
Engineering and Technology Journal 43 (02) (2025) 159-173

Engineering and Technology Journal
Journal homepage: https://etj.uotechnology.edu.iq

159
http://doi.org/10.30684/etj.2024.154230.1831
Received 08 October 2024; Received in revised form 17 December 2024; Accepted 19 December 2024; Available online 27 January 2025
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Robot path planning using enhanced Q-learning algorithm based on single
parameter

Noor H. Fallooha* , Ahmed T. Sadiqb , Eyad I. Abbasa , Ivan A. Hashima

a Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.
b Computer Science Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.
*Corresponding author Email: eee.21.14@grad.uotechnology.edu.iq

H I G H L I G H T S A B S T R A C T
• The Q-learning algorithm's output was

optimized to reduce time consumption
• Parameters were selected to enable the best

possible path planning through a modified
approach

• The modified Q-learning algorithm relies on
the (1-α) parameter instead of the (γ)
parameter

• Learning efficiency was enhanced by using
priority trial replay to reach the target
position

• The shortest distance between two points was
represented by movement in an inclined
direction

 One of the challenging aspects of robot navigation is path planning in a dynamic
environment. The Q-learning algorithm is one of the reinforcement learning
techniques that can be applied to the path planning of a mobile robot. The vital
algorithm for any intelligent mobile robot is path planning. On the other hand, the
traditional Q-learning method examines every conceivable state of the robot to
choose the optimal path. As a result, this method is very computationally intensive,
especially when there is a need to compute a large environment. This study
proposes a modified version of the technique for planning robot paths. Using the
learning rate (1-α) instead of the certification discount factor (γ), the algorithm
became completely dependent on the reliance parameters, making it one of those
that depend on a single parameter. This reliance can reduce the number of
parameters and increase the algorithm’s execution efficiency. A modified version
of Q-learning was investigated with to determine the optimal path planning in
several dynamic obstacle environments. Learning efficiency was enhanced by
using priority trial replay in the improved Inclined Eight Connection Q-learning
Algorithm (I8QA). A simulated environment was used for the suggested method,
and it was shown that it can successfully plan optimal paths in dynamic obstacle
environments. Overall, Q-learning, a strong and adaptable reinforcement learning
method, is utilized for dealing with a wide range of problems. The improvement
ratio of path length in the experiment environment is 40.812%, indicating that the
I8QA algorithm is more compatible with dynamic environments.

A R T I C L E I N F O

Handling editor: Nagham Saeed

Keywords:
Reinforcement Learning, Q-Learning
Algorithm, Robot Path Planning, Learning Rate
(α), Discount Factor (γ).

1. Introduction
Robotics is a suitable foundation for teaching the basics of control engineering, for example, electronics, mechanics,

programming, control, etc. [1-5]. Robots illustrate a closed control loop perfectly, as they are autonomous machines with sensors,
controllers, and actuators. Several institutions employ robots to instruct fundamental control concepts [6]. A mobile robot is a
machine that can navigate in its environment [7]. It is controlled by software that uses sensors and other technology to recognize
its surroundings and move in a safe and controlled manner. Various sources, including batteries, fuel cells, solar panels, and
power mobile robots. They usually have an array of sensors, such as cameras, lasers, and radar, to help them navigate their
environment [8]. They also have a variety of actuators, such as tracks, legs, and wheels, to allow them to move [4]. The benefits
of using mobile robots include increased productivity, improved safety, reduced costs, and improved quality [9]. Robot path
planning is finding a safe and efficient path for a robot to move from one point to another in its environment [2]. The environment
can be represented as a map representing the robot's surroundings. The map can be known or unknown to the robot [10]. There
are many different path-planning algorithms, each with strengths and weaknesses [11]. Some common path-planning algorithms
include A*, rapidly exploring random trees (RRT), and Grid-based path planning [3]. Depending on the specific application, a
particular path-planning method is chosen. A* search is a suitable option, for instance, when the robot needs to find the quickest

https://etj.uotechnology.edu.iq/
http://doi.org/10.30684/etj.2024.154230.1831
http://creativecommons.org/licenses/by/4.0
mailto:eee.21.14@grad.uotechnology.edu.iq
https://orcid.org/0009-0006-5967-9304
https://orcid.org/0000-0002-4217-1321
https://orcid.org/0000-0002-5087-4713
https://orcid.org/0000-0002-6764-018X
https://crossmark.crossref.org/dialog/?doi=10.30684/etj.2024.154230.1831&domain=pdf&date_stamp=2024-01-27

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

160

route in a known environment. RRT is suitable if the robot wants to swiftly discover a path through a huge or complex area
[12,13]. Grid-based path planning is viable if the surroundings can be visualized as a grid [14]. Other elements, such as the
precision of the map, the robot's speed, and the environment's complexity, can also impact how well path-planning algorithms
operate for robots [15]. This is why many colleges employ robots to instruct on fundamental control concepts [1]. Robot path
planning is a challenging but crucial issue in robotics [16]. The demand for precise and effective path-planning algorithms will
increase as robots become more advanced and are used in more applications [17]. The process of determining a safe and effective
path for a robot from its current location to the destination location is known as route planning. It is a component of robots used
in healthcare, transportation, and industry [18]. The difficulties in planning robot paths include uncertainty: The surroundings in
which the robot is traveling may be unpredictable. This might be caused by unforeseen impediments, moving items, or long-
term environmental changes. Complexity: The environment in which the robot operates may be complex. This could result from
numerous hurdles, constrained spaces, or challenging obstacles. Real-time limitations: the robot needs to have real-time path
planning capabilities. This becomes particularly difficult in dynamic contexts where impediments may shift or change [19-21].
The contribution of this paper is to reduce the time consumption and adjust the Q-learning algorithm's output depending on the
parameters selected for the best possible path planning by presenting a modified one. Our modified Q-learning is based on
replacing relying (1-α) instead of the (γ) parameter. Learning efficiency was increased using priority trial replay to reach the
target position. Additionally, the shortest distance between two places is represented by movement in the inclined direction with
the smallest angle. Low et al. [10], demonstrated that when Q-values are initialized properly using the FPA, an expedited
convergence of Q-learning can be obtained by testing the proposed enhanced Q-learning practically in a challenging setting with
a special configuration of obstacles. A three-wheeled mobile robot is used in a real-world experiment to verify the efficiency of
the suggested algorithm. By integrating prior knowledge obtained from the FPA into classical Q-learning, simulation results
demonstrate that initialization of the Q-values serves as a solid foundation for exploration, thereby accelerating the learning
process of the mobile robot. Guoa [11], has proposed an algorithm that speeds up convergence by adding a dynamic reward
function to improve the initial Q schedule. This approach provides knowledge and experience through the case-based inference
(CBR) algorithm and prevents entry into the encircled areas using an obstacle avoidance method. The experimental results show
that the pathfinding performance of the modified Q-learning algorithm is much better than the original. Lee and Jeong [12],
identified two fundamental warehouse settings with automated logistics where mobile robot paths are optimized using
reinforcement learning techniques and algorithms to determine the rules required for path planning. The algorithms were tested
in the same experimental environment and under the same conditions using a mobile robot's path optimization simulation. The
experiment's findings assisted in understanding certain characteristics and changes of the reinforcement learning algorithm. The
results of this research will assist in better understanding the fundamental ideas of reinforcement learning so that we can develop
more realistic and complex path optimization algorithms and reinforcement learning skills with a single agent and a single path.
The field environment in the warehouse, however, is much more complex and variable. Sang et al. [13], stated that there is a
trend in uncrewed surface vehicles (USVs) to deploy several USVs in a fleet formation. The USV fleet must be navigated
efficiently, and formation path planning algorithms are crucial for producing the best trajectories and offering workable collision
avoidance tactics. The multiple sub-target artificial potential field (MTAPF), based on an enhanced APF, is a ground-breaking
deterministic algorithm that ensures the formation trajectories' rationality, optimality, and path continuity. The global optimal
path produced by an enhanced heuristic A* algorithm is what the MTAPF, which is a part of the local path planning algorithm.
Maoudj and Hentout [14], obtained an Efficient Q-Learning (EQL) algorithm that can overcome these drawbacks and guarantee
an optimal collision-free path in the shortest time. In the QL algorithm, the design of an efficient reward function and an efficient
selection strategy for an optimal action that guarantees exploration and exploitation are critical components of successful
learning. To this end, a new reward function is proposed to initialize the Q-table and give the robot background information
about the environment. Next, a new efficient selection strategy is proposed to speed up the learning process by reducing search
space and guaranteeing a quick convergence toward an optimized solution. Ma et al. [15], proposed a continuous local search
Q-Learning (CLSQL) approach, which was introduced to solve these problems and ensure the standards of the intended learning
path. The first step involves gradually dividing the global environment into separate local habitats. Then, using prior knowledge,
the intermediate spots are searched for in each local area. The search is then between each intermediate place and the final
destination. Finally, the suggested method ensures the best path while accelerating convergence and decreasing computing time
compared to RL-based algorithms. Qi Jiang [16], searched and developed a path-planning method based on a Q-learning
algorithm to address the path-planning problem for mobile robots. This method requires only the interaction between the current
state and the environment to determine rewards and penalties for the robot’s actions and decide the next course of action. The
Q-learning algorithm was enhanced to address the issues of poor efficiency and slow convergence in the original approach,
permitting the robot to quickly complete its planning and choose the quickest and most efficient route. Using the grid method,
the environment necessary to run the program and demonstrate the convergence process while gathering data was set up. Bonny
and Kashkash [17], presented a novel, state-of-the-art strategy for mapping out the optimal path for a mobile robot in a two-
dimensional space. The optimal path is found by combining the Q-Learning Algorithm with the Bees Algorithm (BA). The
beginning population should be created using a creative method that can be used regardless of the number and location of
environmental obstacles. The local search function of the BA is implemented using Q-Learning. The hybridization of Q-Learning
with BA aims to find the optimal course with fewer iterations of the BA. This method combines the sanitation of Q-Learning to
determine the BA and the quickest path to solve the problem without any restrictions. Fallooh et al. [18], stated that the robot
was subjected to several simulated test scenarios to assess its adaptability to dynamic settings. The testing scenarios employed
various target motion types, and obstacle counts with different dynamicity patterns. The test cases demonstrated how the robot
could adapt to various environments. The algorithm is split into two phases: the operational stage and the learning stage. The

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

161

robot constructs a learning matrix during the first phase, which uses rewards and environment data to help it learn how to get
from its current location to a known goal. This learning matrix is then used during the operational stage. This research examined
the method to facilitate quick learning for the mobile robot and minimize the learning process's repetition by appropriately
defining the values of alpha (α) and gamma (γ) to preserve variance and differentiate between them.

2. Mobile robot position control with RL
The mobile robot searches for the best route between the beginning and the goal point relating to predetermined efficiency

parameters for route planning in a given working environment [17]. In general, based on whether the mobile robot has access to
environmental data, routes are categorized into global and local [18]. Path planning steps: the mobile robot development process
typically includes the following steps: environment modeling, optimization criteria, and pathfinding algorithm [22]. The
algorithms A* and D* of the guided method are the most widely used algorithms for route search in general route planning [23].
Descriptive inference and heuristics have traditionally been used to optimize warehouse route design [24]. When the problem
becomes complicated, most solutions demand significant computational time yet operate without additional learning [25].
Maintaining and scaling a path is challenging due to the complexity of heuristic algorithms in their creation and understanding.
Artificial intelligence in route planning is becoming more widespread [26]. To identify a strategy for achieving a goal,
reinforcement learning employs trial and error and learning from failure and reward [27].

Figure 1: The main reinforcement learning components and their relationships

The environment is the outside world that an agent interacts with and is aware of, while the agents are the objects of learning

and decision-making [3]. The environment's state influences the agent's decision-making [21]. A reward is the fourth element; it
indicates whether an agent behaved desirably or undesirably as shown in Figure 1. A value function is the last element in
reinforcement learning. What is advantageous in the long run is explained by the value function. The total award that an agent is
qualified to receive is the value. The reward fluctuates depending on the current situation and is predicted by environmental
models [29].

2.1 Q-Learning algorithm
The essential idea behind the Q-Learning algorithm is that, rather than using the later state-action pair corresponding to the

present policy, it employs the future state-action pair generated by the policy that will be reviewed when updating the Q value
of a state-action pair [30]. Specifically, the mobile robot uses multiple samples to generate paths in the path planning issue and
randomly samples the surrounding environment [31]. During this period, there are iterations between the goal and manners
policies until the best route is found through their interaction [32-34]. The formula for the Q-table of Q-learning is Equation 1:

𝑄𝑄′(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾 (𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ 𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎))) (1)

where r: is the reward received after taking action an in state s, alpha(α): is the learning rate, gamma (γ): is the discount factor,
Q(s, a): is the expected reward for taking action on an in-state s.s': is the next state after taking action a in state s, and max Q(s',
a') is the maximum expected reward for taking any action a' in state s'.

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

162

The Q-table is updated according to the learning rate following all interactions with the surrounding environment [35]. The
Q-table will update more quickly with an increasing learning rate, but there is a possibility that it may overfit the data. The Q-
table will update slowly with a lower learning rate but may also converge more slowly. The discount factor determines the
weighting of future benefits. The Q-table will consider future incentives more heavily if the discount factor is larger and less
heavily if the discount factor is lower [36]. Developing the optimum action plan for the next state is valued according to the
highest possible projected benefit connected to any action a' in state s'. This allows the Q-table to learn which behaviors yield
the greatest long-term rewards [23]. The Q-table changes each time the agent interacts with the surrounding environment while
the agent determines a path of action that optimizes the expected reward. The policy is the allocation of events to actions that an
agent will do to maximize the expected reward. The off-policy temporal-difference control method, often known as Q-Learning,
is one of the most fundamental algorithms used in reinforcement learning [23]. When taking action, the Q-Learning algorithm
stores the reward values in the Q table and chooses a random or maximum value based on the epsilon-greedy value [16].

 𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎(𝑄𝑄(𝑠𝑠′, 𝑎𝑎)) (2)

 Equation (2) is typically updated into Equation (1) by taking time into account.

 𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾 (𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)) (3)

Algorithms for reinforcement learning depend heavily on the exploration and exploitation stage. Lower-priority actions
should be selected before selecting and executing higher-priority actions to assess the optimal setting [37]. The Q-learning
algorithm has become the cornerstone of the reinforcement learning algorithm due to its ease of use and remarkable learning
performances in a single-agent environment. Due to Q-Learning's one-time update per action, complex issues become difficult
to solve when many states and actions are unrealized [38]. Because the Q-table for reward values is predefined, a significant
amount of storage RAM is further required. In a complex multi-agent system, this is a problem for the Q-Learning technique
[39].

2.2 Modified q-learning (I8QA) for robot path planning
Combination and reduction are limiting parameters of the Q-learning algorithms that make up the Q-learning modification.

The replanning method randomly selects samples using only previously experienced data, but the Q-learning algorithm modifies
a policy in response to real-world experience. The replanning algorithm uses Search Control to gain a simulated experience,
which is then used to modify the policy. Q-learning (1) is updated by the improvement Q-learning Equation (4):

 𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎)+∝ (𝑟𝑟 + (1−∝) max𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎) (4)

The Q-learning algorithm's learning phase is described in Algorithm 1, and Figure 2 shown the flow chart of modified Q-
Learning for Robot Path Planning. Improving the Q-learning algorithm for generating the next state and a more accurate reward
value involves storing past experiences in memory. To create the next state and a more accurate reward value, the Q-learning
algorithm has been improved to keep previous experiences in memory. It is possible to assign a negative reward value for
obstacles and a positive reward value for the goal location, creating a simple reward structure to guide a mobile robot's progress
in a grid-style maze environment. The mobile robot's current and target positions define its direction. The path-planning method
repeats numerous random path-finding attempts to determine the best path, which takes considerable time. The basic reward
technique, previously discussed, involves an agent searching randomly for a path, whether or not it is located near or far from
the destination. Once the journey path and target position have been determined, a portion of the area near the target position is
selected to strengthen these weaknesses. Compared to the standard reward strategy (Reward adjustment area near the target
point), the path placed inside the area selected in the previous phase is assigned a larger reward value. Then, whenever the
movement path changes, we propose a method to choose a region, as mentioned previously, and to adjust the movement path to
a spot in the selected area that has a high reward value. Update the reward modification based on this technique, as it relies on
reducing the parameters to improve the process of calculating the procedure for the next policy by adjusting the learning rate to
align with the discount factor of future rewards. The static and dynamic rewards are combined to optimize the reward function.
In this study, we developed the method of searching space by developing the search within the reinforcement learning algorithm.
The search was preferred using the inclined path method over searching the straight path due to the shorter path planning distance
of the inclined path according to the law of distances of path length (PL) in Equation (5):

 𝑃𝑃𝑃𝑃 = ∑ �(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 + (𝑚𝑚𝑖𝑖+1 + 𝑚𝑚𝑖𝑖)2𝑛𝑛
𝑖𝑖=0 (5)

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

163

where i =0,1,2,...,n, when i =0, The beginning position of the mobile robot is s=(𝑚𝑚0,𝑦𝑦0). When i=n, the robot is at the target
position T= (𝑚𝑚𝑛𝑛 ,𝑦𝑦𝑛𝑛), the current coordinates of the mobile robot are represented by (𝑚𝑚𝑖𝑖 ,𝑦𝑦𝑖𝑖); the coordinates of the next state are
represented by (𝑚𝑚𝑖𝑖+1,𝑦𝑦𝑖𝑖+1).

Algorithm (1)

Input: Source (start state) location, destination (goal state) location, and solution space.
Output: optimal path for the robot from start to goal.
1 initialize Q(s,a) ← 0 (s states set, a actions set);
2 for each episodic(iteration) do
3 set 𝑠𝑠𝑡𝑡 ← 𝑎𝑎 random state from state set S;
4 while (𝑠𝑠𝑡𝑡 ≠ 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔) do
5 for each 𝒔𝒔𝒕𝒕𝒊𝒊 ∈ 𝑺𝑺 where 𝑖𝑖 ∈ [up, down, left, right, up-right, up-left, down-right, down-left] do
6 Determine location 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖+1 of the agent by doing an action 𝑎𝑎𝑡𝑡𝑖𝑖+1
7 Calculate distance 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖+1 ∈ 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 from 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖+1to goal location [𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 is allow distance without collision

of all 8-neighboring connections]
8 Choose 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖+1 corresponds to smallest 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖+1 from 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡
9 If 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖+1 ≠ 𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑜𝑜𝑠𝑠𝑡𝑡𝑜𝑜𝑎𝑎𝑔𝑔 do
10 Choose 𝑎𝑎𝑡𝑡𝑖𝑖+1 corresponds to 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖+1 , which makes the agent move closer to the goal location
 Perform action and receive a penalty or reward

 11 Update Q (𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)
 12 Else

 13 Chose 𝑎𝑎𝑡𝑡𝑖𝑖 corresponds to 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖 , which makes the agent move closer to the goal location
14 end
15 Perform action and receive a penalty or reward
 16 Update Q (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
17 end
18 end

Furthermore, in a cartesian coordinate system, which represents an environment grid with the x- and y-axes denoting the

horizontal and vertical directions, the shortest distance between two locations is represented by moving in the inclined direction
with the smallest angle. The notation for the coordinates is (x, y) [27]. The first and second dimensions of the grid map represent
the x-horizontal and y-vertical. This is achieved through the reward value variable in the Q-table, where the reward value is high
for the inclined path that offers a shorter distance between the starting point and the target, assuming a lower number of collisions
to increase the search speed. On the other hand, the execution time of the algorithm is reduced. The reward value is lower for the
open path free of obstacles, but it is a straight path, which means it has a longer distance between the starting point and the target
position. Using eight connections, this work develops the reward function (r) as expressed in equation (3) to (R) in Equation (6),
representing the Q-values of the inclined path instead of the four connections used in classic Q-learning.

 1 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆 ℎ𝑙𝑙𝑟𝑟𝑖𝑖𝑜𝑜𝑙𝑙𝑆𝑆𝑜𝑜𝑎𝑎𝑙𝑙. 𝑙𝑙𝑟𝑟 𝑉𝑉𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑎𝑎𝑙𝑙.
 1.4 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆 𝐷𝐷𝑖𝑖𝑎𝑎𝑆𝑆𝑙𝑙𝑆𝑆𝑎𝑎𝑙𝑙
R = 3 𝑠𝑠𝑡𝑡+1 𝑖𝑖𝑠𝑠 𝑜𝑜ℎ𝑆𝑆 𝑠𝑠𝑜𝑜𝑎𝑎𝑟𝑟𝑜𝑜 𝑆𝑆𝑙𝑙𝑑𝑑𝑆𝑆 (6)
 10 𝑠𝑠𝑡𝑡+1 𝑜𝑜𝑎𝑎𝑟𝑟𝑆𝑆𝑆𝑆𝑜𝑜 𝑆𝑆𝑙𝑙𝑑𝑑𝑆𝑆
 -5 𝑖𝑖𝑠𝑠 𝑜𝑜ℎ𝑆𝑆 𝑆𝑆𝑖𝑖𝑆𝑆ℎ𝑜𝑜 𝑆𝑆𝑟𝑟𝑖𝑖𝑑𝑑𝑠𝑠 𝑎𝑎𝑟𝑟𝑙𝑙𝑎𝑎𝑆𝑆𝑑𝑑 𝑠𝑠𝑡𝑡+1 𝑓𝑓𝑙𝑙𝑟𝑟𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 𝑆𝑆𝑙𝑙𝑑𝑑𝑆𝑆

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

164

Figure 2: The flow chart of Modified Q-Learning for Robot Path Planning

3. Results and discussion

3.1 Maze simulation environment
A Study by Jiang et al. [28], was utilized and the previously mentioned maze setup as a point of reference to create a virtual

experiment environment. A maze environment includes content obstacle, open path state, start state, and goal state Figure 3
shows the simple maze environment with start and goal position. Several obstacles were included in a 16 × 16 grid layout. The
movement of a mobile robot between the starting point and the goal point was analyzed. In this experiment, the defined task for
a mobile robot was to find the optimal path to the target point while avoiding obstacles at the starting site and constantly starting
from the same place, never experimenting to find the best route from beginning to end. Move_from_abstacles toward each
terminal state based on the action value traveling to the right, left, up, or down. Thorough simulation research was done to show
the effectiveness of the new strategy and train the robot. To put this simulation into practice, MATLAB R2012b was employed.
The efficacy of the suggested Q-learning strategy was evaluated using the effects of these various states. Several environments
were used for different conditions. The training and testing phases are the two sections of the simulation. Different scenarios for
various conditions were implemented using a range of target and obstacle behaviors during the training phase. The robot is
learning as it moves through the various states of each scenario. The Q-table, which was previously described, becomes a
repository for the knowledge collected through the various situations. The testing phase begins with exposing the robot to a more
challenging environment and follows the learning phase. The number of obstacles in the testing situations is greater; some are
static, and some are dynamic. Some testing scenarios for particular common problems, such as the local minima challenge, were
used to test the technique. We also ran additional tests using random settings, such as the value of the test parameter utilized in
the Q-learning and improvement of various state simulation environments.

Initialize Parameters

Set St as a random state
from states set S

Determine location of
agent by doing action

Calculate distance
from to goal location

Choose corresponds to
smallest from

If

Choose corresponds
to

Chose corresponds
to

Update Q (

Perform action and receive
penalty or reward

1

Yes

No

Update Q (

If

If

Yes

Yes

No

No

Return optimal path for
robot from start to goal

1

1

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

165

Figure 3: The simple maze environment with start and goal position

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: The different scenarios of test environments a) close, b) open, c) randomly close (and d)
 randomly open. e) zigzag close f) zigzag open environments

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

166

The proposed methods are tested with 2-D various difficulties suggested maps for both x-y dimensions and contain various
shapes of static obstacles. Figure 4 demonstrates the six suggested environments with the variant shapes of obstacles and
corresponding free up and down spaces in addition to the free Cartesian space. The Figure 4a is specification of suggests that
the first environment comprises a variety of 102 obstacles and a closed environment with only one optimum path from the start
to the goal point. The Figure 4b specification of suggests the second environment is composed of a variety of obstacles, 33
numbers, and different lengths of the optimum path of the mobile robot from the start to the goal point. The suggested open
environment as shown in Figure 4c is specification of the third suggested environment composed of different lengths of the
optimum path of the mobile robot from start to goal point. In comparison, the suggested random environment has a 77 variety
of obstacles as shown in Figure 4d.

Figure 4e is specification of the fourth suggested environment is composed of various obstacles. It has only one length of
the optimum path of the mobile robot, but the joints are limited. Figure 4f is specification of the fifth suggested zigzag-closed
environment is composed of different lengths of the optimum path of the mobile robot from the start to the goal point. The
suggested zigzag-open environment has a variety of obstacles. It has more than one path for the mobile robot from the start to
the goal point, so the robot must learn the optimum path with smooth movement.

The results obtained through the experiment in many environments shown in Figure 4 with different dynamic obstacles and
different Q-learning scenarios are shown in Table 1 for the original Q-learning and Table 2 for the modified Q-learning based
on (α) and (γ) with improved discount rates that vary depending on the learning rate.

Table 1: The Results of Original Q-Learning in Different Obstacle Environments

Env. Learning
Rate (α)

Discount
factor (γ)

Time of execution
algorithm in sec.

Time of execution
classic algorithm in sec.

No. of
obstacle

Path

Open
environment

0.1 0.7 1.882 2.282 33 Smoothing
0.8 1.756 2.156 33 Smoothing
0.9 1.775 2.257 33 Less smoothing

0.2

0.7 1.551 1.975 33 Winding path
0.8 1.528 1.941 33 Smoothing
0.9 1.524 1.992 33 Less smoothing

0.3 0.7 1.505 2.190 33 Smoothing
0.8 1.466 2.138 33 Less smoothing
0.9 1.407 2.061 33 Winding path

Close
environment

0.2 0.7 2.257 2.793 102 Without Smoothing
0.8 2.314 2.819 102 Smoothing
0.9 2.252 2.750 102 Winding Smoothing

0.3 0.7 2.461 2.961 102 Smoothing
0.8 2.398 2.896 102 Less smoothing
0.9 2.328 2.828 102 Winding

0.4 0.6 2.563 3.031 102 Smoothing
0.7 2.583 3.019 102 Less smoothing
0.8 2.471 2.917 102 Less
0.9 2.348 1.998 102 Winding

Randomly
environment

0.2 0.7 3.495 4.291 77 Less smoothing
0.8 3.490 4.203 77 Smoothing
0.9 3.412 4.112 77 Winding

0.3 0.7 3.628 4.226 77 Smoothing
0.8 3.618 4.218 77 Less smoothing
0.9 3.537 4.137 77 Less winding

0.4 0.6 4.892 5.292 77 Smoothing
0.7 4.872 5.216 77 Less smoothing
0.8 4.607 5.103 77 Winding

 0.9 4.639 5.632 77 Less winding
 77

Table 1 notes the results for the six environments. The shortest path for the mobile robot is when the learning coefficient

values are small and close to 0.2. At the same time, we must maintain the best distinction between the discount and learning
coefficients to obtain the shortest path free of twists and characterized by smoothness. From the starting point to the goal, the
mobile robot must learn the optimum path with smooth movement and suitable speed. Figure 5 and Figure 6 show the execution
time of each algorithm depending on the changed parameters.

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

167

Figure 5: Time algorithm execution of open environment with γ= 0.9

Table 2: Results of Modified Q-Learning in Different Dynamic Obstacle Environments

Env Learning Rate (α) Time of execution
algorithm in sec.

Time of execution
classic algorithm in sec.

No. of
obstacles

Path

Open environment

0.1 1.882 2.328 33 Smoothing
1.856 2.256 33 Smoothing
1.775 2.274 33 Less smoothing

0.2

1.551 1.951 33 Winding path
1.524 1.930 33 Smoothing
1.528 1.925 33 Less smoothing

0.3 1.505 2.016 33 Smoothing
1.466 1.966 33 Less smoothing
1.407 1.912 33 Winding path

Close environment 0.2 2.257 2.775 102 Less smoothing
2.314 2.851 102 Smoothing
2.252 2.725 102 Winding path

0.3 2.461 2.916 102 Smoothing
2.398 2.898 102 Less smoothing
2.328 2.828 102 Winding path

0.4 2.563 3.102 102 Smoothing
2.471 2.971 102 Less smoothing
2.348 2.858 102 Winding path

Randomly
environment

0.2 3.495 3.959 77 Less smoothing
3.490 3.990 77 Smoothing
3.412 3.812 77 Winding path

0.3 3.628 4.262 77 Less smoothing
3.618 4.102 77 Smoothing
3.537 3.975 77 Winding path

0.4 4.892 5.394 77 Smoothing
4.872 5.349 77 Less smoothing
4.607 5.102 77 Winding path

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

168

Figure 6: Time algorithm execution of open environment with smoothing path at γ= 0.8

a) close environment,

b) open environment

c) randomly close environment

d) randomly open environment

e) zigzag close environment

 f) zigzag open environment

Figure 7: The best path planning for various scenarios in the different test environments, a) close, b) open, c)
randomly close (and d) randomly open. e) zigzag close f) zigzag open environments, the best path planning
is red, the longer path planning is green, and the path planning closed is blue

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

169

The best path planning for various scenarios in the different test environments is shown in Figure 7. The red color points to
the optimum path between the proposed algorithm's starting point and goal point; the longer path planning is green, and the path
planning closed is blue in the different test environments. Additionally, each environmental test includes a different path
scenario, though it may not be optimum. Furthermore, the algorithm's performance was improved by searching in different
environments for the inclined path to reach the goal instead of the straight path. This improvement is because the inclined path
is shorter than the straight path, as detailed in the next section.

The relationship between α and γ must be considered in terms of the discount coefficient values and the learning rate to
achieve the best results in correlating time with the values of current and future rewards. We also notice from the results that the
best differentiation and variance of the results occur when the learning rate α take values are close to zero and do not exceed 0.2.
As the values increase to α, we notice an increase in the learning time of the algorithm, but this is not desirable because of its
effect on the smoothness of the path. As for the discount factor, having a value of γ Approximately 1 is preferable, but not less
than 0.8. The lower the discount rate, the longer the algorithm’s learning time. The best results were achieved with a learning
rate 0.2 when the algorithm was studied in various environments with dynamic obstacles. In the closed environment, the
execution time varied depending on the number of obstacles. The Smoothed path at the best value for a learning rate of 0.2 and
a discount factor of 0.8 had an execution time of 2.314 sec. If we need to increase the path smoothing, the discount factor should
be set to 0.9 and the learning rate to 0.1. This setup yields good results, however. The algorithm execution time is (2.281) sec.
This means that the smoothing path of the mobile robot between the start and target positions requires optimization, relying on
the learning rate and discount factor relative to the execution time of the algorithm. In addition, the algorithm's performance was
improved by searching different environments for the inclined path to reach the goal instead of the straight path. This is because
the length of the inclined path is shorter than the straight path.

4. Comparison of the results with recent works
To prove the efficiency of the proposed algorithm in finding the shortest path, a comparison was made with other algorithms

across different test environments, such as Bonny and Kashkash [17]. To ensure a fair comparison with recent works, the I8QA
is applied to the same maps used in those studies, considering the same map's dimensions (width and height), obstacle positions,
starting and goal points, and mobile robot configuration. Then, the length of the final path for all methods was comparedThe
comparison results of the environment (map (a), map (b), and map (c) are shown in Figure 8. The algorithms used for comparison
are the results of QBA and I8QL. The final mean path length of (QBA) is 24.1733, 26.253, and 36.2587. Meanwhile, the I8QA
obtained the optimal path with the mean path length of the environment, as shown in Figure 9, which is 20.2451, 21.8671, and
29.2851. Table 3 shows the result of the comparison of the different environments.

a) map (a)

b) map (b)

c) map (c)

Figure 8: Optimum path of different environments a) map (a), b) map (b), c) map (c) [17]

Table 3: The result of the Mean Path length and Standard deviation of different environment

Map Algorithms of other
reference

Mean Path
Lengh (QBA)

Standard
deviation

The mean Path
length of I8QA

Standard deviation
I8QA

Map (a) Bonny and Kashkash [17] 24.1733 0.1259 20.2451 0.1011
Map (b) Bonny and Kashkash [17] 26.253 0.1102 21.8671 0.1
Map (c) Zhang [21] 36.2587 0.15735 29.2851 0.1

The algorithms used for comparison are the CLSQL [15], QBA [17], and EQL [11]. Table 4 shows the results of the

optimum path of I8QA, and Figure 9 (a–c) shows the different environments (map a1, map b1, and map c1). Figure 10 (a–c)
shows the final path length of the different environments map a1, map b1, and mab c1.

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

170

a) map (a1)

b) map (b1)

c) map (c1)

Figure 9: The different environments:a) map (a1),b) map(b1),c) and map (c1)

(a) map (a1)

(b) map (b1)

(c) mab (c1)

Figure 10: Optimum path of different environments: a) map (a1) b) map (b1) and c) map (c1)

The path length of Map (a1) is 14.1102 [17], and the shortest path length of I8QA is 11.053, so the number of iterations is

reduced from reference [17] to 43 iterations. The path length of Map (b1) is 21.04 [15], and the shortest path length of I8QA is
12.453; with a time of execution, the algorithm is reduced from 0.33 msec to 0.284 msec. The path length of Map (b1) is 20.20
[11], and the shortest path length of I8QA is 12.453; the path length of Map (c1) is 21.771 [17], and the shortest path length of
I8QA is 17.153, so, the number of iterations is reduced than reference [17] to 50 iterations. The improvement ratio is
21.666%,38.351%, 40.812%, and 19.047%. Whereas the I8QA obtained the optimal path with the length and enhancement time
of execution, the algorithm improved the search strategy to reach the goal by planning the optimal path within different
environments containing different obstacles and spaces. Table 4 shows the results of the comparison of the environments.

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

171

Table 4: The Optimum Path length of I8QA and other algorithms of different environment

Map Map (a1) [17] Map (b1) [15] Map (c1) [17] Map (b1) [11]
Map size 10*10 16*16 20*20 16*16
Path length 14.1102 21.04 21.7716 20.20
The path length of the
proposed algorithm

11.053 12.453 17.6246 12.453

Improvement ratio 21.666% 38.351% 19.047% 40.812%

5. Conclusion
This paper presented a Q-learning algorithm with a single parameter; the modified Q-learning algorithm was applied to

optimizing paths in a labyrinth setting and empirically validated methods to reduce passive exploration. The main purpose of the
proposed modification is to reduce the number of parameters; thus, we do not need many experiments to choose the best values
for these parameters. We constructed multiple environments to test path navigation within the Q-learning maze environment and
enhance the Q-learning algorithm for RL. The search times for the path and final path in the experiment findings were compared.
The modified Q-learning algorithm outperformed the Q-learning algorithm in terms of path search time, producing a final path
that was both smoother and faster than that of the Q-learning algorithms. This is why the experimental outcomes of the Q-
learning and Q-improvement algorithms demonstrated acceptable outcomes for both the end path length and the path search
time. A dynamic reward system focused on learning rather than solely on action was used to improve worker performance and
efficiency. The Q-learning algorithm has the property of finding paths randomly. To reduce the randomness in finding an optimal
path, the movement toward the target position was selected, as the reward value for the unobstructed path was higher than that
for the path with obstacles in the direction of the target position. According to additional tests, the path search time was faster
than the Q-learning technique, and the final path length was optimized. A smooth path results from learning that converges to
the Q-learning optimum value function. This may take a long time if the learning rate exceeds 0.3 or occur too quickly if the
learning rate is smaller and equal to 0.2. The smoothness of the mobile robot's movement while navigating various paths within
the environment is essential to avoid the problem of battery drain and collision with obstacles. In future work, the smoothing
rate of path planning will be increased and improved by integrating it with a metaheuristic algorithm and reducing the collision
rate to make the algorithm more compatible with dynamic environments.

Author contributions

Conceptualization, N. Fallooh, A. Sadiq, E. Abbas, and I. Hashim.; data curation, N. Fallooh.; formal analysis, N.
Fallooh.; investigation, N. Fallooh, A. Sadiq, E. Abbas, and I. Hashim.; methodology, N. Fallooh, A. Sadiq.; project
administration, N. Fallooh, E. Abbas, and I. Hashim.; resources N. Fallooh.; software, N. Fallooh, A. Sadiq.; supervision, A.
Sadiq, E. Abbas, and I. Hashim.; validation, N. Fallooh, A. Sadiq, E. Abbas, and I. Hashim.; visualization, N. Fallooh, A.
Sadiq, E. Abbas, and I. Hashim.; writing—original draft preparation, N. Fallooh, A. Sadiq, E. Abbas, and I. Hashim.;
writing—review and editing, N. Fallooh, A. Sadiq, E. Abbas, and I. Hashim. All authors have read and agreed to the published
version of the manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author.

Conflicts of interest

The authors declare that there is no conflict of interest.

References
[1] P. Wang, Ch. Chan and A. de-L. Fortelle, A Reinforcement learning based approach for automated lane change maneuvers,

2018 IEEE I Intell. Veh Symposium (IV), China, 2018. https://doi.org/10.48550/arXiv.1804.07871

[2] M. Naeem, S.T.H. Rizvi and A. Coronato, A Gentle introduction to reinforcement learning and its application in different
fields, IEEE Access, 8 (2020) 209320-209344. https://doi.org/10.1109/ACCESS.2020.3038605

[3] G.U.O. Tong, N. Jiang, L.I. Biyue, Z.H.U. Xi, Y. Wang, UAV navigation in high dynamic environments: A deep
reinforcement learning approach, Chin. J. Aeronaut., 34 (2020) 479-489. http://dx.doi.org/10.1016/j.cja.2020.05.011

[4] C. Wang, J. Wang, Y. Shen, Autonomous navigation of UAVs in large-scale complex environments: A deep reinforcement
learning approach, IEEE Trans Veh. Technol., 68 (2019) 2124-36. https://doi.org/10.1109/TVT.2018.2890773

[5] L. Chang, L. Shan, Ch. Jiang, and Y. Dai, Reinforcement based mobile robot path planning with improved dynamic window
approach in unknown environment, Auton. Rob., 45 (2021) 51-76. https://doi.org/10.1007/s10514-020-09947-4

https://doi.org/10.48550/arXiv.1804.07871
https://doi.org/10.1109/ACCESS.2020.3038605
http://dx.doi.org/10.1016/j.cja.2020.05.011
https://doi.org/10.1109/TVT.2018.2890773
https://doi.org/10.1007/s10514-020-09947-4

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

172

[6] J. Kim, M. Hong, K. Lee, D.W. Kim, Y.-L. Park, and S. Oh, Learning to Walk a Tripod Mobile Robot Using Nonlinear Soft
Vibration Actuators with Entropy Adaptive Reinforcement Learning, IEEE Rob. Autom. Lett., 5 (2020) 2317-2324.
https://doi.org/10.1109/LRA.2020.2970945

[7] S.S. Mousavi, M. Schukat, and E. Howley, Traffic light control using deep policy gradient and value-function-based
reinforcement learning, IET Inst. Eng. Technol., 11 (2017) 417-423. https://doi.org/10.1049/iet-its.2017.0153

[8] Bakr S. Shihab, Hadeel N. Abdullah and Layth A. Hassnawi, Improved Artificial Bee Colony Algorithm-based Path Planning
of Unmanned Aerial Vehicle Using Late Acceptance Hill Climbing, Int. J. Intell. Eng. Syst., 15 (2022) 432-442.
https://doi.org/10.22266/ijies2022.1231.39

[9] A.T. Sadiq, and A. H. Hasan, Robot Path Planning Based on PSO and D* Algorithms in Dynamic Environment, Int. Conf.
Current Research in Computer Science and Information Technology (ICCIT), Slimani – Iraq, 2017.
http://dx.doi.org/10.1109/CRCSIT.2017.7965550

[10] E.S. Low, P. Ong, and K. Ch. Cheah, Solving the optimal path planning of a mobile robot using improved Q-learning, Rob.
Auton. Syst., 115 (2019) 143-161. https://doi.org/10.1016/j.robot.2019.02.013

[11] X. Luo, Y. Gao, and Sh. Huang, Modification of Q-learning to Adapt to the Randomness of Environment, Int. Conf. Control,
Automation and Information Sciences (ICCAIS), Chengdu, China , 2019.
https://doi.org/10.1109/ICCAIS46528.2019.9074718

[12] H.S. Lee, and J. Jeong, Mobile Robot Path Optimization Technique Based on Reinforcement Learning Algorithm in
Warehouse Environment, Appl. Sci., 11 (2021) 1209. https://doi.org/10.3390/app11031209

[13] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, The hybrid path planning algorithm based on improved A* and artificial
potential field for unmanned surface vehicle formations, Ocean Eng., 223 (2021) 108709.
http://dx.doi.org/10.1016/j.oceaneng.2021.108709

[14] A. Maoudj, A. Hentout, Optimal path planning approach based on Q-learning algorithm for mobile robots, Appl. Soft
Comput. P.A., 97 (2020) 106796. https://doi.org/10.1016/j.asoc.2020.106796

[15] T. Ma, and J. Lyu, J. Yang, R. Xi, Y. Li , J. An, and Ch. Li, CLSQL: Improved Q-Learning Algorithm Based on Continuous
Local Search Policy for Mobile Robot Path Planning, Sensors, 22 (2022) 5910. https://doi.org/10.3390/s22155910

[16] J. Qin, Path Planning Method of Mobile Robot Based on Q-learning, Journal of Physics: Conference Series, International
Symposium on Artificial Intelligence and Intelligent, 2181, 2022, 012030. https://doi.org/10.1088/1742-
6596/2181/1/012030

[17] T. Bonny and M. Kashkash, Highly optimized Q‐learning‐based bees’ approach for mobile robot path planning in static and
dynamic environments, J. Field Rob., 39 (2022) 317-334. http://dx.doi.org/10.1002/rob.22052

[18] N. H. Fallooh, A. T. Sadiq, E. I. Abbas and I. A. Hashim, Modifiedment the Performance of Q-learning Algorithm Based
on Parameters Setting for Optimal Path Planning, Fifth Int. Sci. Conf. Alkafeel University, BIO Web of Conf., 97 (2024)
00010. https://doi.org/10.1051/bioconf/20249700010

[19] M.A.K. Jaradat, M. Al-Rousan, L. Quadan, Reinforcement based mobile robot navigation in dynamic environment, Rob.
Comput. Integr. Manuf., 27 (2011) 135-149. https://doi.org/10.1016/j.rcim.2010.06.019

[20] H. A. R. Akkar, F. R. Mahdi, Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and Novel Grass
Root Optimization Algorithm, Int. J. Intell. Syst. Appl., 9 (2017) 1-9. https://doi.org/10.5815/ijisa.2017.05.01

[21] X. Zhang, Y. Zhao1, N. Deng, and K. Guo, Dynamic path planning algorithm for a mobile robot based on visible space
and an improved genetic algorithm, Int. J. Adv. Rob. Syst., 13 (2016) 1-17. http://dx.doi.org/10.5772/63484

[22] N. H. Fallooh, A. T. Sadiq, E. I. Abbas and I. A. Hashim, Dynamic Path Planning using a modification Q-Learning
Algorithm for a Mobile Robot, Fifth Int. Sci. Conf. Alkafeel University (ISCKU 2024), 97 (2024) 00011.
https://doi.org/10.1051/bioconf/20249700011

[23] Richard S. S. and Andrew G. B., Introduction to Reinforcement Learning, 2nd ed., MIT Press: London, UK, 2018.

[24] H. A. Atiyah and M. Y. Hassan, Outdoor Localization of 4 Wheels for Mobile Robot Using CNN with 3D Data, Int. J.
Adv. Sci. Eng. Inf. Technol., 12 (2022) 1403-1409. http://dx.doi.org/10.18517/ijaseit.12.4.16181

[25] N. Kohl, and P. Stone, Policy gradient reinforcement learning for fast quadrupedal locomotion, Int. Conf. Robotics and
Automation, IEEE, 2004. https://doi.org/10.1109/ROBOT.2004.1307456

[26] M. Kirtas, K. Tsampazis, N. Passalis and Deepbots, A Webots-Based Deep Reinforcement Learning Framework for Robotics,
Proc. 16th IFIP WG 12.5 Int. Conf. AIAI 2020, Marmaras, Greece, (2020) 64-75. http://dx.doi.org/10.1007/978-3-030-49186-
4_6

https://doi.org/10.1109/LRA.2020.2970945
https://doi.org/10.1049/iet-its.2017.0153
https://doi.org/10.22266/ijies2022.1231.39
http://dx.doi.org/10.1109/CRCSIT.2017.7965550
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.1109/ICCAIS46528.2019.9074718
https://doi.org/10.3390/app11031209
http://dx.doi.org/10.1016/j.oceaneng.2021.108709
https://doi.org/10.1016/j.asoc.2020.106796
https://doi.org/10.3390/s22155910
https://doi.org/10.1088/1742-6596/2181/1/012030
https://doi.org/10.1088/1742-6596/2181/1/012030
http://dx.doi.org/10.1002/rob.22052
https://doi.org/10.1051/bioconf/20249700010
https://doi.org/10.1016/j.rcim.2010.06.019
https://doi.org/10.5815/ijisa.2017.05.01
http://dx.doi.org/10.5772/63484
https://doi.org/10.1051/bioconf/20249700011
http://dx.doi.org/10.18517/ijaseit.12.4.16181
https://doi.org/10.1109/ROBOT.2004.1307456
http://dx.doi.org/10.1007/978-3-030-49186-4_6
http://dx.doi.org/10.1007/978-3-030-49186-4_6

Noor H. Fallooh et al. Engineering and Technology Journal 43 (02) (2025) 159-173

173

[27] F.A. Raheem, A.T. Sadiq, N. A. F. Abbas, Optimal Trajectory Planning of 2-DOF Robot Arm Using the Integration of PSO
Based on D* Algorithm and Cubic Polynomial Equation , the first for Conference engineering researches, 2017.

[28] L. Jiang, R. Wei and D. Wang, Multi-UAV Roundup Inspired by Hierarchical Cognition Consistency Learning Based on
an Interaction Mechanism, Drones, 7 (2023) 462. https://doi.org/10.3390/drones7070462

[29] Hidayat , A. Buono , K. Priandana and S. Wahjuni , Modified Q-Learning Algorithm for Mobile Robot Real-Time Path
Planning using Reduced States, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7 (2023) 628-636.
https://doi.org/10.29207/resti.v7i3.4949

[30] B. Wang, Z. Liu, Q. Li, A. Prorok, Mobile robot path planning in dynamic environments through globally guided
reinforcement learning, EEE Rob. Autom. Lett., 5 (2020) 6932-6939. https://doi.org/10.48550/arXiv.2005.05420

[31] Z. Wang, The impact of Q-learning parameters on robot path planning problems in different complex environment, Proc.
4th Int. Conf. Signal Processing and Machine Learning, 135-141, 2024. https://doi.org/10.54254/2755-2721/54/20241447

[32] N. H. Fallooh, A. T. Sadiq, E. I. Abbas and I. A. hashim, Modifiedment the Performance of Q-learning Algorithm Based
on Parameters Setting for Optimal Path Planning, 5th Int. Sci. Conf. Alkafeel University (ISCKU 2024), 00010, 2024.
https://doi.org/10.1051/bioconf/20249700010

[33] Y. Cao and X. Fang , Optimized-Weighted-Speedy Q-Learning Algorithm for Multi-UGV in Static Environment Path
Planning under Anti-Collision Cooperation Mechanism, Mathematics, 11 (2023) 2476,
https://doi.org/10.3390/math11112476

[34] Z. Li, L. Shi, L. Yang, Z. Shang, An adaptive learning rate Q-Learning algorithm based on lalman filter inspired by pigeon
pecking-color learning, Int. J. Bio-Inspir. Com., 1160 (2020) 693-706. https://link.springer.com/chapter/10.1007/978-981-
15-3415-7_59

[35] A. Sonny, S. R. Yeduri and L. R. Cenkeramaddi, Q-learning-based unmanned aerial vehicle path planning with dynamic
obstacle avoidance, Appl. Soft Comput., 147 (2023) 110773. https://doi.org/10.1016/j.asoc.2023.110773

[36] K.B. de Carvalho, I.R.L. de Oliveira, D.K.D. Villa, A.G. Caldeira, M. Sarcinelli Filho, A.S. Brandão, Q-learning based path
planning method for UAVs using priority shifting, 2022 Int. Conf. Unmanned Aircraft Systems (ICUAS), 2022, 421-426.

[37] C. Wang, X. Yang, H. Li, Improved Q-learning applied to dynamic obstacle avoidance and path planning, IEEE Access, 10
(2022) 92879-92888. http://dx.doi.org/10.1109/ACCESS.2022.3203072.

https://doi.org/10.3390/drones7070462
https://doi.org/10.29207/resti.v7i3.4949
https://doi.org/10.48550/arXiv.2005.05420
https://doi.org/10.54254/2755-2721/54/20241447
https://doi.org/10.1051/bioconf/20249700010
https://doi.org/10.3390/math11112476
https://link.springer.com/chapter/10.1007/978-981-15-3415-7_59
https://link.springer.com/chapter/10.1007/978-981-15-3415-7_59
https://doi.org/10.1016/j.asoc.2023.110773
http://dx.doi.org/10.1109/ACCESS.2022.3203072

	1. Introduction
	2. Mobile robot position control with RL
	2.1 Q-Learning algorithm
	2.2 Modified q-learning (I8QA) for robot path planning

	3. Results and discussion
	3.1 Maze simulation environment

	4. Comparison of the results with recent works
	5. Conclusion
	Author contributions
	Funding
	Data availability statement
	Conflicts of interest
	References

