affecting the training error much. Some of the techniques are weight decay, adding noise,

dropout, data augmentation, and early stopping [26], [27], [28].

V. PROPOSED MODEL

This work presents a unifying, systematic taxonomy to identify the human profile. Two deep learning methods are

distinguished with the aid of two regularization techniques that affect data, network structure, error values, terms of

regularization, and optimization procedures. The suggested approach is primarily related to data augmentation and dropout,

two widespread regularization methods.

Here, an analysis is conducted on how these approaches were employed to train two deep learning models (i.e., DNN

and GRU), which are suggested here for forensic investigations like paternity testing or missing person identification. To

confirm human profiling in the forensic investigation, data preparation is the first step in this system. 15 loci-STR are

used for matching purposes between the alleles of DNA profiles of suspects and reference samples. The datasets used are
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samples from real persons from Iraq, Najaf province [29], where each locus has a pair of two values called alleles. The

Table I shows the applied STR-15 loci.

TABLE I
Applied STR-15 LOCI [29]

D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317 D16S539 D2S1338 D19S433 vWA TPOX D18S51 D5S818 FGA

The proposed data creation model is presented in Fig. 2. It assumes familial data creation for the purpose of human

identification and kinship determination, where two datasets with different data sizes are created: the first one is of size

53,530 samples based on the original DNA familial dataset with shuffling, while the second one is with augmented data

results of size 151,580 samples.

Figure 2: Data creation.
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The proposed method of familial datasets creation can be summarized in the following steps:

1) It takes 106 real individuals as parents to create 53 familial datasets, each familial dataset consists of a mother, father,

and five correct children.

2) Append five incorrect children to the assigned family; this process results in 530 data samples. This step aims to teach

the proposed system the relationship between the family (mother, father) and their corresponding children.

3) A family ID from 0 to 52 is assigned for each family.

4) The labels are also appended to all family datasets, in which label (1) indicates whether the son truly belongs to this

family or does not belong to the family (0). Fig. 3 shows the proposed family structure.

5) The created dataset of 53,530 samples, part A in Fig. 2, is iterated 11 times with a randomly shuffling technique

for each set (father, mother, and children); this is the first level of augmentation. Part B in Fig. 2 results in 151,580

samples, which is the second level of the augmentation process, and it is described in the flowing cases as follows:

• Case 1: The system supposes that both parents (mother and father) are alive, and they have a missing child to be

identified among many undefined profiles. Both mother and father are used as a reference.

• Case 2 and case 3: One party is dead, either mother or father, and they have a missing child to be identified among

many unknown profiles. Only one of them is used as a reference.

• Case 4: Both parents (mother and father) are dead, and they have a missing child to be identified among many

profiles. His or her brothers are used as references.

Figure 3: Structure of one family.
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The proposed deep learning networks are structured for the purpose of an efficient human identification system. A D-DNN-

identification system (refer to Fig. 4) is constructed from an embedded layer, flatten layer, a dense layer, and a dropout

layer. This model takes input from the missing profile and the corresponding reference persons. The output of this model

is a decision as to whether or not the missing person relates to the same reference or not. The D-DNN model has 8 layers:

an embedding layer, five dense layers, and three dropout layers. It has a total number of trainable parameters equal to

806,401, and there are no non-trainable parameters. Table II summarizes the model parameters.

Figure 4: Proposed D-DNN model

While the structure of the D-GRU model (refer to Fig. 5) is constructed from the embedded layer, the GRU layer, and

the dropout layer. This model also takes input datasets for the missing person’s identity and the corresponding reference

profiles. The output of this model is a decision as to whether the missing profile belongs to the same references or not.

Table III describes DNA-GRU model parameters. It contains seven layers: an embedding layer, five GRU layers, two dense

layers, and a single dropout layer. It has a total number of trainable parameters equal to 157,377.
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TABLE II
D-DNN Model Parameter.

DNA Model: DNN
Layer (shape) Output shape Parameters
embedding (Embedding) multiple 2816
dense (Dense) multiple 245,888
dropout (Dropout) multiple 0
dense1 (Dense) multiple 245,888
dropout1 (Dropout) multiple 0
dense2 (Dense) multiple 32,896
dropout2 (Dropout) multiple 0
dense3 (Dense) multiple 245,888
dropout3 (Dropout) multiple 0
dense3 (Dense) multiple 32,896
dropout4 (Dropout) multiple 0
dense4 (Dense) multiple 129

Total parameters= 806,401
Trainable parameters= 806,401

Non-trainable parameters: 0

Figure 5: Proposed D-GRU model.
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TABLE III
D-GRU Model Parameter

DNA Model: GRU
Layer (shape) Output shape Parameters
embedding (Embedding) multiple 2816
gru (GRU) multiple 9408
gru1 (GRU) multiple 9408
gru2 (GRU) multiple 74,496
gru3 (GRU) multiple 9408
gru4 (GRU) multiple 43,392
dense (Dense) multiple 8320
dropout (Dropout) multiple 0
dense1 (Dense) multiple 129

Total parameters=157,377
Trainable parameters= 157,377

Non-trainable parameters: 0

VI. RESULTS AND DISCUSSION

During the training and testing phases, the entire two datasets are divided into 80% training and 20% testing sets. The

training dataset is further divided into balanced labels, with half of the data labelled as 1, which refers to correct children,

and the other half labelled as 0 for false children. Fig. 6-a shows the distribution of labels in a histogram for the first

dataset that has a size of 50,503 samples, while Fig. 6-b shows the histogram for 151,580 samples.

Figure 6: Histogram of the training datasets.

The training and testing processes are carried out separately through 20 epochs for each of the proposed DNA deep learning

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 80

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0


www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 8, Issue 1, April 2025

ISSN: 2222-758X
e-ISSN: 2789-7362

models and their associated regularization techniques to make comparisons and evaluations. The results are grouped into

two main groups: one illustrates the performance of two deep learning models without using dropout over a data size of

50,503, and the second group uses dropout equal to 30% for the same dataset. The same evaluations are repeated again on

the augmented data size, which equals to 151,580 samples. The outcomes are acquired using the Google Colab platform,

which relies on the Python programming language. Essential libraries, such as TensorFlow, Pandas, Numpy, Matplotlib,

Seaborn, Scikit-learn, and Keras, are employed in the process.

A. Results of first DNA dataset 53530

Fig. 7 (a, b, c, and d) shows the accuracy for both D-DNN and D-GRU with and without using dropout for the first

dataset of size 53,530. Fig. 8 (a, b, c, and d) shows the loss for both D-DNN and D-GRU with and without using dropout

Figure 7: Accuracy of two models with and without dropout for 53,530 datasets.

for the first dataset of size 53,530. Fig. 7 and Fig. 8 show the performance of two different neural network models,

D-DNN and D-GRU, with and without dropout regularization, over 20 epochs of training. They show the training and
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Figure 8: The loss of two models with and without dropout for 53,530 datasets.

validation loss for each epoch of training. The lower the loss, the better the model’s performance; it shows that both models

with dropout regularization perform better than their counterparts without dropout regularization; which is indicated by the

disappearance of overfitting in contrast to the overfitting appearance when no dropout is applied.

It also seems that the D-GRU model performs better than the D-DNN model, with lower loss values for both the training

and validation sets. However, it’s worth noting that the D-DNN architecture seems to have reached convergence faster,

as indicated by the much lower training and validation loss values after the first epoch. Overall, the D-GRU architecture

with dropout regularization seems to be the best-performing model, with the lowest validation loss values throughout the

training process.

Fig. 9 (a, b, c, and d) shows the confusion matrix for both D-DNN and D-GRU. With and without using dropout for the

53,503 datasets, a confusion matrix is presented in this paper to measure classification performance using four evaluation

parameters: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
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Figure 9: Confusion matrix of two models with and without dropout for 53,530 datasets.

Based on the confusion matrix in Fig. 9, it can be deduced again that D-GRU performs better than D-DNN since no false

predictions have occurred in either situation (applying dropout or not). In the case of the D-DNN model, it shows that it

performs better with dropout because it has incorrect predictions (FP+FN) equal to 59, which is smaller than 64 in the

case without applying dropout due to overfitting taking place.

Table IV and Table V show the performance comparison between D-DNN and D-GRU over 20 epochs for both loss and

accuracy respectively. The tabulated results were obtained over a dataset of size 53,530 samples, assuming two cases:

with and without dropout. Each row in Table V shows the accuracy and validation accuracy of each model at a given

epoch. The table shows that the models generally improve in accuracy and validation accuracy as the number of epochs

increases, although the rate of improvement starts to level off after a certain point. It also appears that the models with

dropout regularization tend to have higher validation accuracy than the models without dropout, indicating that dropout is
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helping to prevent overfitting. Overall, it seems that the D-GRU model with dropout achieves the best performance, with

a validation accuracy of 0.9953 at epoch 6 and 1.0000 at epochs 13-20.

TABLE IV
Performance Comparison Between Loss and Validation Loss of Two Deep Learning Models With and Without Dropout

Regularization for Dataset Size =53,530

Model D-DNN #53,530 D-GRU #53,530
Without Dropout With Dropout Without Dropout With Dropout

Epoch Accuracy Validation Accuracy Validation Accuracy Validation Accuracy Validation
Accuracy Accuracy Accuracy Accuracy

1 0.4731 0.2757 0.5730 0.3950 0.2127 0.0159 0.1724 0.0062
2 0.1468 0.0615 0.3554 0.2495 0.0096 0.0018 0.0101 0.0010
3 0.0342 0.0703 0.2503 0.1640 0.0038 2.38e−4 0.0068 0.0036
4 0.0231 0.0078 0.1763 0.0941 0.0068 0.0417 0.0047 0.0022
5 0.0263 0.0082 0.1306 0.0806 0.0024 1.07e−4 0.0029 4.64e−5

6 0.0137 0.0201 0.1033 0.0713 0.0025 5.41e−5 9.37e−5 5.39e−4

7 0.0176 0.0298 0.0884 0.0473 2.07e−5 1.07e−5 0.0044 0.0026
8 0.0177 0.0146 0.0776 0.0335 4.77e−6 5.88e−6 0.0022 3.56e−4

9 0.0100 0.0277 0.0728 0.0266 2.08e−6 3.04e−6 0.0021 6.83e−4

10 0.0147 0.0407 0.0657 0.0407 9.55e−7 1.78e−6 0.0029 4.57e−4

11 0.0096 0.0056 0.0629 0.0318 4.55e−7 1.04e−6 7.02e−4 5.61e−5

12 0.0144 0.0616 0.0573 0.0192 2.16e−7 5.77e−7 7.70e−6 3.54e−5

13 0.0110 0.0052 0.0573 0.0213 1.06e−7 3.52e−7 1.38e−6 3.92e−5

14 0.0073 0.0400 0.0514 0.0180 5.27e−8 2.57e−7 9.53e−7 3.39e−5

15 0.0133 0.0086 0.0489 0.0161 2.64e−8 1.77e−7 3.73e−7 3.62e−5

16 0.0165 0.0061 0.0473 0.0218 1.34e−8 1.10e−7 2.50e−7 5.11e−5

17 0.0060 0.0161 0.0454 0.0225 7.12e−9 8.79e−8 1.23e−7 2.18e−5

18 0.0152 0.0145 0.0450 0.0157 3.81e−9 5.65e−8 1.21e−7 7.07e−6

19 0.0086 0.0344 0.0401 0.0131 2.19e−9 5.41e−8 3.39e−8 3.58e−6

20 0.0070 0.0295 0.0410 0.0178 1.28e−9 3.61e−8 1.53e−8 6.16e−6
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TABLE V
Performance Comparison Between Loss and Validation Loss of Two Deep Learning Models With and Without Dropout

Regularization for Dataset Size =151,580

Model
D-DNN #151,580 D-GRU #151,580

Without Dropout With Dropout Without Dropout With Dropout
Epoch Loss Validation Loss Loss Validation Loss Loss Validation Loss Loss Validation Loss

1 0.7424 0.8783 0.6712 0.8116 0.8722 0.9953 0.9027 0.9980
2 0.9390 0.9779 0.8471 0.9005 0.9968 0.9995 0.9968 0.9998
3 0.9882 0.9751 0.8980 0.9373 0.9987 0.9999 0.9977 0.9989
4 0.9923 0.9977 0.9299 0.9635 0.9977 0.9865 0.9982 0.9992
5 0.9915 0.9971 0.9498 0.9724 0.9991 1.0000 0.9989 1.0000
6 0.9953 0.9931 0.9606 0.9722 0.9993 1.0000 1.0000 0.9998
7 0.9943 0.9915 0.9680 0.9816 1.0000 1.0000 0.9986 0.9993
8 0.9944 0.9945 0.9723 0.9875 1.0000 1.0000 0.9993 0.9998
9 0.9966 0.9910 0.9742 0.9906 1.0000 1.0000 0.9994 0.9998
10 0.9956 0.9890 0.9770 0.9843 1.0000 1.0000 0.9991 0.9999
11 0.9972 0.9983 0.9774 0.9889 1.0000 1.0000 0.9997 1.0000
12 0.9958 0.9847 0.9798 0.9933 1.0000 1.0000 1.0000 1.0000
13 0.9968 0.9985 0.9805 0.9922 1.0000 1.0000 1.0000 1.0000
14 0.9977 0.9905 0.9821 0.9931 1.0000 1.0000 1.0000 1.0000
15 0.9967 0.9974 0.9830 0.9950 1.0000 1.0000 1.0000 1.0000
16 0.9957 0.9980 0.9833 0.9913 1.0000 1.0000 1.0000 1.0000
17 0.9985 0.9961 0.9846 0.9910 1.0000 1.0000 1.0000 1.0000
18 0.9961 0.9962 0.9850 0.9942 1.0000 1.0000 1.0000 1.0000
19 0.9978 0.9917 0.9862 0.9953 1.0000 1.0000 1.0000 1.0000
20 0.9980 0.9940 0.9857 0.9945 1.0000 1.0000 1.0000 1.0000

B. Results for second DNA dataset 151,580

The same procedure is repeated in the second dataset of size 151,580 samples, and the best results were conducted in

epoch 20 with the following values shown in Table VI and Table VII. This proves that the D-GRU model with dropout is

better at removing overfitting and generalizing to new data, as it has lower validation loss values throughout training.

TABLE VI
Performance Comparison Between Accuracy and Validation Accuracy of Two Deep Learning Models With and Without

Dropout Regularization for Dataset Size =151,580

Model
D-DNN #151,580 D-GRU #151,580

Without Dropout With Dropout Without Dropout With Dropout
Epoch Loss Validation Loss Loss Validation Loss Loss Validation Loss Loss Validation Loss

20 0.0294 0.5428 0.1554 0.1351 0.0021 0.0046 0.0019 0.0031
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TABLE VII
Performance Comparison Between Accuracy and Validation Accuracy of Two Deep Learning Models With and Without

Dropout Regularization for Dataset Size =53,530

Model
D-DNN #53,530 D-GRU #53,530

Without Dropout With Dropout Without Dropout With Dropout
Epoch Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy

20 0.9901 0.9094 0.9405 0.9492 0.9993 0.9987 0.9993 0.9989

To make a comparison between the nearest related works and the proposed model in terms of applied methods, and reported

accuracy, Table VIII illustrates that the proposed models have the highest accuracy among them.

TABLE VIII
Comparison with Related AI Works

Research Applied Method Accuracy
Anggreainy et al. [2] Fuzzy 80%
Siino V and Sears C [9] Gradient descent logistic regression 95%

Proposed work: DNN for 53,530 samples
Without Dropout 99%
With Dropout 99%

Proposed work: DNN for 151,580 samples
Without Dropout 90%
With Dropout 94%

Proposed work: GRU for 53,530 samples
Without Dropout 100%
With Dropout 100%

Proposed work: GRU for 151,580 samples
Without Dropout 99%
With Dropout 99%

VII. CONCLUSION

The purpose of this paper is to propose a method for identifying human profiles based on STR-DNA and to evaluate

the performance of two deep learning models (i.e., D-DNN and D-GRU) with the aid of two regularization techniques

for this task. The models are binary classifiers that aim to identify human profiles by comparing two DNA-STR samples,

one from a known relative and the other from a missing person. The results prove that the D-GRU model with dropout is

better than the D-DNN model at preventing overfitting and generalizing to new data; it seems to be the better choice for

human identification problems as it has lower validation loss values throughout training. Overall, using dropouts improved

the performance of both models because no overfitting occurred, as opposed to the case of no dropout overfitting that had

appeared in both models. The dropout minimizes the structure of the network by 30% since it makes the model select

neurons randomly. This reduction makes the deep learning model generalize better.

The results of applying dropout for the 50,530-dataset size show a significant improvement in the values of accuracy

and loss of the D-GRU model. It gives the highest training and testing accuracy equal to 1.0, a minimum loss equal to
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1.5276 × 10−8, a validation loss equal to 6.1561 × 10−6, and total false predictions equal to 59. D-DNN also performs

better with no overfitting appearance in case of dropout, with the highest training accuracy equal to 0.9857, a testing

accuracy equal to 0.9857, a loss value equal to 0.0410, a validation loss equal to 0.0178, and total false predictions equal

to 64. The conclusion is drawn that the D-GRU model is the best choice for DNA forensic human identification because

D-GRU deals better with sequence data like DNA than DNN. In the future the proposed system can be used for medical

disease diagnosis with suitable datasets.
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