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Abstract 

   We study the interplay between notions of quasi-randomness for 

hypergraphs. In particular, we show a strong connection between 

discrepancy-type measures of quasirandomness in the hypergraph setting. 

Exploiting this connection, we provide a long list of disparate quasirandom 

properties and show that these properties are all equivalent (in the sense of 

Chung, Graham, and Wilson) with polynomial bounds on their 

interdependences. 

Keywords: Graph, Hypergraph, Quasirandom, Cayley hypergraphs. 

 

The research is extracted from the thesis of the first researcher. 

1. Introduction 

     Pseudo-random features can be informally thought of as random 

certificates for the object in question. Given a class of composite objects, 

such as 3-uniform graphs or hypergraphs, we say that a (definite) property of 

these objects is a pseudo-random property if it satisfies two conditions: a 

uniform random object of that class, this satisfies the property with high 

probability. 

Any object that satisfies this property will behave like a random object in 

other ways. In such cases, just knowing that an object has some quasi-random 

properties gives a lot of information about its behavior in many ways. Then 

such objects are called pseudo-random. The concept of pseudorandomness 

was originally introduced in the setting of graphs in a paper by Chang, 

Graham, and Wilson [10]. 

After the introduction of pseudorandom graphs, Chang and Graham [7, 8] 

and Kohayakawa, Roedel, and Skokan [19] undertook the task of 

generalizing such concepts to cloud graphs. They considered uniform k-

supergraphs (k-graphs) that mimic the random supergraph G
(k) 

(n, p), where 

each set of k elements in  is chosen as an independent edge 

to be with probability p.  
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This lack of correlation in the presence of edges leads to strong uniformity 

properties that make it easy to work with stochastic hypergraphs. It was then 

shown that some of these good features form an approximate equivalence 

class of similar stochastic features. The main concept in Chang and Graham's 

work was the deviation of a super graph. 

According to the K-graph H, we write v (H) and e (H) to represent the 

number of vertices and edges in H (respectively) and we write δ (H) to 

represent its edge density. The skewness of a hypergraph can be considered 

as a measure of the skewness of its edge distribution, which is supposed to 

mimic a random distribution. Officially by: 

 
Where H (x1, … , xk) represents the edge marker function 1[{x1, . . . , xk} ∈ 

E(H) ] . It is always true that 0 ≤ deck (H) ≤ 1, and it can be shown that 

random hypergraphs have very small deviations with high probability. 

In contrast, the central concept in the works of Kohayakawa, Rodel, and 

Skukan was the divergence of a hypergraph, which quantifies the distance 

from a uniform distribution of its edges when measured against low-order 

structures. In their paper, these low-order structures are represented by k-cuts 

of (k − 1) graphs, but here we will work with the slightly more general notion 

of (k − 1)-cuts. The variance of a k-graph H is then defined by: 

 
Where we use the same symbol for a set S and its indicator function 1[x ∈ S]. 

It is not hard to show that random supergraphs have very small variances 

with high probability. Both deviation and variance can be viewed as pseudo-

random measures. 

Another statistic that can be accurately estimated in random hypergraphs is 

the count of different smaller hypergraphs that occur as subgraphs. Given two 

supergraphs F and H, denote the number of labeled copies of F in H by NF 

(H). If H is a random supergraph G
(k) 

(n, p), then the expected value is NF(H). 

 
Moreover, NF (H) is strongly concentrated around this expected value. It was 

shown by Chang and Graham [7, 8], and by Kohayakawa, Roedel, and 

Skokan [6] that large pregraphs H have a small deviation ((devk (H) = O (1))) 

or small difference. 
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(disck-1 (H) = O (1)) It should contain approximately the expected number of 

all subgraphs of finite size. 

NF (H) = δ(H) 
e(F

) v(H) 
v(F)

 + o(v(F)
 2

 v(H) 
v(F)

 ) A special role in their results 

is played by the octagon. K-Octagon Oct
(k)

 is a graph of a complete k-part 

graph where each vertex class has exactly two vertices. Note that the 

deviation from a k-diagram H can be interpreted as the weighted average of 

the number of octagons Oct
(k)

, 

When the weight is given by the balanced indicator function H (x1, . . ., xk) − 

δ(H). In [19] it was shown that Oct(k) is complete for the pseudorandom 

concepts presented above: any k-graph H that has approximately the "correct" 

ratio of subgraphs isomorphic to Oct
(k)

 - meaning the expected ratio In a 

random hypergraph with the same edge density - it will mean pseudo-

random. In particular, it follows that H will also have approximately the 

correct proportion of any other fixed (finite-sized) k-graph F as subgraphs. 

Despite these results, and in contrast to the simpler set of graphs, it turns out 

that there are several distinct equivalence classes of pseudorandom concepts 

for hypergraphs. These different classes and their interrelationships were 

studied by Chang [5], Kuhayakawa, Nagel, Rödel, and Schacht [18], Kenlon, 

Hahn, Person, and Schacht [11], Lenz and Mebei [20] and Tausner [21]. 

They got. Name a few. 

Let d and k be integers with 1 ≤ d < k and let H be a K-uniform hypergraph. 

D-difference H is defined by: 

 
Where the maximum is taken over all Sets of d-subsets of V(H)

d
 indexed 

by d-subsets [k]. It is a measure that shows how far the edges of H are from 

the uniform distribution against structures of order d. If the difference d from 

H is small, we consider it pseudorandom of order d. More formally, we say 

that H is ε-pseudorandom of order d if (H) ≤ ε discd. 

The concept of deviation can be extended to other arrangements as well. We 

define d as the deviation from H, denoted by devd(H). 

 
Just as k deviation devk(H) can be viewed as a weighted number of Oct

(k)
 

octagons, so d deviation can be viewed as a weighted number of Oct
(k)

 

octagons, which by adding k − d additional vertices are formed by Oct
(d)

 and 

their connections to each of the edges. Chang [5] showed that any k-diagram 
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that has a small d deviation must also have a small (d-1)-difference. 

However, as observed by Lenz and Mbei [20], the other direction does not 

hold and the two concepts are distinct. 

Kohayakawa, Nagel, Rödel, and Schacht [18] proved that pseudorandomness 

of order 1 (also called weak pseudorandomness) is sufficient to control the 

number of any linear hypergraph, that is, those in which every pair of edges 

intersects at most one vertex. 

After that, Kenlon, Hahn, Person, and Schacht [11] showed that there exists a 

linear supergraph M1
(k)

 that is complete for the concept of weak 

pseudorandomness: if a supergraph H has approximately the expected 

number of isomorphic subgraphs M1
(k)

, then it is necessarily pseudorandom. 

It is weak. Lenz and Mbei [20] determined the semantics between several 

pseudo-random concepts. 

These results were eventually extended by Taussner [21], who presented 

many equivalence classes of pseudorandom concepts—including all those 

previously studied—and obtained the interrelationships between those 

classes. He proved that pseudorandomness of order d is equivalent to having 

a suitable number of all d-linear supergraphs, i.e., those in which every pair 

of edges intersect at most d vertices, and also having a small deviation of a 

certain type. He also constructed a special linear d k-diagram Md
(k)

 that is 

perfect for pseudorandomness of order d.  

We refer the reader to Chang's website [4] for a long list of references. In this 

paper, we will consider supergraphs and focusing on the relationships 

between the corresponding pseudo-random properties. 

2. Preliminaries: Pseudorandom Concepts 

Here we collect the necessary notation used throughout the paper and 

formally introduce pseudorandom concepts in hypergraphs. For a more in-

depth explanation, we refer the reader to a recent survey [3]. 

2.1.Pseudorandom supergraph 

For every integer there is a related equivalent class of pseudo-

random concepts for k-diagrams that are roughly related to uncorrelation with 

structures of order d. We will examine several of these pseudorandom 

concepts below. 

Difference 

For us, the central pseudo-random concept of supergraph is related to the 

mismatch of its edge distribution along cuts of a certain order. Variance is a 

measure of how far the edges of the hypergraph are from a uniform 

distribution, and can be measured using the cutoff norm defined below: 
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Definition 2 (norm cutoff). Let k, d ≥ 1 be integers with d < k, and let V be a 

finite set. We define the d-cut norm of a function f: V
k
 → R by: 

 
Where is the maximum over all sets of the set , that each SB is a subset 

of V
B
. 

Intuitively, the more uniformly distributed the edges of a hypergraph, the 

value of  is smaller. Since the edges of a random supergraph are 

usually uniformly distributed, we can consider the (soft) small-cut norm as a 

pseudo-random property for supergraphs. More accurate: 

Definition 3 (difference). The difference d of a k-graph H is defined by: 

Where:
 
  

Given ε > 0, we say that a k-graph H is ε-pseudorandom of order d if discd(H) 

≤ ε. 

It is easy to understand from the definition of the cut norm that: 

 

 
Etc: 

 
Therefore, a k-graph that is ε-pseudorandom of order d will also be ε-

pseudorandom of order ℓ for all ≤ d ≤ ℓ 1. 

Notice The concept of mismatch used in the works of Chang [5] and 

Kuhayakawa, Roedel, and Skukan [19] was slightly different from the one 

presented above. We recall it below and call it the category difference. Given 

a -graph G, let  denote the set of k-sets in G (ie, the set of k-sets of 

vertices whose d subsets are all edges of G). The dissimilarity d-category of a 

K-uniform supergraph H is defined as: 

 
Where the maximum is on all d-graphs of G in the same vertex set of H. This 

concept is formally very similar to  pseudorandom our measure of 

order d (when we open all symbols), and it can be shown that the two 

quantities are polynomially related. We consider d-category difference and d-
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difference as one concept in different guises and for technical reasons we 

have chosen to use the latter. 

Counting hypergraphs 

An important statistic for having a large supergraph H is the number of 

different smaller supergraphs F that occur as a subgraph. A convenient way 

to count such copies with homomorphism density: 

Definition 4 (homomorphism density). Let F and H be two k-diagrams. The 

homomorphism density of F in H, denoted by t(F, H), is the probability that a 

randomly chosen map φ: V (F) → V (H) preserves edges. 

Equivalently, homomorphism density can be defined by the formula: 

 
It makes sense when H is edge-weighted. This weight item will also be used 

later. Notice that: 

 
Where NF(H) is the total number of labeled subgraphs of H that are 

isomorphic to F, statements about the number of subgraphs in large 

hypergraphs can be translated into statements about homomorphism density 

and vice versa. 

An important class of hypergraphs in our results is as follows: 

Definition 5 (d-linear hypergraphs). If both edges of H intersect at most d 

vertices, a hypergraph H is said to be d-linear. We denote the set of all d-

linear k-diagrams by  

It was proved by Tausner that pseudorandomness of degree d is necessary 

and sufficient to control the number of any d-linear supergraph. See Theorem 

3 below. 

Deviation 

Recall that the k-octet Oct
(k)

 is a complete k-partite graph where each vertex 

class has two vertices. They are generalized by a squashed octagon, which is 

defined as follows: 

Definition 6 (squashed octagon). According to the integers ≤ d < k 1, the 

squashed octagon  is defined as graph k in the set of 

vertices whose set of edges is given by: 
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Following Chang [5], we define the deviation d of a k-graph by H: 

 
Note that this is equal to the squashed octagon with weight number 

. 

Octagonal norms 

Octagonal norms provide an alternative measure of strong 

pseudorandomness, based on a weighted count of octagons. Their definition 

is basically due to Gowers [15]. 

 

Definition 7 (octagon norm). According to the function f: V
k
 → R, we define 

its (soft) octagonal norm by: 

                                   

Where we write  

It can be shown that the expectation on the right-hand side of (1) is non-

negative for any real function f and indeed defines a norm . An 

important property of the octagonal norm is that it has a generalized inner 

product denoted by , which for 2
k
 functions we define 

by: 

                      
With this product, we have the inside . A very useful 

property of octagonal norms and related inner products is that they satisfy a 

kind of Cauchy-Schwartz inequality. This result was first established by 

Gowers (albeit with a different notation), and is now known as the Gowers-

Cauchy-Schwartz inequality: 

Lemma 1 (Gowers-Cauchy-Schwartz inequality). For any set of functions 

fω: V 
k
 → R, ω ∈ {0, 1} 

k
, we have: 

 
This lemma is proved through frequent applications of the Cauchy-Schwartz 

inequality. See for example [3, Section 4.5] for proof. As a result of the 



  ساسسايةمجلة كلية التربية الا
 الجامعة المشتهصرية –كلية التربية الاساسية 

                              

Journal of the College of Basic Education Vol.31 (NO. 130) 2025, pp. 35-17 

                                                              

 April  )0203(  نيشاى                                         الاساسية التربية كلية مجلة

 52 
                                                                                                                            

 

 

 

 

Gowers-Cauchy-Schwartz inequality, it can be easily shown that octagonal 

norms are stronger than cut norms: 

Lemma 2. For every function f: V k → R we have:  

 Proof of the given functions , let be the  

function defined by where ωB ∈ {0, 1} [k] is the index vector 

of the set B. Also show that f1 = f and fω ≡ 1 for all ω ∈ {0, 1} 
[k]

 \ {1} not in 

the set  

Using Gowers-Cauchy-Schwartz inequality we conclude that since clearly: 

 

 
Since clearly  for all , the last product 

is the maximum. Since this inequality is valid for all functions 

: [1, 0] → VB, the claim follows. 

2.2. Hypergraph equivalence theorem 

In the following, we will present Tausner's theorem, which relates multiple 

pseudorandom concepts for any order d ≥ 1. We begin by constructing 

hypergraphs that are complete for these concepts. 

According to k-graph K-partite F with vertex partition Xk, . . ., X1 and a d-

set of  indices, we define the I-doubling of F as a supergraph dbI (F) 

that takes two copies of F and identifies the corresponding vertices in classes 

Xi, for all i ∈ I it will be obtained. The set of vertices is exactly I-double. 

 
Its edge set is the set of all k-sets of the form 

 
where {0, 1} ∈ a and {x I: i ∈ [k]} is an edge of F. It starts with a k-partite 

supergraph with k vertices and a single edge, and then sequentially applies 

dbI to each  (in arbitrary order). We obtain a k-diagram which we 

denote by.  

Below we reproduce a quantitative version of Tausner's original result [21]. 

This version can be obtained through the methods presented in [1]. 
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Theorem 3 (equivalence theorem for pseudorandomness of order d). Let ≤ d 

< k 1 be integers and let H be a uniform k-supergraph with edge density δ. 

Then the following polynomial properties are equivalent: 

(i) H has a small d-difference: discd(H) ≤ c1. 

(ii) H correctly enumerates all linear hypergraphs of d: 

 

(i) H has a few copies of :  

(ii) (v) H has a small deviation relative to : 

 
 

Examples to consider: 

It may be helpful to have a concrete example in mind for each of the 

pseudorandom concepts we consider. In the following, we provide such 

examples by exploiting the well-known pseudo-random properties of 

quadratic residuals. Let p be a large prime number and denote by Qp the set of 

quadratic residues of p: 

 
This set has size (p + 1) / 2 and was shown by Foury, Kowalski, and Michel 

[12] to be as nearly pseudorandom as possible, in the sense that 

 
This bound is of the same order as expected from a random function with 

value {1, 1−}, while for any function with value {1, 1−} we have f in Fp, 

. 

We define a k-graph representation as a hypergraph whose 

vertices are elements of Fp and where { , ...,  } is an edge if 

∈ From the properties of quadratic residues, we see that P
(k)

 

has edge density O(1) + 1.2 and satisfies 

 
Where the inequality follows from Lemma 2 and the first equality follows 

from a simple change of variables in the expression defining the norm U
k
 

(norm) (see Lemma 3 in the next section). This hypergraph was previously 
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considered by Chang and Graham [7] as an example of a pseudo-random 

hypergraphs. 

Now fix some integer 2 ≤ d < k, and let be  the k-categories 

encoding the supergraph in . More precisely, the vertex set is Fp. 

and a k-set { } ⊂ Fp, is an edge if: 

 

The edge density  is exactly the homomorphism density of k -categories 

in  which (with pseudo-randomness ) is equal to 

. 

It is easy to show , since any set of witnesses for (d-1)-

large differences  can be turned into witnesses. (d - 1)-sets a large 

difference  (and these cannot exist). Finally, we mention this point: 

 

It follows that  the pseudorandom is of order d - 1, but it is not 

pseudorandom of order d. 

 

3. Uniformity and quasi-random connection 

Our main technical result is that the monotonicity of a given degree d for a 

polynomial set A is equivalent to the pseudorandomness of the same order d 

for the  Cayley supergraph, for any value k > d. This generalizes the 

theorem of Aigner Horev and H`an [2], which considers the special case 

where d = 1. 

Recall that a k-k-graph H is ε-pseudorandom of order d if , 

and the set A ⊆G is ε-uniform of degree d if  where . 

Our main result is as follows: 

Theorem 4 (Theorem 1 restated). Let d ≥ 1 be an integer and ε ∈ (0, 1). Let 

G be a finite additive group and A ⊆ G be a subset. 
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 (i) If A is ε-uniform of degree d, then for all k ≥ d + 1, the  Cayley ε-

pseudorandom supergraph is of order d. 

(ii) Conversely, if  ε is a -pseudorandom of order d for some k ≥ d + 1, then 

A 2εck,d is uniform of degree d. Here we can take . 

As might be expected from the bounds given in this statement, the proof of 

statement (ii) is much more than that of statement (i). Both proofs are 

rudimentary in the sense that they only use the triangle and Cauchy-Schwartz 

inequalities, but the Cauchy-Schwartz applications needed to prove 

proposition (ii) are somewhat triadic and require careful analysis. 

Proof of statement (i). Let fA: = A - δ be the balanced indicator function of 

set A. Choose optimal functions uB: G
B
 → [0, 1], such that: 

 
We may separate the first d+1 variables x[d+1] from the others and write 

them [22]: 

 
where the first expectation is greater than G

[k]\[d 1]
 and the second expectation 

is greater than G
[d + 1]

. 

 

Now we fix x[k]\[d + 1] ∈ G[k]\[d + 1] and consider the internal expectation 

in the last term. Writing y: = Σ(x[k]\[d 1]), this expression can be written as: 

 
For some appropriate functions , and therefore has an 

absolute maximum value 

 

 
Since the octagon norm is stronger than the cut norm (Lemma 2), this last 

expression is maximal  (where we used Lemma 3). 

Averaging over x[k]\[d + 1] ∈ G
[k]\[d + 1]

 and using the triangle inequality we 

conclude that as desired   

The rest of this section will be devoted to the proof of proposition (ii). 
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3.1. Proof that pseudorandomness implies uniformity 

Prove an additive group G and integers k, d ≥ 1 with k ≥ d + 1. We want to 

show that A ⊆G is uniform of degree d whenever  the pseudorandom is of 

order d. Our proof will proceed through an iterative argument, where we 

construct and analyze several systems of linear forms defined in G. 

3.1.1. Linear systems and norms 

We consider only linear forms: G
V
 → G: φ whose coefficients are 0 or 1, 

where V is a finite index set for the variables. These forms can be 

characterized by their support: this is the subset supp(φ) ⊆ V such that [23]: 

 
A set of linear forms Φ = {φ1, . . . , φm} is a linear system and its support is 

the union of the supports of all its constituent forms:  

following Green and Tao [17], we say that a linear system Φ = {φ1, . . . , φm} 

is of s-normal form if, for each i ∈ [m], there exists a subset ζi ⊆ supp(φi) of 

size at most s + 1 that does not exist entirely in supp(φj) for any . . The 

importance of this concept is illustrated by the next result, which is primarily 

due to Green and Tao. For proof see [17, Appendix C] or [16, Section 2]. 

Lemma 4. If Φ = {φ1, . . . , φm} is a linear system in s-normal form, then for 

all functions f1, . . . , fm : G → [−1, 1] we have. 

A certain set V0: = {(0, 1), (0, 2), . . ., (0, k)} is one of the indices of the 

variables of our linear forms, which is considered separately from the others 

and will play an important role in our arguments. In general, this set of k 

variables represents the ones we care about, while the other variables are just 

to aid the analysis and are eventually replaced by appropriately chosen 

values. Considering the linear form of φ, we define its weight w0(φ) as the 

number of variables in V0 that it uses: w0(φ): = |supp(φ)∩V0|. The weight of 

a linear system Φ is the maximum weight One of its forms is: w0(Φ) = 

max{w0(φ): φ ∈ Φ}. 

In our analysis, we need a cut-type semisoft associated with linear systems, 

which serves to bridge the gap between the U 
d + 1

 norm for additive sets and 

the d-cut norm for their Cayley supergraph. 

Definition 11 (cut type norms). Let Φ be a linear system on G and denote V 

(Φ)=V0 ∪ supp(Φ). According to the function f: G → R, we define: 
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We can now give an outline of our proof of proposition (ii). We will proceed 

through an iterative algorithm, where at each step we have a linear system Φs 

characterized by its linear form support. We start with Φ0, which contains 

only the linear form supported by V0, which then has weights k ≥ d + 1. 

Whenever the considered system Φs has a form φ with a weight higher than 

d, we replace φ with 
2d+1

 − 1 'dual'. Forms of much lower weight, thus 

creating a Φs + 1 system. The important point here is that the cut-type norms 

of the Φs and Φs + 1 systems are related (by some Cauchy-Schwartz magic 

trick). We stop as soon as all shapes in Φs weigh most d. Since the weights 

are bounded by d, we can then bound the associated norm based on the 

usual d-cut norm. Furthermore, we show that the first norm is bounded 

from below by the norm Ud + 1. Then this statement is followed by applying 

the resulting norm inequalities to the balanced index function A - δ of the 

considered set A ⊆ G. 

3.1.2. Dual line shapes 

It remains to present the concept of dual linear forms for use in our algorithm, 

which is motivated by the concept of U 
d + 1

 - dual function. For the function 

f: G → R, its dual function D d + 1, f is defined by: 

 

So that we can write . Dual linear forms are meant to 

mimic this concept but with an assumed "heavy" form of φ. Let φ: GV → G 

be the linear form of the weight w0(φ) ≥ d + 1, and let Id be a set of d + 1 

elements distinct from V. For each ω ∈ {0, 1} d+1\{0}, we define a 

linear form with  such that [25]: 

 
This can be achieved in the following way: 

Definition 12 (dual figures). Given the linear form φ with weight w0(φ) ≥ d + 

1, let Id be a copy of the set {1, 2, . . ., d + 1} which is separate from supp(φ) 

∪ V0 and write 

 

For each ω ∈ {0, 1}, we define a  linear form (with coefficients 0 or 1) 

with: 
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In other words,  it is constructed from φ by replacing the variables 

indexed by (0, ji) with ωi = 1 by new variables. Note that it does not matter in 

which order we label the elements in supp (φ) ∩ or , since the resulting 

forms will be equivalent to any labeling. Note also that this definition 

satisfies equation (3): writing V to support φ and performing a change of 

variables: 

 
We see it.  

 

3.1.3. The main algorithm and its analysis 

Consider the following algorithm:   

System Cut. (k, d) algorithm 

 

1. 

 
We will show this algorithm: 

Lemma 5. For every finite function f: G → [−1, 1] we have: 

1.  

2.  

3.  
4.  is in d-normal form for all s ≥ 1. 

5.  
 

With the help of this lemma, statement (ii) of Theorem 4 is easily obtained: 
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Proof of Theorem 4. (ii). Suppose  that ε-pseudorandom is of order d. 

Using case 2 of Lemma 5, we obtain  for Application of 

item 4 

Recursively from s = sf - 1 to s = 1, we conclude that . Using 

item 1 together with the bound  from item 5, we deduce that. 

 

And so A is 2εck,d-uniform of degree d for . 

Then it suffices to prove Lemma 5, which we do in the next step. 

Proof of Lemma 5. Throughout this proof, we will denote the support of the 

linear system Φs by Vs, that is: . Note that  ⊂  ⊂ … ⊂ . 

Case 1. Using identity (3) (which motivated our definition of dual forms), we 

have that: 

 

 
Since , this last term is a maximum , as you want. 

Case 2. By the definition of sf, we have that w0(φ) ≤ d for all φ ∈ Φsf. 

Choose optimal functions: G → [−1, 1] uφ, φ ∈ Φsf, so that: 

 
By the averaging principle, we can fix the variables indexed by Vsf\ V0 to a 

fixed value  

 
Note that each function in the above product depends on at most d variables 

xV0, so we can write it as hB(xB) for some set B⊂ V0 of size at most d and 

some function: GB → [−1, 1] write hB. It results that: 
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Decompose each function hB in the above expression into its positive part 

h′B: = max {hB, 0} and its negative part h′′B: = max {−hB, 0}, so hB = h ′ B 

− h ′ Write B. By opening the resulting product into  expressions and 

using the triangle inequality, we conclude that this expression is bounded: 

 

 

This is exactly , what completes the proof. 

Case 3. Prove 1 ≤ s ≤ sf and let φ ∈ Φs be of any form. By construction, we 

have that  for some ω ∈ {0, 1} and some 0 ≤ t < s (where ψt ∈ Φt is 

the heavy form chosen by the algorithm at step t). Copy Id = [d + 1] used in 

step t with {(t + 1, 1), . . ., (t + 1, d + 1)} show, and write: 

 
Then it is  easy to check that it is the only form in Φs∪{ΣV0} that is 

supported: 

 
Finally, ΣV0 is the only form in Φs ∪ {ΣV0} that uses all variables (0, d + 1), 

..., (1, 0). And so this system is in d-normal form. 

 

Case 4. Choose the optimal functions uφ: uφ: G → [−1, 1], φ ∈ Φs, so that: 

 
We shift our focus to the function uψ, where ψ = ψs ∈ Φs is the linear form of 

the maximum weight selected by the algorithm at step s. We can rewrite the 

above expectation as , where: 

 
Note that , since all functions in its definition have a limit of 1. Since 

, we have by Cauchy-Schwartz: 
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Now we use the fact (from Item 3.) that Φs ∪ {ΣV0} is in d-normal form. 

Since all the expected expressions above have bound 1, we conclude by 

Lemma 4 that this last expression is maximal  and therefore: 

 

 

Then we closed  .notice that: 

 

 
By constructing  linear forms, we have for each constant: 

 
It results that: 

 
 

Since , this last term is the maximum 

. Then we conclude with inequality (4): 

Case 5. Denote the final value of sf in the SystemCut(n,d) algorithm by sf(n) 

(that is, when V0| = n|). We will show by induction that sf(n) < (2d + 2) n for 

every n ≥ 1.First, we note that sf(n) is equal to the number of times we enter 

the loop in the pattern rhythm. In particular, sf (n) = 0 if n ≤ d, as in this case 

 (Σ ) = n ≤ d and we do not enter the loop. This takes care of the base 

case for induction. 

After we first enter the loop, we replace the shape Σ  of weight n with 

shapes  that have weights. 
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It results that: 

 
By induction hypothesis, we have: 

 
Using 1 + x ≤ ex for all x ≥ 0, we conclude that: 

 
Which concludes the proof by induction. 
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