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H I G H L I G H T S   A B S T R A C T  
• The natural frequency of aluminum foam 

sandwich panels was studied using 
numerical and analytical methods. 

• A CPT-based model was developed for 
frequency analysis, with Young’s modulus 
computed via Gibson-Ashby. 

• FEA in ANSYS validated the analytical 
results, showing strong agreement between 
both methods. 

• Higher foam density lowers frequencies, 
while increased Young’s modulus enhances 
stiffness. 

• Foam densities of 350–450 kg/m³ optimize 
stiffness-to-weight balance for aerospace 
panel design. 

 This study investigates the natural frequencies and vibrational behavior of 
aluminum foam sandwich panels by using numerical and analytical methods. The 
panels consist of an aluminum foam core sandwiched between two aluminum 
sheets, offering a lightweight yet structurally robust solution, making them ideal 
for applications in the aerospace and automotive industries. A mathematical 
model based on classical plate theory (CPT) was developed to compute the 
natural frequencies of supported rectangular sandwich plates. The Gibson-Ashby 
equation was employed to estimate the Young's modulus of the aluminum foam 
core. The analytical model was validated using finite element analysis (FEA) 
conducted in ANSYS 2021 R1, allowing for a thorough comparison between 
numerical and analytical results. The results showed strong agreement between 
the numerical and theoretical analysis, especially at high foam densities. The 
discrepancies between the numerical simulation and analytical predictions 
decreased with increasing foam density. For instance, at a density of 850 kg/m³, 
the difference between the numerical natural frequency (674 Hz) and the 
analytical prediction (681.75 Hz) was only 1.14%. In contrast, at a lower density 
of 350 kg/m³, the discrepancy increased to 8.52%, with numerical and analytical 
frequencies of 739.66 Hz and 808.51 Hz, respectively. This trend can be 
attributed to the complexities in the material behavior at lower densities, which 
the analytical model simplifies by neglecting nonlinear deformations and 
complex stress distributions. As foam density increases, the material exhibits 
more consistent mechanical properties, resulting in closer alignment between 
numerical and analytical results. Moreover, higher foam densities contribute to 
an increase in mass, which negatively affects the natural frequency, causing it to 
decrease. Conversely, an increase in Young's modulus enhances the stiffness of 
the material, resulting in higher natural frequencies. Therefore, the optimal foam 
density range of 350 to 450 kg/m³ is crucial for achieving a good balance 
between stiffness and weight. Maintaining a lightweight structure while 
improving stiffness is essential for achieving optimal performance. 
Consequently, these panels are particularly suitable for applications in the 
aerospace and automotive sectors that require lightweight, high-performance 
structures. 
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1. Introduction 
Metallic foams are cellular structures composed of a solid metal matrix interspersed with interconnected voids, resulting in a 

lightweight and porous material [1-3]. These foam-based sandwich panels offer a high strength-to-weight ratio and demonstrate 
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greater energy storage capacity compared to conventional panels [4,5]. These foams are utilized in various engineering applications, 
particularly in industries such as aerospace, automotive, and construction [6,7].  

Sandwich structures with multiple layers and diverse core materials have improved mechanical and dynamic properties in 
recent years. Initially, fiber materials were reinforced to increase durability and strength, and nanomaterials were added to 
improve microscopic physical properties. This improved composite structure's static and dynamic performance in various 
applications [8-10]. Recently, research has focused on improving composite plate structural properties by increasing static and 
dynamic properties, reducing weight, and increasing the strength-to-weight ratio. Reinforcing polymer core materials and using 
functionally graded materials in solid and porous structures have achieved this [11,12]. 

Materials that are lightweight and mechanically efficient are suitable for automotive applications. Core density affects 
mechanical behavior, with higher densities increasing bending strength but decreasing energy absorption [13]. AFS panels are 
ideal for automotive battery boxes due to their sound absorption and fire resistance [14]. Recent studies show that steel-
aluminum foam-steel sandwich panels are strong and stiff enough for lightweight structural systems [15].  

Innovative methods to improve the performance of these advanced composite materials require ongoing research [16]. 
Aluminum foam core sandwich panels (AFSP) with reinforced blankets are used in aerospace applications to provide structural 
robustness and protection against micrometeoroids and orbital debris [17]. Superior mechanical properties and a lightweight 
design make these panels suitable for structural applications that require lightness and strength. 

Recent studies have used numerical and analytical modeling to analyze the free vibration sandwich panel. These studies 
examined how material properties, geometric configurations, and boundary conditions affect vibration. In this context, several 
techniques have been used to study the behavior of sandwich panels. For example, the focus has been on functionally graded 
materials (FGMs) and their effects on vibration behavior; Mouthanna et al. [18], developed an analytical model for cylindrical 
panels made of porous FGMs using the Galerkin technique and finite element analysis (FEA) to evaluate the effect of porosity 
and material thickness on the free vibration characteristics. In addition, Amir et al. [19], studied functionally graded porous 
panels considering geometric nonlinearity. Emad et al. [20], used a new analytical model to conduct the free vibration analysis 
of a supported rectangular functionally graded sandwich plate. The core metal properties are assumed to be porosity-dependent 
and graded in the thickness direction according to a simple power-law distribution of constituent volume fractions using 
higher-order nonlinear envelope theory and stochastic analysis to understand the effects of boundary conditions and porosity 
on the vibration behavior. A numerical model employing the homogenization method for sandwich composite panels has also 
been proposed, facilitating efficient vibration analysis through finite element analysis, and has been validated against 
conventional 3D models [21]. In addition to conventional sandwich panels, the free vibration analysis of sandwich structures 
with metal foam cores has been extensively studied using both numerical and analytical methods. These studies aimed to 
enhance the structural performance, comprehend the dynamic behavior of these structures, and verify the models by comparing 
them with experimental data. Jamaluddin  [22], used finite element analysis (FEA) to improve the natural frequencies of 
sandwich foam core structures, and the results were validated through experimental comparisons. Wang et al. [23], also studied 
different pore distributions, including gradient distributions, that were created in novel porous materials. Mechanical tests 
assessed fundamental material properties, including Young's modulus. For the purpose of assessing the impact of various 
parameters on the vibration characteristics of curved sandwich panels with composite nano face sheets, Badarloo and 
Salehipour devised closed-loop analytical solutions [24]. Another study by Rahmani et al. [25], explored the nucleation of 
syntactic foams using higher-order sandwich panel theory, providing insights into the eigenmodes of supported beams.  

Although previous studies have addressed the experimentality of metallic foam-based sandwich panels, this research 
focuses on the free vibration analysis of aluminum foam sandwich panels using both numerical and analytical methods. The 
distinguishing feature of the current study is the integration of classical plate theory (CPT) with finite element analysis (FEA), 
combined with the development of a mathematical model based on CPT for foam-based sandwich structures to predict natural 
frequencies. This represents a novel contribution not previously explored in depth in the existing literature. Additionally, the 
current study comprehensively compares the numerical and analytical results across various foam densities. Many previous 
studies have not focused on such a precise comparison between these two approaches. 

2. Materials and method 
Consider a thin rectangular sandwich panel with an aluminum metal foam core consisting of two aluminum metal sheets. 

The length, breadth, and thickness of the sandwich are represented by the symbols a, b, and h, respectively. To characterize the 
movement of the panel, a Cartesian coordinate system (x, y, and z) is used on the central surface of the sandwich, with x and y 
representing the in-plane coordinates and z representing the out-of-plane coordinates of the plate, as shown in Figure 1. Two 
1mm-thick aluminum metal plates surround the metal foam. Through the utilization of the classical plate theory (CPT), it is 
possible to obtain the equation of motion so the natural frequency of the sandwich can be calculated.  In this work, aluminum 
foams of different densities with a constant thickness of 10 mm were used, and the aluminum foam was treated as 
homogeneous in properties so that it could be considered homogeneous. In some models and studies, aluminum foam is treated 
as an approximately homogeneous material. This means that the material is considered to have uniform mechanical properties 
(such as density, modulus of elasticity, and tensile strength) throughout the sample rather than taking into account the cellular 
structure or gaps. This approximation is used to simplify calculations in analytical or numerical models when the fine details of 
the internal structure of the foam are unnecessary or too complex to include in the analysis [26, 27]. Metal foams can be 
considered as homogeneous materials to simplify numerical modeling, especially in applications where general mechanical 
properties such as stiffness and density are more important than microscopic details [28] . 
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Figure 1: Cartesian coordinate system 

The mechanical properties (i.e., Young's modulus) of the aluminum foam were theoretically determined based on the 
foam's density and the properties of the solid material, using the appropriate theoretical model, the Gibson-Ashby Equation. 
This equation is used to calculate Young's modulus of closed-cell foams based on the relative density of the foam. The basic 
formula is  explained in Equation 1 [26]: 

 𝐸𝐸𝑓𝑓=𝐸𝐸𝑠𝑠 ( 𝛒𝛒𝑓𝑓
𝛒𝛒𝑠𝑠

 )𝑛𝑛 (1) 

where: 𝐸𝐸𝑓𝑓 , 𝐸𝐸𝑠𝑠  is the Young's modulus of the foam and the solid material, 𝜌𝜌𝒇𝒇 , 𝜌𝜌𝒔𝒔 is the density of the foam and  the solid 
material, and n is constant and equal to 2 for closed-cell.  

3. Analytical solution 
The governing differential equations that describe the vibration behavior of sandwich structures were derived. The 

approach aligns with Kirchhoff’s theory, commonly referred to as the Classical Plate Theory, which applies to thin plates. The 
following are the assumptions of the linear elastic small deflection theory for thin plates [29]. The plate thickness (h) is small 
compared to its lateral dimensions: 

 The plate material is assumed to be elastic, homogeneous, and isotropic. 
 Initially, the plate is flat. 
 The deflection of the mid-plane is small, leading to a minimal slope of the deflected surface, making the square of the 

slope negligible compared to unity. 
 Lines that are initially perpendicular to the mid-plane remain straight and perpendicular during deformation, and their 

length does not change. Vertical shear strains (𝛾𝛾xz & 𝛾𝛾yz) are considered negligible, as is the normal stress component 
(𝜀𝜀zz). 

 The normal stress through the thickness (𝜎𝜎𝑧𝑧𝑧𝑧) is small compared to other stress components and can be neglected in 
stress-strain relationships. 

 Since the displacements of the plate are moderate, it is assumed that the central surface remains unstressed after 
bending. 

These assumptions simplify the mathematical modeling and allow for a more straightforward analysis of the plate's 
vibration behavior under small deflections as mentioned in Equation 2 to Equation 4: 

 𝐷𝐷∇2∇2𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑡𝑡) − 𝜌𝜌ℎ ∂2𝑤𝑤
∂𝑡𝑡2

(𝑥𝑥,𝑦𝑦, 𝑡𝑡) (2)   

     ∂
2Mxx
∂x2

+ 2 ∂2Mxy

∂x∂y
+ ∂2 myy

∂y2
+ 𝜌𝜌h ∂2𝜔𝜔

∂t2
= pz (3)  

 ∂2Mxx
∂x2

+ 2 ∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ 𝜌𝜌h ∂2𝜔𝜔

∂t2
= 0     (free vibration) (4) 

where Mx, My, and Mxy are the bending and twisting moments per unit length of the plate [23], as shown in Figure 2. 
According to Kirchhoff's hypothesis, the strain displacement for plates can be expressed in terms of the transverse 
displacement of the mid-surface of the plate as explained in Equation 5. This displacement occurs due to the stress experienced 
by the elastic body under an applied load.  
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Figure 2: Moments on flat sandwich layer 
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Stresses can be described as transverse displacements through the stress-strain relationships [29]. The normal and shear 
stresses acting on the plate are represented by σx , σy and σxy, respectively as explained in Equation 6. The mechanical 
properties of plate materials sections in the x and y directions are Exx, Eyy, Gxy, vxy, vyx and 𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡) is the deflection of the plate 
in the z-direction . 
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 𝜎𝜎𝑥𝑥𝑦𝑦 = −2𝑍𝑍𝐺𝐺𝑥𝑥𝑦𝑦
𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
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 (6) 

Equation (7) provides moments obtained by integrating over layer thickness. Bending and twisting moments are computed 
by correlating stress values with the thickness of the plate (or each layer). These moments will be used in subsequent equations 
for motion and equilibrium. Equation (8) integrates layer density, which is likewise covered by this process. For equations 
involving motion and vibration, this value is essential. The behavior of the plate or sandwich panel is theoretically described by 
the combination of Equations (7, 8) and the stress equations. In the sections that follow, layer stresses will be computed using 
these relationships. 

 �
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Homogeneous materials, the mechanical properties are represented as follows: 
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2(1+𝑣𝑣)    Also 𝑣𝑣𝑥𝑥𝑦𝑦 = 𝑣𝑣, thus, stress relationships in Equation 6 become: 
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A sandwich plate consists of three layers: an upper face with a thickness ℎ𝑢𝑢𝑢𝑢, a lower face with a thickness ℎ𝑙𝑙𝑢𝑢, and a thick 
core (metal foam) in between with a thickness ℎ𝑓𝑓. This configuration is typically used to provide structural strength and 
stiffness while minimizing weight, as shown in Figure 3. 

 
Figure 3: The layers of the sandwich plate layers 

The stress relationships for each layer of the sandwich panel can be expressed in the sandwich panel can be expressed in 
terms of the properties of each layer in Equation 10  to Equation 16. The properties of the upper face:  the upper face is made 
of homogenous aluminum in this study. 

𝐸𝐸𝑥𝑥𝑦𝑦 = 𝐸𝐸𝑦𝑦𝑥𝑥 = 𝐸𝐸𝑢𝑢𝑢𝑢 =𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   ,  𝑣𝑣𝑥𝑥𝑦𝑦 = 𝑣𝑣𝑦𝑦𝑥𝑥 = 𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , 𝜌𝜌 = 𝜌𝜌𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  , ℎ𝑢𝑢𝑢𝑢 = thick of upper face 
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The properties of the lower face (same upper): the lower face is made of homogenous aluminum in this study 
Exy = Eyx = ElpAL , vxy = vyx = vlpAL , ρ = ρlpAL , hlp= thick of lower face 
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It is important to observe that both the upper and lower faces are constructed from the same material, thus:  
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ElpAL=EupAL=EAL, vlpAL=vupAL=vAL , ρlpAL =ρupAL =ρAL  , hlp = hup=hAL 

GupAL=GlpAL =  GAL = EAL
2(1+vAL)
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The properties of metal foam  core : the metal foam  core is made from aluminum, which is considered a homogenous 
material. 

Exy = Eyx = Ef,   vxy = vyx = vf , ρ = ρf  , hf=thickness of foam    Gxy = Gf = Ef
2(1+vf)
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Then, the total moment acting on the metal foam sandwich panel is calculated by summing the bending moments for each 
layer as explained in Equation 17. Also, the total density value of the sandwich panel represents the sum of the densities of all 
layers as explained in Equation 18: 

 𝑀𝑀𝑥𝑥
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑀𝑀𝑥𝑥𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑦𝑦𝑢𝑢𝑢𝑢 + 𝑀𝑀𝑥𝑥𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 + 𝑀𝑀𝑥𝑥𝑙𝑙𝑓𝑓𝑤𝑤𝑢𝑢𝑢𝑢 layer 

  𝑀𝑀𝑦𝑦
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑀𝑀𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑦𝑦𝑢𝑢𝑢𝑢 + 𝑀𝑀𝑦𝑦𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 +𝑀𝑀𝑦𝑦 𝑙𝑙𝑓𝑓𝑤𝑤𝑢𝑢𝑢𝑢 layer (17) 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑀𝑀𝑥𝑥𝑦𝑦𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑦𝑦𝑢𝑢𝑢𝑢 +𝑀𝑀𝑥𝑥𝑦𝑦𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 + 𝑀𝑀𝑥𝑥𝑦𝑦𝑙𝑙𝑓𝑓𝑤𝑤𝑢𝑢𝑢𝑢 layer  

 𝜌𝜌 = ( 𝜌𝜌ℎ 𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑦𝑦𝑢𝑢𝑢𝑢 +  𝜌𝜌ℎ 𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 +  𝜌𝜌ℎ 𝑙𝑙𝑓𝑓𝑤𝑤𝑢𝑢𝑢𝑢 layer)/ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 (18) 

Substitute Equations 11, 13, and 16 in to Equation 17 to determine the total moments in the sandwich panel, as represented 
by Equations 19, 20, and 21. 

𝑀𝑀𝑥𝑥
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙= − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1−𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2
�𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑥𝑥2
+ 𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧2

−ℎℎ𝑓𝑓
2�

−
ℎ𝑓𝑓

2� −ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑧𝑧 + − 𝐸𝐸𝑓𝑓

1−𝑣𝑣𝑓𝑓2
  �𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑥𝑥2
+

𝑣𝑣𝑓𝑓
𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧2

ℎ𝑓𝑓
2�

−
ℎ𝑓𝑓

2�
𝑑𝑑𝑧𝑧+ −𝐸𝐸𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

1−𝑣𝑣𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙2
�𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑥𝑥2
+ 𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧 2𝑑𝑑𝑧𝑧

ℎ𝐹𝐹
2 +ℎ𝑢𝑢𝑙𝑙

ℎ𝐹𝐹
2

   (19) 

  𝑀𝑀𝑦𝑦
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙= − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1−𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2
�𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧2

−ℎ𝑓𝑓
2�

−
ℎ𝑓𝑓

2� −ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑧𝑧 + − 𝐸𝐸𝑓𝑓

1−𝑣𝑣𝑓𝑓2
�𝑣𝑣𝑓𝑓

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧2

ℎ𝑓𝑓
2�

−
ℎ𝑓𝑓

2�
𝑑𝑑𝑧𝑧+ −𝐸𝐸𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

1−𝑣𝑣𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙2
�𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)

2

𝜕𝜕𝑦𝑦2
� ∫ 𝑧𝑧 2𝑑𝑑𝑧𝑧

ℎ_𝑓𝑓
2 +ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

ℎ𝑓𝑓
2

               (20) 

𝑀𝑀𝑥𝑥𝑦𝑦
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙

𝑥𝑥𝑦𝑦
=− 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
1+𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2 

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 ∫ 𝑍𝑍2
−ℎ𝑓𝑓

2�

−
ℎ𝑓𝑓

2� −ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑧𝑧+− 𝐸𝐸𝑓𝑓

1+𝑣𝑣𝑓𝑓

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2 

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 ∫ 𝑍𝑍2
−ℎ𝑓𝑓

2�

−
ℎ𝑓𝑓

2�
𝑑𝑑𝑧𝑧+ 

− 𝐸𝐸𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙
1+𝑣𝑣𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2 

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 ∫ 𝑍𝑍2

ℎ𝑓𝑓
2 +ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

ℎ𝑓𝑓
2

𝑑𝑑𝑧𝑧   (21) 
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To simplify the calculation process, let  

   𝐴𝐴𝑓𝑓 =
 𝐸𝐸𝑓𝑓ℎ𝑓𝑓

3

12(1−𝑣𝑣𝑓𝑓2)
  (22) 

   𝐴𝐴 𝑢𝑢𝑢𝑢 =  𝐸𝐸𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙
3�1−𝑣𝑣𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙2�

�ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢3 +
3ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙

2 ℎ𝑓𝑓
2

+
3ℎ𝑓𝑓

2ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙
4

�  (23) 

 𝐴𝐴𝑙𝑙𝑢𝑢 =  𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
3(1−𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2)

�ℎ𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢3 +
3ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2 ℎ𝑓𝑓
2

+
3ℎ𝑓𝑓

2ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
4

�  (24) 

 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢=𝐸𝐸𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢 =𝐸𝐸𝑢𝑢𝑢𝑢    , 𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢=𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢 =  𝑣𝑣𝑢𝑢𝑢𝑢   , ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢=ℎ𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢=ℎ𝑢𝑢𝑢𝑢    and   𝐴𝐴 𝑢𝑢𝑢𝑢=𝐴𝐴𝑙𝑙𝑢𝑢=𝐴𝐴𝑢𝑢𝑢𝑢     

Substitute Equations 22, 23, and 24 into Equations 19, 20, and 21. As a result, the total moment is simplified to: 

 𝑀𝑀𝑥𝑥
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = −(2𝐴𝐴𝑢𝑢𝑢𝑢 + 𝐴𝐴𝑓𝑓)

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑥𝑥2
− (2𝐴𝐴𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢𝑢𝑢 + 𝑨𝑨𝒇𝒇𝑣𝑣𝑓𝑓)

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑦𝑦2
   (25) 

  𝑀𝑀𝑦𝑦
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙= −(2𝐴𝐴𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢𝑢𝑢 + 𝑨𝑨𝒇𝒇𝑣𝑣𝑓𝑓)

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑥𝑥2
− (2𝐴𝐴𝑢𝑢𝑢𝑢 + 𝐴𝐴𝑓𝑓) 

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2

𝜕𝜕𝑦𝑦2
  (26) 

 𝑀𝑀𝑥𝑥𝑦𝑦
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙=−(2𝐴𝐴𝑢𝑢𝑢𝑢(1− 𝑣𝑣𝑢𝑢𝑢𝑢) + 𝐴𝐴𝑓𝑓�1 − 𝑣𝑣𝑓𝑓�  )

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
2 

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
  (27) 

Substitute Equations 25, 26, and 27  in the equation of motion Equation 4: 

 -(2AAL + Af) 
∂4w(x,y,t)

∂x4
− (2AALvAL + Afvf)

∂4w(x,y,t) 
∂x2 ∂y2

+-2(2AAL(1− vAL) + Af(1− vf) ) 
∂4w(x,y,t) 
∂x2 ∂y2

+-

(2AALvAL + Afvf)
∂4w(x,y,t) 
∂x2 ∂y2

 − (2AAL + Af)
∂4w(x,y,t)

∂y4
-(2ρALhAL + ρhf)

∂w(x,y,t)
2

∂t2
= 0 (28)  

Equation 28 can be solved using the method of separation of variables by assuming a deflection function as specified in 
Equation 29 [30]: 

 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥,𝑦𝑦) ⋅ 𝑤𝑤(𝑡𝑡)  (29) 

Consider a rectangular plate with a length (a) and width (b), where all four edges are supported, as shown in Figure 2. To 
evaluate the plate's deflection behavior as a function of the x and y directions, satisfying the boundary conditions w=0 and 
M=0 on all four edges, the deflection equation of the plate as a function of x and y is given by Equation 30 [31], as shown in 
Figure 4. 

�∂
2 W2
∂x2

+ 𝑣𝑣 ∂2 W2
∂y2

��
(a,y)

= 0 and W(a, y) = 0 , �∂
2 W2
∂x2

+ 𝑣𝑣 ∂2 W2
∂y2

��
(0,y)

= 0  and W(0, y) = 0   

 �∂
2 W2
∂y2

+ 𝑣𝑣 ∂2 W2
∂x2

��
(x,b)

= 0 , W(x, b) = 0 , �∂
2 W2
∂y2

+ 𝑣𝑣 ∂2 W2
∂x2

��
(x,0)

= 0 𝑙𝑙𝑎𝑎𝑑𝑑 W(x, 0) = 0 (30) 

 
Figure 4: Rectangular plate (𝑙𝑙 × 𝑏𝑏) simply supported in all directions 
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When Applying the four boundary conditions, the displacement equation can be written as follows: 

 w(x, y) = sin m𝜋𝜋𝑥𝑥
𝑡𝑡

⋅ sin n𝜋𝜋y
b

(m, n = 1,2,3 … … … )  (31) 

By deriving Equation 31 with respect to the second derivative in the x-direction, y-direction, and XY, the fourth-order 
Equation  28 can be solved: 

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
4

𝜕𝜕𝑥𝑥4
= �

𝑓𝑓𝑚𝑚
𝑙𝑙
�
4

sin
𝑓𝑓𝑚𝑚𝑥𝑥
𝑙𝑙

sin
𝑎𝑎𝑚𝑚𝑦𝑦
𝑏𝑏

   𝑤𝑤(𝑡𝑡) 

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
4

𝜕𝜕𝑦𝑦4
= �

𝑎𝑎𝑚𝑚
𝑏𝑏
�
4

sin
𝑓𝑓𝑚𝑚𝑥𝑥
𝑙𝑙

sin
𝑎𝑎𝑚𝑚𝑦𝑦
𝑏𝑏

   𝑤𝑤(𝑡𝑡) 

 𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
4

𝜕𝜕𝑥𝑥4𝜕𝜕𝑦𝑦2
= �𝑚𝑚𝜋𝜋

𝑡𝑡
�
2
�𝑛𝑛𝜋𝜋
𝑏𝑏
�
2

sin𝑚𝑚𝜋𝜋𝑥𝑥
𝑡𝑡

sin 𝑛𝑛𝜋𝜋𝑦𝑦
𝑏𝑏

   𝑤𝑤(𝑡𝑡) (32) 

�−(2AAL + Af) �
mπ
a
�
4
− (2AALvAL + Afvf) �

mπ
a
�
2
�nπ
b
�
2
− 2�2AAL(1− vAL) +

Af(1− vf)� �mπ
a
�
2
�nπ
b
�
2
− (2AALvAL + Afvf) �

mπ
a
�
2
�nπ
b
�
2
− (2AAL + Af) �

nπ
b
�
4

 �  w(t)-

(2ρALhAL + ρhf) d
2w(t)
dt2

=0  (33)                                            

By comparison, the Equation 33 with Equation 34 can be easily identified as having a simple second-order form, yielding 
the result 𝜔𝜔𝑛𝑛2 : 

 𝑑𝑑2𝑤𝑤(𝑡𝑡)
𝑑𝑑𝑡𝑡2

+𝜔𝜔𝑛𝑛2𝑤𝑤(𝑡𝑡) = 0  (34) 

 ωn
2=�−(2AAL + Af) �

mπ
a
�
4
− (2AALvAL + Afvf) �

mπ
a
�
2
�nπ
b
�
2
− 2�2AAL(1− vAL) + Af(1−

vf)� �
mπ
a
�
2
�nπ
b
�
2
− (2AALvAL + Afvf) �

mπ
a
�
2
�nπ
b
�
2
− (2AAL + Af) �

nπ
b
�
4

 � /−(2ρALhAL + ρhf) (35) 

The sandwich used in the research is square such that a=b. 

 𝝎𝝎𝒏𝒏
 =� �−�2𝐴𝐴𝑢𝑢𝑢𝑢 + 𝐴𝐴𝑓𝑓� �

𝑚𝑚𝜋𝜋
𝑡𝑡
�
4
− �2𝐴𝐴𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢𝑢𝑢 + 𝐴𝐴𝑓𝑓𝑣𝑣𝑓𝑓� �

𝑚𝑚𝜋𝜋
𝑡𝑡
�
2
�𝑛𝑛𝜋𝜋
𝑡𝑡
�
2
− 2 �2𝐴𝐴𝑢𝑢𝑢𝑢(1− 𝑣𝑣𝑢𝑢𝑢𝑢) +

𝐴𝐴𝑓𝑓�1 − 𝑣𝑣𝑓𝑓�� �
𝑚𝑚𝜋𝜋
𝑡𝑡
�
2
�𝑛𝑛𝜋𝜋
𝑡𝑡
�
2
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  (36) 

In the theoretical section, Python was used to calculate the frequencies for each value of n,m=1,3 for the sandwich 
structure and the vibration modes were plotted as shown in the Figure 5. 

 
Figure 5: Computational analysis for natural frequencies of a sandwich structure using 
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4. The numerical investigation of sandwich panel with metal foam core  
The accuracy of the proposed analytical solution can be validated using numerical methods. Various numerical techniques 

are frequently employed for this purpose [32]. ANSYS Design Modeler provides a wide array of advanced modeling 
capabilities for simulation, including parametric geometry creation, conceptual modeling, automated cleanup and repair, and 
specialized tools for fluid flow and structural analyses. In this study, the finite element method (FEM), implemented in 
ANSYS software (version 2021 R1), was used to model the system. A three-dimensional model of a sandwich structure with a 
metal foam core was developed, applying appropriate boundary conditions to the plate edges for free vibration analysis, as 
shown in Figure 6.  The model was discretized using an 8-node SOLID186 element type with a carefully chosen mesh size, 
resulting in a total of 36356 elements, as depicted in Figure 7 and Figure 8. The mechanical properties of the metal foam core 
and the outer layers were assumed to be isotropic and were incorporated into the model under examination. Adhesive 
constraints were enforced at the interfaces between layers and between the layers and the outer skin of the sandwich panel to 
prevent [33]. Modal analysis was then performed on the models to identify the free vibration characteristics, such as natural 
frequencies and mode shapes, based on various parameters, as illustrated in Figure 9. 

 
Figure 6: Modal analysis of a simply supported sandwich panel 

 
Figure 7: Meshed model for finite element analysis 
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Figure 8: Meshed model for finite element analysis 

 
Figure 9: View of modal analysis of metal foam sandwich panel 

5. Results and discussion  
In this study, a new mathematical model was developed to evaluate the free vibration characteristics of sandwich panels 

with a metallic foam core, as explained in Equation 36. The effects of various foam core properties, which were theoretically 
calculated using the Gibson-Ashby model, as explained in Equation 1, were investigated. The natural frequencies of different 
metallic foam cores were provided based on varying foam densities. Additionally, the available software ANSYS 2021 R1 was 
used to validate the analytical solution. The obtained results were tabulated and plotted using multiple curves generated 
through Python programming. 

The material properties of the metallic foam core and the corresponding natural frequencies are presented in Table 1. The 
top and bottom faces of the sandwich panels were made of aluminum, with a mass density of 2700 kg/m³ and Young’s 
modulus of 70 GPa. The panel dimensions of the sandwich are  a=300 mm, b=300 mm, thickness of the metal foam =10 mm, 
and thickness of the aluminum skin =1 mm. 

Table 1 shows the natural frequencies calculated both numerically and analytically. The analytical natural frequencies 
were derived using Equation (36).  It was observed that there is a good agreement between the theoretical and numerical results 
for all values. There was great agreement of the fundamental natural frequency with discrepancies of less than 8.52% as shown 
Table 1 for the foam density of 350 kg/m³ when n,m=1n, m=1n, m=1. This indicates the accuracy and reliability of both 
methods in predicting the natural frequencies of the system under investigation. The close match between these approaches 
validates the model and assumptions used in the theoretical analysis. 

The numerical natural frequencies are generally observed to be lower than the theoretical values, which can be attributed 
to the fact that numerical models account for more realistic deformations and complex stress distributions, aspects that may be 
overlooked in theoretical models  [34]. This is evident in Table 1 and Figure 10. Figure 10 shows that the numerical 
fundamental natural frequencies follow a similar pattern to the theoretical ones, but with a variation that ranging from 1.14% to 
8.52% depending on the case. This suggests that numerical models provide results that are closer to reality compared to 
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theoretical models, especially when dealing with materials with complex properties, such as metallic foams. The discrepancy 
between numerical and theoretical results arises because analytical models often simplify assumptions, such as neglecting 
certain effects (e.g., nonlinear deformations, structural imperfections, and complex dynamic effects). These assumptions can 
lead to less accurate theoretical results compared to numerical simulations. On the other hand, numerical models (such as those 
using Finite Element Analysis, or FEA) take into account more material and structural effects, including stress and deformation 
distribution across the structure, and  nonlinear effects [35]. 

The accuracy of numerical simulations is highly dependent on mesh refinement. In FEA, the structure is divided into small 
elements (the mesh), as seen in Figure 7 and Figure 8 and the finer the mesh, the more detailed and realistic the results. 
However, finer meshes also require more computational resources, which increases the time needed for simulations. 

Table 1: Numerical and analytical natural frequencies of the metal foam core 

Density of aluminum 
foam  Kg/𝐦𝐦𝟑𝟑 

Elastic modules 
𝑬𝑬𝒇𝒇(Gpa)  by Gibson-Ashby 

n,m 
 

Numerical Natural 
frequency (Hz) 

Analytical  Natural 
Frequencyn(Hz) 

Discrepancies 
percent % 

350 1.18 n=1,m=1 739.66 808.51 8.52 
n=1,m=2 1658.7 2021.28 17.92 
n=2,m=1 1658.7 2021.28 17.94 
n=2,m=2 2428.7 3234.05 24.90 
n=1,m=3 2884.1 4042.56 28.66 
n=3,m=1 2884.1 4042.56 28.66 

450 
 

1.94 
 

n=1,m=1 728.97 772.23 5.60 
n=1,m=2 1690.8 1930.58 12.42 
n=2,m=1 1690.8 1930.58 12.42 
n=2,m=2 2535.7 3088.92 17.91 
n=1,m=3 3048.8 3860.79 21.03 

n=3,m=1 3048.8 3860.79 21.03 
550 
 

2.9 n=1,m=1 715 742.53 3.71 
n=1,m=2 1695.7 1856.33 8.65 
n=2,m=1 1695.7 1856.33 8.65 
n=2,m=2 2587 2970.13 12.90 
n=1,m=3 3118.5 3712.67 16.00 
n=3,m=1 3118.5 3712.67 16.00 

650 
 

4.06 
 

n=1,m=1 700 722.10 3.06 
n=1,m=2 1682 1805.26 6.83 
n=2,m=1 1682 1805.26 6.83 
n=2,m=2 2595 2888.41 10.16 
n=1,m=3 3151 3591.31 12.26 
n=3,m=1 3151 3591.31 12.26 

750 5.4 
 

n=1,m=1 687 698.21 1.61 
n=1,m=2 1667 1745.53 4.50 
n=2,m=1 166 1745.53 4.50 
n=2,m=2 2586 2792.84 7.41 
n=1,m=3 3101.8 3491.05 11.15 
n=3,m=1 3101.8 3491.05 11.15 

850 6.94 
 
 

n=1,m=1 674 681.75 1.14 
n=1,m=2 1645 1704.39 3.48 
n=2,m=1 1645 1704.39 3.48 
n=2,m=2 2569 2727.02 5.79 
n=1,m=3 3094.8 3408.77 9.21 
n=3,m=1 3094.8 3408.77 9.21 

1000 9.6 n=1,m=1 652.26 662.41 1.53 
n=1,m=2 1595. 1656.03 3.69 
n=2,m=1 1595. 1656.03 3.69 
n=2,m=2 2499. 2649.65 5.69 
n=1,m=3 3081.9 3312.06 6.95 
n=3,m=1 3081.9 3312.06 6.95 

Influence of Density on Natural Frequencies is shown in Table 1 and Figure 10 and Figure 11. The effect of density on 
natural frequency is clearly noticeable. As the material density increases, the natural frequency decreases. For instance, at a 
density of 350 kg/m³, the theoretical natural frequency for the mode (n=1, m=1) is 808.51 Hz, while at 1000 kg/m³, the 
theoretical frequency drops to 662.41 Hz. The relationship between stiffness and mass can explain this decrease in frequency 
with increasing density [36]. Gibson and Ashby [26], explained the relationship between density and stiffness in cellular 
materials like metallic foam, where mass increases with density, leading to a decrease in the natural frequencies of structures. 
This aligns with the findings of the current study, where increasing density results in lower natural frequencies. Similarly, 
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Ashby et al. [37], examined the effect of density on structural properties and found that higher-density materials reduce natural 
frequencies due to increased mass, reinforcing the concept of balancing mass and stiffness for optimal performance. Gao et al. 
[8], confirmed the inverse relationship between density and natural frequencies, supporting the theoretical and numerical 
results obtained. Finally, Elettore [38] demonstrated that panels with lower densities exhibit higher natural frequencies than 
those with higher densities. All of these previous studies corroborate the findings of our current study.  

However, lower densities (350-450 kg/m³) may be advantageous in scenarios where reducing weight is crucial. Despite a 
higher discrepancy (8.52% at 350 kg/m³), lower densities are beneficial in lightweight applications, like automotive and 
aerospace design. Thus, the optimal density selection depends on the specific requirements: higher densities are ideal for 
precision, while lower densities are suitable when weight reduction is a priority. On the other hand, the increase in Young’s 
modulus, which rises with increasing density, directly affects the natural frequency of structures. The natural frequency of any 
system depends on both mass and stiffness, and Young’s modulus is a measure of material stiffness. As Young’s modulus 
increases, the stiffness of the material also increases, meaning the material becomes more resistant to deformation when 
subjected to external loads. 

 
Figure 10: Relationship between density with analytical and numerical natural frequencies 

Recent research supports the relationship between Young’s modulus and natural frequency, showing that as Young’s 
modulus increases, the material's stiffness also increases, leading to higher natural frequencies, assuming mass remains 
constant. A study conducted on composite materials reinforced with shape memory alloy confirmed this effect, where 
increased stiffness resulted in a significant rise in the natural frequency [26]. This reinforces the correlation between stiffness, 
Young’s modulus, and natural frequencies. 

The vibration mode analysis of aluminum foam composite panels was conducted using both analytical models and 
numerical simulations, as shown in Figure 12 (a-f) and Figure 13 (a-f). The graphs derived from numerical analysis (generated 
using ANSYS software) and theoretical calculations (computed using Python) illustrate the natural vibration behavior of the 
composite panel. These graphs illustrate the varying vibration patterns of the sandwich as the constants n and m are altered. 
The primary purpose of these graphs is to simulate the behavior of the composite panel under free vibrations. These visual 
representations provide insight into the deformation patterns and displacements that occur on the surface of the panel at each 
natural frequency. The graphs assist engineers in identifying vibration modes (mode shapes) and the corresponding natural 
frequencies in the system. 

The Python-generated graphs aim to compare the natural frequencies calculated analytically (using theoretical equations) 
with those obtained numerically through ANSYS. This comparison helps ensure the accuracy of the theoretical models and 
validates their results against numerical data. The Python plots also show the relationship between density and natural 
frequency, which aids in optimizing the panel design based on material properties such as density and Young’s modulus. 

The identification of vibration modes is crucial for detecting critical resonances that may lead to mechanical failure or 
permanent deformation of the panel  [32]. By analyzing these modes, engineers can improve the structural design to enhance 
resistance to detrimental vibrations, thus extending the lifespan of components made from aluminum foam. Comparing the 
numerical and analytical results vibration modes must be identified to detect critical resonances that could cause panel failure 
or permanent deformation. Analyzing these modes allows engineers to improve the structural design to reduce vibrations and 
extend aluminum foam component the lifespan. Free vibration analysis optimizes panel density and stiffness for aerospace and 
automotive applications. Ensuring the accuracy of the theoretical models and confirms their alignment with real-world 
behavior, when the results closely match, engineers can rely on the analytical models to perform calculations more efficiently, 
saving time and effort. This validation process helps ensure that theoretical approaches are reliable for future use in design and 
analysis. Although the numerical and analytical models yielded promising results, it is important to note that the model is 
based on Classical Plate Theory, which assumes a specific thickness and material homogeneity. This approach is commonly 
accepted in studies involving metallic foams for simplification purposes. However, these assumptions may not accurately 
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capture the behavior in more complex applications, as the model employs simply supported boundary conditions. 
Consequently, the generalizability of the findings to other structures is limited, particularly as the study focused only on 
different densities of homogeneous metallic foam. 

 
Figure 11: Analytical natural frequency at diffrent n,m 

  
(a) mode shape at n=1, m=1 (b) mode shape at  n=1, m=2 

  
(c) mode shape at n=2, m=1 (d) mode shape at n=2, m=2 

  
(e) mode shape at n=1, m=3 (f) mode shape at n=3, m=1 

Figure 12: Effect  of varying mode numbers (n, m) on analytical natural frequencies of aluminum foam sandwich panel 
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(a) mode shape at n=1, m=1                                                           

 
 (b) mode shape at n=1, m=2    

 
 (c) mode shape at n=2, m=1       

 
 (d) mode shape at n=2, m=2 

 
                      (e) mode shape at n=1, m=3                                                      (f) mode shape at n=3, m=1 

Figure 13: Mode shape of aluminum foam sandwich panel with density foam 1000  kg/m3 using ANSYS 
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6. Conclusion 
This study demonstrated that aluminum foam sandwich panels exhibit excellent vibrational properties, making them highly 

suitable for lightweight structural applications. The comparison between numerical and analytical models showed a strong 
correlation, validating the analytical approach. 

Key findings include: 

1) The study developed a mathematical model using Classical Plate Theory (CPT) to predict the natural frequencies of 
sandwich panels with an aluminum foam core. The model was validated using Finite Element Analysis (FEA) in 
ANSYS, demonstrating strong agreement between analytical and numerical results. 

2) Increasing the foam density decreases natural frequencies due to the added mass, while a higher Young’s modulus 
increases stiffness, resulting in higher frequencies. 

3) The optimal density range of 750-1000 kg/m³ provided the smallest discrepancies (1.14%) between numerical and 
analytical models, indicating its suitability for applications requiring vibrational stability and precision. 

4) Although higher densities offer precision in vibrational stability, lower densities (350-450 kg/m³) are advantageous 
for applications prioritizing weight reduction. 
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