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Abstract

An analytical method is presented for the determination of the frequencies of the rigid body mor ~s of vibs
of a Timoshenko beam resting on an elastic foundation . The results obtamed show excelient agre .nent with

obtined from a finite clement analysis . It is concluded that the frequency of the rotational ri .d body me
1
diminished by the ratio m ! where R is the rotary inertia parameter . A dynamic ¢ .abilwy sualy

afree  free Timoshenko beam restingon an elastic foundation and subjected to periodic axial loads is car
out . The rzgions of dynamic instability associated with the translational and rotational rigid body mod
determined .

1. Introduction ;

The effect of elasticfoundation on the frequencies of the rigid body modes of vibration of Bernoulli-Eule
Timoshenko beams has been investigated by Abbas and Thomas )(1.2; using a finite element analysis .For the
of a free-free slender beam with no elastic support two zero eigenvalues were obtained representing the transh
nal and rotational rigid body modes of vibration . As the elastic foundation becomes stiffer the zero eigens
disappear and two equal freuency values are obtained. Abbas and Thomas (1,2) also noted that for afres
Timoshenko beam resting on an elastic foundation , the two frequencies of the rigid body modes are not &
The frequency associated with the rotational rigid body mode is reduced while that associated with the transla
mode remains unchanged . This reduction can be attributed to the effect of rotary inertia and shear deformat
the thick beam .

In this paper, an attempt is made to explain the nature of this effect by the use of amovel analytical met
The results obtained by the present analytical method are compared with the results obtained by the finite ele
analysis .

Furthermore adynamic stability analysis (3,4 ) is carried out to determine the regions of dynamic instah
associated with these tworigid body modes of vibration .

I1 . Analysis :

The dynamic system ofaffree+frze bean: resting on an elastic foundation can be simulated by the st

two degrees of freedom system shown in Figure( 1) . The differential equations of motion of this system are
pled and can be written as :



2.1. Tradslational motion :

k k
V= —x — — .
m X 3 X 3 X Ah
where m is the mass of the beam . k is the stiffness of the foundation . Equation(1} gives
k -
@, = \/ i (2)
m 4
where @, is the natural frequency of free vibration .
2.2. Rotational motion :
o K
1= - — Po— — 128 o i3
8 b !
-
ml*

where I is the moment of inertia ef the system and is equal to

Equation (3) gives
)

It is seen from equations (2} and (4) that the frequencies of the translational and rotational modes of vibration

are equal and can be written as one equation . Using the following notations

=R paA (51
' B :;1;; ... 0

k, = —]’-;— AT

A = pAltwiyll A8

where P is the mass density . A is the cross-sectional arca and 15 the length of the hean: ¥is the clastic foundation

constant K is the foundation stiffness per unit length. El is the flexural rigidity und 4 is the frequency parameter,

Equation (2) or (4) becomes -
yrt El
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Equation (9) can be written as
S =ity ... (10)

The results obtained by the present analytical method are shown in Table 1 . Results obtained by the fins

e lement method are also shown in Tablel .

2.3. Effect of Rotary Inertia

The effect of rotary inertia on the rotational rigid body mode of vibration is investigated in this section

relating this effect to the change in the moment of inertia of the beam due to the transverse dimensions.

The moment of inertia lt of a thick prismatic bar shown in Figure (2) about a centroidal axis normal to

bar is given by

I

.

_1_“2“(1:“2} vl )

where m is the mass, | is the length and t is the depth of the beam.

atic bar ( Bernoulli - Euler bar ywhose transverse di

Expression (11) may be simplified for a long prism
may be neglected and the moment of inertia I, b

sions are small compared with the length. In this case t*

1’[1]2
I, = e CEE)

By introducing the rotary inertia parameter

I
o LI i 18

AT G13)

where I, is the second moment of the area of the cross - section and is given by

3
bt L Ak

expression (13) can be written as

¢ o 1S

. B T

Expression (11) becomes

m 12 (16)

(1« R




It is expected therefore that the natural frequency of the rotational rigid body mode is diminished by the ratio
1 /(1 + 12R). The results obtained using this new relationship are shown inTable (2) and compared with the
results obtained from a finite element analysis usinga six element idealization. The values used for the shear coeft
icient X, and Poisson’s ratio v are 0.85and 0.3 fespectively The Timoshenko beam clemerit and the method
of solution are given in reference (2) .

2,4. Oynamic stability analysis

A dynamic analysis of free - free Bernoulli - Euler and Timoshenko beams resting on elastic foundations and
subjected to periodic axial loads are carried out. using the method of analysis given in referense (2). The two regio-
ns of dynamic - instability associated with the translational and rotational rigid body modes are determined and
shown in Figures (3) and (4) .

In Figure(.3), the periodic axial load 1s taken as

P, = &P+ Plcoswl

fry

where

P*= 9 870 El /1> fundamental static buckling load of a Bernoulli- Euler beam with zero elastic foundation con-
stant .

Pe= 22380 + EI/p A [*fundamental natural frequency of Bernoulli Euler beam with zero elastic foundat -
ion constant.

w = disturbing frequency

a = 0.5

In Figure (4), the periodic axial load is taken to be

P, = aP%+ f PYcoswt

where

P* = %361 El !lzfundamc_gial static buckling load of a Timoshenko beam with zero elystic foundition constant .
p, — 18.214 / E1/p A |¢ fondamental natural frequency of a Timoshenko beam with zero elastic foundation

constant.
¢ = disturbing frequency
=05

111, Discussion

Table | shows the variation of the square root of the frequency parameter of the rotational and translational
rigid body modes of vibration with the elastic foundation constant for a free- free Bernoulli - Euler beam. Results
obtained from finite element analysis using six - element idealization are also shown in Table . The comparison
of these two results shows excellent agreement.

Table 2 shows the variation of the square root of the frequency parameter of the rotational rigid body mode ef
vibration with the elastic foundation constant for a free-free Timoshenko beam with yo= (13 k= (LES
md\jﬁ_R = 0.08. The frequency of the transkational mode of vibration is the same as that of a Bernoulli-F uler beam
given in Table 1. It is seen that the frequency of the rotational rieid body mode is diminished. The resuits obtained

67



from a finite element analysis using six-element idealization are also shown in Table 2. Comparison of these results
indicates that the analytical method presented in this paper, for the first time, is correct.

Figure 3. shows the regions of dynamic instability associated with the rotational and translational rigid body
modes of a free-free Bernoulli-Euler beam. It is seen that the region associated with the translational rigid body
mode degenerates into a vertical lineanc hence hasno effect on the stability characteristics of the beam.

Figure 4. shows the regions of dynamic instability associated with the rotational and translational rigid body
modes of a free-free Timoshenko beam with k, =0.85, v= 07 and,/ R=0.08. Itisseen thatas the rotary
inertia effect increases, the width of the region associated with the rotational rigid body mode is increased thus
making the structure more sensitive to periodic forces .

IV. Conclusions :

An analytical method for the determination of the frequencies of the rigid body modes of vibration of a Timo-
shenko beam resting on an elastic foundation is presented . It is concluded that the frequency of the rotational
rigid body mode is diminished by the ratio 1/(1 + 12R) where R is the rotary inertia parameter.

From the dynamic stability analysis it is concluded that the translational rigid body mode has no effect on the
stability characteristics of the beam. As the rotary inertia parameter increases the width of the region associated
with the rotational rigid body mode is increased thus makin g the beam more sensitive to periodic forces .
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7 present Finite 3
analytical method 'l element method
0 0 0
i 9.8696 9.8532
2 139577 13.9392
3 17.0947 17.0808
4 19.7392 : 19.7327
5 22.0691 22.0545
Tablel. Natural frequency parameters of translational and rotational rigid body modes ofvibratiorua of a free-

free Benoulli.Euler beam resting on an elastic foundation.




7 Present Finite
analytical method element method

0 0 0

1 9.5058 9.5111
2 13.435] 13.4506
3 16.444}1 16.4736
- 18.9756 19.0221
8 21.2009 212673

Tableb2. Natural frequency parameters of rotational rigid bodv mode of vibration of a free-free Timoshenkoe
beam with ./ R = 0.08 resting on an elastic foundation.
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CAPTIONS

Figure |
(a)  Simplified two degrees of freedom sysiem
(b) Translational mode of vibration
(c) Rotational mode of vibration

Figure 2
Thick prismatic beam
Figure 3
Regions of dynamic instability associatec with the two rigid body modes of a free-free Bernoulli-Euler beam
[ rotational mode: @ translational mode
A fundamental mode.
Figure 2

Regions of dynamic instability associated with the two rigid body modes of a [ree-free Timoshenko beam
( R =008k =085 »="03)

g rotational mode: O translational mode

A lundamenta] mode.
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