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STUDY ON BI-LEVEL DRAINAGE
PROBLEM BY ANALYTICAL METHODS

BY

Dr. Nazar A. Sabti" and Dr. Dakshinamom‘lh}**

SUMMARY

The bi-level drainage problem is studied in this paper. The problem is represented by a linearized theoretical
model and the same is solved by an analytical procedure making use of Fourier series expansions. The different
boundary and initial conditions are included in the problem formulation. The problem is studied in detail and the
problem formulation. The problem is studied in detail and the computed results are presented in nondimensional
graphical form and discussed.
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The objective of subsurface drainage is the orderly removal of excess water from the land to provide sufticient
air diffusion within the root zone of crops. or to prevent the accumutation of salt due to excessive evaporation. The
major aim is to lower the water content oi the upper soil layers so that air can penetrate more casily to the plan

i ~ots. Generally. all nonaquatic plants are damaged if the soil is allowed to remain water logged. However. it is ne-
Lcesary to distinguish between long-term effects of adverse aeration and the effects of temporary flooding. In the
first case, there is a change in the environment which effectively restricts the metabohe activity and developmer:
o the root system of the plants. In the second case. the effects of a short term oxveen defficiency or excess of
carbon dioxide are the main injurious factors .

Subsurface drainage lowers the water table and thereby reduces the water content in the sotl abve it. In addii-
on. the consequence of drainage may include a change in the quality ofsoil-water. The costs of the subsuriuce
drainage system can play an important role in the economic feasibility ol the irrigation projects. The term bi-level
ra {nage.refers to a subsrface drainage system where drains are at two different depths on an
~¢ the drains are at two different levels in the bi-level drainage system the costs involved in the projects are consider-
ably reduced compared to the drainage system where all the drains are at normal deep drain lines . In order to
evaluate the capacity of a given bi-level drainage system to satisty the necessary design criterion. it is advantageous
to deveiop a procedure to study the water table elevations for agiven sct of design conditions.

alternating basis. Sine-

A review on the literature on this topic indicated a lack of analytical procedures to study the bi-level drairtiuge
system. DeBer and Chu (1.2) developed a theoretical model to study the fall of awater table under bisley el drainage
situation. Their studies are limited to steady state situations and to [alling water table problem. For the latter case
they have assumed a relation which is valid for short time intervals when the water table drops at the same rate at
all points.

In this-paper. an analytical procedure is developed to study the bi-level dramage problem in both steady state
and unsteady state situations. The problem is represented by a lincarized theoretical model and the solution
is obtained by using Fourier series expansions. The problem is studied for different conditions and the computed
results are presented and discussed.

THEORETICAL BACKGROUND

T_he geometry of the bi-level drainage problem is illustrated in Fig. 1. The soil is assumed to be homogeneous
and'lsotropic and the Dupuit~Forcheimer assumptions (3jare assumed to be valid for the problem under consid
eration. With the above mentioned assumptions the basic governing equation for one dimensional horizontal flow

results in Boussinesq equation ( 4.5) given by

= #*
0 - oh* & g i ch e
ox ox k ot
where h" { x. 431 - height of water table above the impermeable layer.

x : horizontal space coordinate. positive towads the right .
t : time coordinate

k : hydraulic conductivity ol the soil

[ : drainable porosity of the soil.

Because of the nonlinearity of the above equation a limited number of exact solutions. for particu ar probl-
ems only. are available (3.6.7). Assuming hydrostatic pressure distribution. Murray and Monkmever (6 7) solved
- #his equation by integrating: the Laplace equation over its depth of flow. Analytical solution of Eq. (1) cin be obia-
med by linearizing it as presented subsequently.
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The linearized partial differential o I ' g= sysiem can be
written as 5

KD &h b
f x> ot
where , h (x,t) - height of water talb

D average depth of @5

ﬂl_{fB' :  aquifer diffusivity

lands (3,7)

The limearization of this form has besm'®
e 1 @iie section for the

and studying water table fluctuations m
peoblem  umder - consideration can be e

The initial condition is
h(x,0)=H
and the boundary conditions are

h(0,t) =0

h(L,t)=d,—d; =d,

For the steady state condition, h (x.t) satisfying Lapiace

dx
h = —2 (7
o (%) 1 ()
and the solution of the unsteady state can be expressed as
Ll
.. (&)

u(x,t)=h(xt)h,(x) =




where u (X.t) represents an assumed function to be evaluated and the corresponding conditions to be satistied by
this functien are .

d
u(x0)=H - —i"‘— (9
nigt)=10 oo £ 10)
u(L,t)=0 AR B B

Substituting for h (x.t) from Eq. (8) into Eq. (2) the differential equation for u( x.1) can be writien as

i . o . (12)

SE T
subject to the conditions given by Egs. (9) (1t) and "a’ stands for aquifer diffusivity.
SOLUTION PROCEDURE

nose U (x.t) hasa Fourier series in x for each specified t> 0 it can be expressed us

nix

B e 3 Boh)Sm +113)

=1

-

L ST e series is chosen as it would satisty the boundary conditions given by Egs. (10)

. : L W and (11). Substituting Eq.(13)
0 Eq. (12) and differentiating term by term the result can be written as

2
T

e Zl n? B, (t) Sin

=

o

= Y Blgsm 20
n=1 L "[14]

= B’ denotes derivatives with respect to t. Equating the coefficients and integrating the resulting equation 1t
b= shown that

3 2
dnn"

AT o (15

is a coefficient to be evaluated. After substituting B, from Eg. (13) into Eq. (13) theexpress pn for
3 be written as

o = - t Sin
Bt = Y Ce L L . (16)

1 dx
e condition given by Eq. (9) and evaluating the Fourier coefficients in the sine seriesex pansionof H -

0 < x < L 1tcan be shown that

11
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L= e [ =P} 4 (=114, . (1T

Substituting the value of C, from Egq. (17) into Egs. (16) and (18), the required solution can be written as

4 d 2 i 1
Bt = e T + [Hil=(=1r;
n=1
an’ a’t i
+(—1hrd, ] e L* Sin ... (18)
ANALYSIS OF RESULTS

In order to study the problem indetail, it is convenient to introduce the nondimensional parameters defined

by
e % . (19)
i X
e .. (20)
~ d
d = f; .21
o U w03

£1.2
U sing these parametersEq. (1B)can be written in a nondimensional form as
’ @3)

= = 2 = A1 = =
- : §1 [t=(-1y+(-1yd,] en’tSinnzX

1134

subject to the conditions 0'<'X < 1,0 <d, < 1,0 <t < cwand 0 < h < 1. At any time the position ofthe

g{l =0 . From Eq. ( 23 ) this condition can be written as
3 i ;

extremum h is given by
By 2°Y [ - (24

a=1 2

(=1 + (- 178 Je ™t X =0

i2




The «omputed results using Eq. (23) are shown in Figs. 2-8.1n Figs. 2-4the variation of h with xforfixed
values of{ =0.2, 04,.... 1.5 and for prescribed values ofd, =0.25, 0.5 and 0.75 are presented. Inallthese three

Beures it can be seen that initially h is uniform (T = 0 )for 0 < x < 1 and ast — oc.hwill have a linear form for
9 < x < 1. WhenT = O the series on the right hand side of Eq. (24 ) would converge to-d, making the equation

adentically true. This happens because i = 1 whenT = 0 corresponding to the prescribed initial condition namely
& = H WhenT — o0 Eq.{(24) takes the form cos naX = — d, making X indeterminate. Thisisbecause ofthe fact

that the value of i indicates steady state condition when T — oc and fi = d, x-2linear form.Asthevalueof d,
mcreases from 0.25 100.75 the value of B increases indicating the phenomenon that the height ofthe water table

mcyeases asthe vertical distance between thedeeper drain line and the shallower drain line increases.

The variations-of the height of water table with time for given problem are shown in Figs. 5-8.The position
of water table forfixed values ofx = {.2,0.5 and 0.8for prescribed values of d, = 0.25,0.5 and 0.75 are shown in

¥ig 5-7. It can be noted that the values of X = 0.2 and X = 0.8 arecorresponding tothe values in the range ofdeep,
shallow drain conditions respectively and the value X = 0.5 is corresponding to the middle of the drain span. At
% = 0.2 the height of water tableis nearly identical for all values of d, until t equals approximately 0.8 and thediscrep
amcy is negligibly small until T = 1.0. Even though T — oc, the differences between water table heightsfor various
&, values are small. As X increses therange of T inwhich the above mentioned discrepancy issmall. isdecreasing
wmtil the difference between the water table heights for various d ,values appreciably appear at the beginning of
e drainage cycle itself as shown in Fig. 7corresponding tovalues at X = 0.8. It isalso interesting tonote that
sach curve corresponding tospecified value of X ishaving particular pattern and it is different from the curves
sorresponding to other X values as shown in Fig. 8.

Ia general |, as time increases the height of the water table drops down as it can be observed fromFigs.2-4also-

Thes indicates that the moisture content of the upper soil decreases as the time increases which is a requiredcondit
for plant growth.

CONCLUSION

An analytical solution procedure is presented to study the bi-level drajnage problem. The problem is studied
and the computed results are presented ina nondimensional form. These plotted results can be made use
the design of br-devel drainage systems before instaliation and for the design of a modification to theexisting

imge system if the same is under.designed. '
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APPENDIX Il - NOTATION

The following symbols are used in this paper.

: Fourier Coefficients as defined by Eq. (15)

: Coefficients given by Eq. (17)

: average depth of drainable section

: vertical distance between deep drain and initial water table
: hydraulic conductivity of the soil.

- drain spacing

: aquifer diffusivity

: height of shallgn drain from impermeable bed.

: height of deep drain from impermeable bed. i
: vertical distance between two drains
: drainable porosity. |
: height of water table above the deeper drain center line

: height corresponding to steady state condition

: time '

: horizontal space coordinate positive towards right .

: function denoting unsteady state condition defined by Eq. (&)
: height of water table above the impermeabie bed .

: nondimensional parameter defined by Eq. (21)

: nondimensional parameter defined by Eq. (19)

: nondimens-onal parameter defined by Eq . (22)

: nond-mensional parameter defined by Eq . (20)




GROLND SUREACE
o __LNIILAI-_MIEF_ JABLE

FIG.1.- DEFINITION SKETCH

pid



(0}}

(sz'0 = °p) 3 3o SANTVA

—

SNOTEVA ¥0d ¥ HILIM Y J0 NOILVIYVA -"¢°Old

i

w_w : 1 wh.c i ¢.ho : | N._o

$2°0=P

0L

16



17

tog o = By 2

3 J0 SanIva
SNOTYVA ¥0d X

X HIIM Y J0 NOILVI¥VA -"€'9IJ
0l

i B0 z
I | | l

~Z'0




O
(0S°0 = X) P 40 S3NIVA

SNOIMVA 404 3+ HLIM Y J0 NOILVIMVA -°8°'DIld4

}
ol i Bl o)
IH\L o i 1 L 1 1 Ll =1 _ L 1 L L 1 L
=i
05 0= °p
< GL07°P = %0
4
i)
= 80
O_,

20



Sgebdl Sl I3 ULl sl ol By o

Sl g5 sl

ot duslr gl 15

;.;;J'ldba.b

Ot BN O 81,80 $l3y 35l DUl S n..JbLa..ﬁt:J_}.ab.ojid.mJb._uJubdjbu e duhy i ¢
dLJ‘CﬂJ.aLn.UMiju%ﬁMb.mrrm SUA LGsL;J 4..1?:-‘}'43')\5.}‘/;:.“ ﬁ*)wlmﬁjia\_&}digﬂ‘;

GENERALISATION OF COEFFICIENT METHOD
FOR ROUTING A FLOOD THROUGH A RESERVOIR

By
Dr. G. AL MASHIDANI

ABSTRACT

The coefficient method has been general
ow. An empirical procedure for the solution
found to yield reasonable results.

ised by assuming a nonlinear relationship between stor: tge and outll-

of general equation has been dev eloped. The method of solution was

VIAFLadsVlauell. 3tiy — L oS Gmalodl 36 50k Bl Tl | L LS5 Ludeg)

24




INTRODUCTION

Coefficient method''*  of reservoir routing is well known. It is easy to apply since there is no need of initial
curves to be prepared as is required in other graphical procedures . The method is based on the general continuity
cauation as used in other techniques, but. further, assumes that storage is directly proportional to the outflow . An
equation can thus be derived which gives theoutflow atagiven time step as a function of average inflow. outflow
at previous time step and the constant of propoprtionality, K.of storage outflow relationship. The assumption
that storage is directly proportional tothe outflow isusually not true inareal field problem. hence it is customary
o use, K, as avarable ( Chow 1964 ) the values of which can bedetermined for various segments ofstorage versus
discharge curve, although inso doing the ease with which coefficient method can beapplied is lost. The present
paper is an attempt to modify the coefficient method by assuming anon-linear relationship between storage and
outiiow .

‘elopment of the method ¢ )
Assuming a non - linear relationship between storage, 8. and outiflow, Q. one can write

se .. and (K. sre constants which can be determined by usual regression technique given inequations(2) and
some outflow values are known lor the correspondine storage values.

T(InS-InS )(InQ - 1nQ)
(InQ —-1nQ)?

dK =8 =nlnQ s (3)

i continuity equation for reservoir routing is written as follows

1 :
+I,-+l)t——2(Q[.+Q,.+1}t=sl.+,—s[. ......... (4

fiix | and i + 1 represent the state of inflow I outflow Q and storage Sbefore and after a chosentime
nbining eq. (1) and (4) it can be shown that

- - 2K
B 0= (L + L)+ (_1_ Q" — Q, ) ......... (5)

unknown in eq. (5) is, Q,. ,, which can be solved by trial and error.

n of eq. (5) by trial and error although straight forwa=d is time consuming. such that an empirical
=dure wnich gives reasonable results has been developed.

edure for solution

‘Fewritien as :

2K
{li+l+li]+(r—Q?_QI) %

K % ] F ol o S e (6)
_t_ e in+;.J

- -



3
lue of. -:‘— Jis much larger than. Q. . hence even if the value of

In eq. (6) if a small time step is chosen the va
2/ 1+ inthe denominator is replaced by an approximate value, itdoes not affect the result significantly. Thus.
the value of .Q '_['-in denominator of eq. (6) is repiaced by. 03y PT (hEvalie ol which can again be caleulated
from eq. (6) by replacing the unknown term’ Q [ in the denominator by its value at previous ume intervilasis

shown in eq. (7) and (8). Thus an approximate solution ofeq.(5) can be written as ©

2

(ilzeg = 1) 36 (—-%(-—Q': —Q; ) ik
oy = ‘: qK\' J e < (7
..I -—'-,—{QI-_]}:' "
where.
2K
[ Ty o= 1) A= Q= 4, -
(Q i 1= [ : }EK{+(; ; )} ............ (N}

Two numerical examples have been solved by following the above procedure. the solutions have been comp-

ared with results obtained from other procedures.

Details of numerical example

Ist Exumple - The value of inflow flood hydrograph is <hown in table 1 for Ist example. The storage outllow

relationship for this example can be writlen as |

& < SRIIGOGIRET,

Thus the value of -k = 302200 -und -n = (20554 time step ol 12 hours (= 12 % 3600 see ) has beenchosen

for analysis.
alues of - Q. 4, -caleulated by step by step method

The values of Q ., and Q _; along with corresponding

beseen that the two values are very close toeach other. The valuesof

( Varshney. 1977) are given in table 1. Tt can
Q,., . calculated in Col. (4) has also been found to satisfy eqg. (50

cample s based on the data taken from Bekhme Reservoir ( Urban. 1967 on

Tind Example @ -The second e
is given in table 2 and can be

Greater Zab river in North of Irag. The storage outflow relationship for this case
represented by
§ = 419529.86 QUH4 T 4+ 195 % 10"

Thus the value of K and .n.are 419329.56 and 08476393 The value of time step chosen here aguinis 1 2hours,
The outflow hydrograph for this cxample has also been caleulated by conventional® coeflicient method using
variable value of K ( details are shown in table? 1 The values of outflow. Qs calculated from eq.(7) hereagain

has been found to satisfy eq. (3).

2
ent method means herein the cocflicient method  in general use as 0 =0,% (
IR + 17

+  The conventional coeffict

L]
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Results of Example | : —

Outflow Qi

Approx . values Values of Q. ,
B m 3:,'36(; by step by step method
0 0 0

14.77 14.77 14.2

95.70 80.11 110

253.18 243.96 241.0

725.36 695.80 695.0

1020.03 1003.67 977.0

951.16 951 74 905.0

795.71 801.78 780.0

625.94 632.36 651.0

469.22 474.81 " 481.0

337.73 342.12 3400

233.81 237.03 227.0

155.73 157.96 142.0

102.06 103.49 99.3

69.08 69.92

47.99 48.50

Storage K Coeflicient 1
3 C=
m i
(K/Ar+jr)
10 140000 0.2673
107 130000 0.28496
10 115000 0.31625
107 95000 0.3705
107 75000 0.4473
109 70,000 0.4176
5 109
s of example 2.
Inf ow 1 Approx . values Gutflow Outflow by conventional
m 7sec Qs Q;+1 coefficient method
ed. (8) eq. (7 method
1000 1000 1000 1000
1250 1038 1037 1033
2000 1218 1214 1202
3500 1705 1691 1643
7000 2900 2861 2671
10200 4951 4877 4546
8000 6488 6435 6233
5600 6576 6572 6487
4500 5986 6003 5844
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156 3950 5328 3346 3244
168 3600 4759 / 4774 4700
180 3300 4286 4299 4237
192 3100 3899 3909 N33

Discussion and Conclusions :

It can be seen that the method requires no graphs to be plotted . as errors due 1o graphical plotting . choice of
scale etc . are eliminated . Besides . the method appears 10 be sufficiently general and can be easily programmed.
Eor the two examples worked out in the present case the results obtained are comparable to those obtained by
other methods . The values calculated by Eq . (7) satistied eq. (5) reasonably well . even the approximate values

worked out by eq . (8) give results which are close to thatof eq . (7). 3
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Nomenclature :

5 = Storage

Q = Outflow

K = Constant of proportionality instorage outflow relationship
n = Exponent of outflow in storage out{low erlationship

I

= Inflow
i and i+1 are suffixes indicating state of event belore and after a time step t
t = time slep

In'S = average value of nytural loga rithm of storage
1n Q = average value of natural Jogarithm of outflow vitlues
Q Approximate value ol outflow Q.
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