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ORIGINAL STUDY

Optimizing Hydrological Pan Evaporation
Prediction Using Advanced Machine Learning
Techniques with Spectral Clustering

Labib Sharrar

Electrical, Computer and Energy Engineering Department, Faculty of Engineering, University of Colorado, Boulder, CO, 80309, USA

ABSTRACT

Accurate prediction of pan evaporation remains a significant challenge due to inconsistencies across different climatic
regions. This study aims to enhance pan evaporation estimation by developing a robust hybrid machine learning (ML)
model that integrates spectral clustering with advanced regression techniques, specifically the Histogram-based Gradient
Boosting Regressor (HGBR) and Extreme Gradient Boosting Regressor (XGBR), to improve prediction accuracy and
adaptability across diverse environments. The research developed a novel methodology by employing spectral clustering
for models’ performance enhancement, followed by rigorous hyperparameter tuning, sensitivity analysis to assess the
impact of individual features on each model. Finally, models underwent lack of fit test to confirm model adequacy and
usability. The findings of the study revealed that the HGBR model outperformed the XGBR, this is evidenced by its
consistent training and testing results (training R2 of 0.94 and RMSE of 1.34; testing R2 of 0.92 and RMSE of 1.45) both
training and testing observed close enough for judging on the robustness of the model compared to the XGBR (training
R2 of 0.96 and RMSE of 1.11; testing R2 of 0.91 and RMSE of 1.48) which raises the issue of overfitting due to large
gap between the R2 values for training and testing. These results demonstrate the HGBR model’s superior robustness
and reliability for predicting pan evaporation. The research contributes significantly to local and global water resource
management strategies by providing a reliable predictive tool and sets a foundation for future studies to further refine
these models and explore their applicability in other geographical settings.

Keywords: Hydrological forecasting, Climate adaptation technologies, Predictive water resource modeling, Advanced
regression analysis, Water cycle management, Environmental machine learning

1. Introduction

Pan evaporation is a vital hydrological variable
that directly impacts water resource management,
agricultural planning, and climate studies [1–3]. It
refers to the rate at which water evaporates from a
standardized open pan, serving as a crucial indicator
for estimating evaporation rates of larger water
bodies and assisting in the management of water
supplies, especially in agricultural and arid regions
[4–6]. Accurate estimation and prediction of pan
evaporation are essential for developing effective
water management strategies, optimizing irrigation

practices, and enhancing our understanding
of climate dynamics [7, 8]. These predictions
help in foreseeing water shortages, planning for
drought conditions, and ensuring sustainable water
utilization, which is particularly critical in regions
facing irregular rainfall patterns and increasing
water demand due to population growth and
industrialization [9, 10]. As climate change continues
to alter hydrological cycles globally, the ability
to predict changes in evaporation rates becomes
increasingly important for adapting to these impacts
and mitigating potential water-related conflicts
[11, 12]. To set the stage for this investigation, recent
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advancements in ML applications for pan evaporation
prediction across diverse regions are examined.

Traditional pan evaporation estimation methods of-
ten rely on empirical formulas such as Hargreaves or
Blaney–Criddle [13]. While these methods are com-
putationally simple, they are typically tailored to spe-
cific climates and rely on a limited number of inputs,
which limits their generalizability [14]. In contrast,
machine learning models can adapt to complex, non-
linear interactions among multiple meteorological
variables, offering improved accuracy and robustness
across diverse climatic regions [15]. This adaptability
is particularly valuable in the face of climate change,
where dynamic environmental conditions demand
more flexible and data-driven modeling approaches.
Similar efforts have demonstrated the value of statis-
tical modeling for hydrological applications [16].

Recent studies have utilized various ML approaches
to enhance the prediction accuracy of pan evapo-
ration across different geographical settings. For in-
stance, a study in the Yangtze River Basin, China, uti-
lized a Fuzzy Genetic (FG) algorithm along with other
models to estimate monthly pan evaporation, demon-
strating the model’s effectiveness in generalizing
across multiple locations with diverse climatic inputs
[17]. Similarly, in Queensland, Australia, a hybrid
Long Short-Term Memory (LSTM) model integrated
with Neighborhood Component Analysis significantly
outperformed traditional models by incorporating
feature selection alongside deep learning techniques
to enhance daily pan evaporation predictions [18].
In contrast, research conducted in the Indian Cen-
tral Himalayas explored the efficacy of multiple ML
models, where the Multi-gene Genetic Programming
(MGGP) and Multiple model-artificial neural network
(MM-ANN) showed high effectiveness during testing
periods [19]. For a detailed overview of additional
studies, refer to Table 1. These variations in model
performance across studies raise the question of how
the integration of advanced ML techniques, such as
spectral clustering, can further improve the accuracy
and reliability of pan evaporation predictions across
different environments. This research aims to address
this gap by developing and validating an advanced
hybrid ML model tailored to optimize pan evapora-
tion forecasting in diverse climatic conditions.

Despite significant advancements in pan evapo-
ration modeling, existing predictive models often
struggle with adaptability across varying climatic
conditions and lack robustness in diverse geographic
settings. Unlike previous studies that apply machine
learning (ML) models directly, this research
introduced a novel hybrid approach that integrates
spectral clustering as a performance-enhancing
preprocessing step prior to model training. This
method improves data homogeneity, allowing the

subsequent ML models Histogram-based Gradient
Boosting Regressor (HGBR) and Extreme Gradient
Boosting Regressor (XGBR) to learn more effectively
from the underlying patterns. By addressing key
limitations in generalization and interpretability,
the proposed framework offers a more adaptable
and reliable solution for pan evaporation prediction.
Locally, it provides precise tools for managing
water resources in regions with fluctuating climates,
directly benefiting agricultural planning and drought
mitigation strategies. Globally, it enhances the
understanding of hydrological cycles impacted
by climate change, equipping policymakers and
stakeholders with robust forecasting tools. Overall,
this study bridges critical gaps in current modeling
practices and sets a foundation for future research
that integrates advanced computational techniques
into environmental and hydrological sciences. The
primary objective of this research is to develop and
validate an advanced hybrid ML model that incorpo-
rates spectral clustering with Hyperparameter-Tuned
Histogram-based Gradient Boosting Regressor
(HGBR) and Extreme Gradient Boosting Regressor
(XGBR) to predict pan evaporation accurately. This
model aims to achieve superior performance metrics
compared to existing models by: (i) Enhancing the
understanding of the relationship between climatic
variables and evaporation rates. (ii) Providing a
robust prediction tool that can be adapted to various
geographical locations and climatic conditions.
(iii) Contributing to the global efforts in water
resource management by offering a reliable model for
predicting water availability and potential drought
conditions. By fulfilling these objectives, this study
will not only contribute to the scientific community
by advancing the methodologies used in hydrological
modeling but also aid policymakers and stakeholders
in making informed decisions regarding water
management and agricultural practices.

2. Methods and materials

2.1. Models’ development

In the development of our predictive models,
the process begins with data collection and
analysis, which is immediately followed by data
pre-processing to ensure quality and consistency.
This processed data is then split into two parts,
where 70% were allocated for training and 30%
for testing models’ performances, ensuring that
model evaluation reflects an unbiased estimation of
performance. The primary models developed include
the (XGBR and HGBR), where hyperparameter tuning
is conducted to optimize performance. After training,
the models undergo a validation phase where their
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Table 1. Comprehensive review of existing studies on the analysis of ML Approaches for pan evaporation modeling across different
geographic locations and time periods.

Geographic
Reference Location Data Period Model(s) Used Main Findings Limitations

[8] Iraq (Baghdad,
Basrah,
Mosul)

1990–2013 for
Baghdad and
Mosul,
1990–2012
for Basrah

Conditional Random Forest
Regression (Cforest),
Multivariate Adaptive
Regression Splines
(MARS), Bagged
Multivariate Adaptive
Regression Splines
(BaggedMARS), Model
Tree M5, K-nearest
Neighbor (KNN),
Weighted K-nearest
Neighbor (KKNN)

The study demonstrated
that the Weighted
K-nearest Neighbor
model provided the best
accuracy in modeling
monthly pan evaporation
across three locations in
Iraq.

The models may require
adaptation to different
climatic conditions or
regions to maintain
accuracy.

[7] Chhattisgarh,
India

1981–2015 Deep-LSTM, MLANN,
Empirical Methods
(Hargreaves and
Blaney–Criddle)

Deep-LSTM models
demonstrated superior
accuracy in predicting
daily pan evaporation
with minimal input
features across three
distinct agro-climatic
zones compared to
MLANN and empirical
models.

The study suggests further
testing in other
agro-climatic conditions
for generalizability.

[20] Sidi Mohammed
Ben Abdellah
reservoir,
Morocco

June 2021–June
2022

Deep Neural Network
(DNN), Support Vector
Regression (SVR), Extra
Tree, XGBoost

Developed an interpretable
ML framework that
accurately predicts daily
pan evaporation using
hourly climate data.
Identified key climate
variables using tools like
SHAP.

Challenges with “black-box”
ML models which lack
interpretability and
transparency, limiting
practical application.

[21] Poyang Lake
Basin,
Southern
China

2001–2015 Extreme Learning Machine
(ELM) coupled with
Whale Optimization
Algorithm (WOA) and
Flower Pollination
Algorithm (FPA)

The study introduced
hybrid models (FPAELM
and WOAELM) that
outperformed traditional
models in predicting
monthly pan evaporation,
demonstrating the
effectiveness of hybrid
approaches.

The study points to the
complexity of “black-box”
ML models, which may
hinder practical
applicability without
adequate interpretability.

[17] Yangtze River
Basin, China

1961–2000 Fuzzy Genetic (FG)
Algorithm, ANFIS-GP, M5
Model Tree

The study highlighted the
FG model’s superior
performance in
estimating monthly pan
evaporation using various
climatic inputs across
multiple stations. It
effectively generalized
across six different
locations.

The complexity of
“black-box” ML models
may limit practical
applicability without
adequate interpretability.

[18] Queensland,
Australia
(Amberley,
Gatton,
Oakey, &
Townsville)

31 August 2002
to 22
September
2020

Hybrid Long Short-Term
Memory (LSTM) model
integrated with
Neighbourhood
Component Analysis
(NCA)

The NCA-LSTM hybrid
model significantly
outperformed benchmark
models in predicting
daily pan evaporation
using a hybrid approach
that integrated feature
selection with deep
learning.

The complexity of
“black-box” ML models
and the requirement for
extensive data
preprocessing were noted
as limitations.

(Continued)
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Table 1. Continued

Geographic
Reference Location Data Period Model(s) Used Main Findings Limitations

[22] Fars Province,
Iran

2006–2021 Multilayer Perceptron
(MLP) with Bayesian
Regularization (BR) and
Scaled Conjugate
Gradient (SCG)
algorithms

The MLP-BR model showed
the best performance in
predicting daily pan
evaporation using a
combination of
temperature, pressure,
and humidity inputs,
with enhanced
performance over
traditional MLP trained
with the LM algorithm.

The complexity and
“black-box” nature of ML
models limit their
interpretability and
practical applicability
without thorough
validation.

[23] Kuwait Not explicitly
stated,
validation
from June
2021 to June
2022

Support Vector Machine
(SVM), Gaussian
Processes, Regression
Trees

Employed SVM, Gaussian
Processes, and Regression
Trees to model daily pan
evaporation successfully
in arid climates.
Demonstrated robust
performance of
data-driven models over
traditional methods.

Black-box nature of models
limits practical
application without
deeper interpretability.
High evaporation rates
challenge model
accuracy.

[24] Pusa, Bihar,
India

June 2013–
September
2017

Artificial Neural Network
(ANN), Wavelet-based
ANN (WANN), Radial
Function-based SVM
(SVM-RF), Linear
Function-based SVM
(SVM-LF), Multi-linear
Regression (MLR)

The study demonstrated
that the SVM-RF model
outperformed other
models in all tested
scenarios, highlighting
the effectiveness of
integrating wavelet
transformation with SVM
for modeling daily pan
evaporation.

The complexity of models
and the need for
extensive data
preprocessing were noted
as limitations.

[19] Indian Central
Himalayas

Not explicitly
stated

Multiple model-artificial
neural network
(MM-ANN), Multivariate
Adaptive Regression
Spline (MARS), Support
Vector Machine (SVM),
Multi-gene Genetic
Programming (MGGP),
and M5Tree

The study assessed several
AI models for simulating
monthly pan evaporation
using climatological data.
MM-ANN and MGGP
were found to be the
most effective during
testing periods.

The complexity of
“black-box” ML models
may limit practical
applicability without
adequate interpretability.

accuracy is assessed. Once accuracy criteria of
models were satisfied the models went under a
sensitivity analysis, where, exposing impactful and
non-impactful features on the output. Subsequently
models undergone a Lack of Fit Test to determine
their usability. In case a model indicates significant
with pure error, the model is marked as unusable.
Conversely, models that pass the lack of fit test (not
significant with respect to pure error), marked as
final usable model, after which the final model is
saved, marking the end of the process (Fig. 1).

2.2. Data collection and analysis

The dataset used in this study was obtained from a
published paper [25], where it indicated the process
of dataset collection as follows: the data collected

in the form of observational from the extensive me-
teorological records maintained by the Kermanshah
Regional Water Authority. These records comprise
a comprehensive dataset spanning a 30-year period
from (1988 to 2018), collected at the Kermanshah
synoptic station located in Iran (Fig. 2). This region,
known for its unique climatic conditions, provides a
rich source of environmental data vital for hydrolog-
ical studies. The data cover monthly measurements
of different meteorological variables critical for pan
evaporation prediction, including maximum and min-
imum temperatures, maximum and minimum relative
humidities, sunshine hours, rainfall, wind speed, and
the evaporation. The collection of such diverse data
types over an extended period allows for a robust
analysis of the factors influencing evaporation, which
is vital for improving water resource management in
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Sensitivity Analysis

Not Significant

Accuracy
Checking

Fig. 1. Models development flowchart.

arid and semi-arid regions. It should be noted that
data for the climatic variables are collected using
Earth observational monitoring stations.

As outlined in Table 2, the dataset consists of
372 entries for each variable, providing a substantial
sample size for analysis. The descriptive statistics,

including the mean, standard deviation, minimum,
median, and maximum values, alongside measures of
skewness and kurtosis, offer insights into the distribu-
tion and variability of each meteorological factor. For
instance, the maximum temperature exhibits a mean
of 23.64°C and varies from 0.27°C to 40.15°C, with a
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Fig. 2. Study region map, (a) Iran map located on world map, (b) Iran map, and (c) Study region map with station located on.

slightly left-skewed distribution (skewness = −0.02)
indicating a bulk of data points amassed towards the
higher end of the temperature range. In contrast,
rainfall demonstrates a high degree of variability
(standard deviation = 33.95 mm) and a pronounced
right skew (skewness = 1.37), reflecting that most of
the data points are near zero with occasional high val-
ues, which is typical for precipitation data. Moreover,
frequency visualizations of the data revealed the dis-

tribution patterns of each variable (Fig. 3). Maximum
and minimum temperatures showed a balanced distri-
bution, typical of the region’s thermal characteristics.
Relative humidity, both maximum and minimum, ex-
hibits a skewed distribution towards higher values,
indicating occasional high humidity in generally dry
conditions. Sunshine hours are predominantly high,
aligning with the area’s sunny climate. Rainfall data
are right-skewed, reflecting infrequent but sometimes
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Table 2. Statistics of the data.

Features data mean std min 25% 50% 75% max skew kurt

Max temperature (°C) 372 23.64 10.78 0.27 14.15 23.67 34.05 40.15 −0.02 −1.31
Min temperature (°C) 372 7.02 7.08 −10.42 1.12 7.07 12.76 20.31 0.04 −1.06
Max relative humidity (%) 372 62.90 23.63 20.00 38.14 71.74 84.28 95.61 −0.32 −1.49
Sunshine (h) 372 7.99 2.51 3.16 5.76 7.53 10.34 12.63 0.10 −1.24
Min relative humidity (%) 372 24.74 13.92 3.20 12.37 24.02 34.42 65.84 0.43 −0.55
Rainfall (mm) 372 28.83 33.95 0.00 0.00 17.95 46.63 162.50 1.37 1.72
Wind speed (m/s) 372 2.49 0.57 0.85 2.13 2.52 2.91 4.04 −0.33 −0.17
Evaporation (mm) 372 6.75 5.25 0.10 2.11 5.61 11.16 21.70 0.60 −0.70

Fig. 3. Frequency visualization of the data.

heavy precipitation. Wind speed follows a nor-
mal distribution, suggesting steady wind conditions
without extreme variations. This analysis confirms
the dataset’s consistency and representativeness for
modeling evaporation in semi-arid environments. To
further delve into the relationships between these
variables and their influence on the output (evapo-
ration), a correlation coefficient (CC) heatmap was
developed, as shown in Fig. 4. This heatmap provides
a clear visual representation of how each variable
interrelates with others, with strong correlations vis-

ible between, for example, evaporation and both
maximum and minimum temperatures 0.92 and 0.91
respectively, suggesting that higher temperatures sig-
nificantly enhance evaporation rates.

2.3. Data-preprocessing

In the data preprocessing phase, the dataset un-
derwent a thorough evaluation for missing values
and outliers to ensure robust model performance.
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Fig. 4. Correlation coefficient’s heatmap of inputs vs output.

Given that this dataset was previously utilized in an-
other study, it was confirmed to contain no missing
values, and all records were validated as accurate
observations. Attempts to transform the features to
enhance correlations between inputs and output did
not yield significant improvements. Therefore, the
original features were retained without modification
for subsequent analysis. This approach ensured the
integrity and reliability of the data used in devel-
oping our predictive models. Broader hydrological
modeling studies have also emphasized the role of
input data characteristics in shaping model reliability
[26].

2.4. Spectral clustering

To enhance the performance of our predictive
models, we implemented spectral clustering as
a pivotal preprocessing step. Spectral clustering
is a technique that utilizes the eigenvalues of a
similarity matrix derived from the data to perform

dimensionality reduction before clustering [27–29].
This method effectively captures complex structures
within the data by identifying groups of similar data
points based on their relationships, rather than their
absolute distances from each other [30, 31]. By
applying spectral clustering, we aimed to improve
the homogeneity within each cluster, which in
turn facilitates more accurate and robust modeling.
This approach is especially beneficial for handling
multi-dimensional data where traditional clustering
techniques may falter, thus potentially leading to
enhanced model performance.

2.5. Utilization of machine learning models

In this study, advanced ML models used to predict
hydrological evaporation more accurately by mak-
ing use of complex nonlinear relationships within
the data. ML offers a dynamic approach to model
development that adapts to the intricacies of environ-
mental data, vitally enhancing predictive accuracy



AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:83–99 91

over traditional statistical methods. The models cho-
sen for this study, specifically the HGBR and XGBR,
were selected due to their robustness in handling
varied datasets and their capability to improve pre-
diction performance through iterative learning and
fine-tuning of decision trees. These models are de-
scribed in detail in the following sections, outlining
their specific contributions to the study’s objectives.

2.5.1. HGBR model
The HGBR is a powerful ensemble ML technique

that builds upon decision trees using a gradient boost-
ing framework. It constructs a model in a stage-wise
fashion and generalizes them by allowing optimiza-
tion of arbitrary differentiable loss functions. In each
stage, a regression tree h(x) is fit on the negative
gradient of the loss function L, which is used to pre-
dict the residuals or errors [32–34]. The formula for
updating the model is:

L
(
y, F (x)

)
=

n∑
i=1

(yi − F (xi))2 (1)

where yi are the actual values, and F(xi) are the
predicted values. The model iteratively improves pre-
dictions over M boosting stages, with each stage
attempting to correct the errors of the previous stages
using the formula:

Fm (x) = Fm−1 (x)+ γ h (x) (2)

where Fm−1(x) is the model from the previous iter-
ation, h(x) is the current regression tree, and γ is
the learning rate [32]. This method is particularly
effective for handling large datasets and provides an
improved accuracy by focusing learning on hard cases
that previous iterations found challenging to predict.

2.5.2. XGBR model
The XGBR employs a sophisticated ensemble tech-

nique that employs gradient boosting algorithms
tailored for speed and performance [35, 36]. XGBR
optimizes both computational efficiency and model
performance by constructing new models that learn
to correct the errors made by earlier models in the
ensemble [37, 38]. The formula for the model is:

Fm (x) = Fm−1 (x)+ η · h (x) (3)

where Fm−1(x) indicates the model obtained from the
previous iteration, h(x) is the new regression tree,
and η is the learning rate, controlling the contribution
of each tree to the final model. Model’s efficiency in
handling various types of data, including non-linear

and complex patterns, makes it an excellent choice
for enhancing the predictive accuracy in our study.

2.6. Models’ performance evaluation metrics

To assess the effectiveness of the developed models,
several statistical metrics were used that capture dif-
ferent aspects of model performance. These metrics
provide a comprehensive evaluation of the models’
accuracy and reliability:

(i) Coefficient of Determination (R2): Measures the
proportion of variance in the dependent variable that
is predictable from the independent variables. It is a
key indicator of model fit quality [39–41].

R2
= 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1
(
yi − ȳ

)2 (4)

(ii) Root Mean Square Error (RMSE): Provides a mea-
sure of the differences between values predicted by
a model and the values observed. It is especially use-
ful for comparing prediction errors across different
datasets or models [39, 40, 42].

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (5)

(iii) Mean Absolute Error (MAE): Represents the aver-
age absolute difference between the observed actual
outcomes and the predictions made by the model.
It offers a straightforward interpretation of overall
prediction error [39, 42].

MAE =
1
n

n∑
i=1

|yi − ŷi| (6)

(iv) Median Absolute Error (MedAE): This metric pro-
vides the median of all absolute differences between
the target values and the predictions made by the
model. It is robust to outliers and useful in skewed
datasets [39, 43].

MedAE = median
(
|y1 − ŷ1| , |y2 − ŷ2| , . . . , |yn − ŷn|

)
(7)

In the above metrics equations, ŷi indicates pre-
dicted values, where yi is observed value and n
providing the number of observations. These metrics
were selected for their individual ability to provide
detailed insights into all aspects of the model’s perfor-
mance, ensuring a balanced assessment. They allow
us to identify models that not only perform well on
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average but also maintain accuracy across a range of
possible values.

3. Results representation

3.1. Comparative analysis of HGBR and XGBR
model’s performance

In evaluating of the performance of the HGBR and
XGBR models for pan evaporation prediction, key
metrics such as R2, RMSE, MAE, and MedAE were
employed for both the training and testing phases.
The HGBR model showed a robust performance with
an R2 of 0.94, RMSE of 1.34, MAE of 0.97, and MedAE
of 0.75 in the training phase, and demonstrated con-
sistency in the testing phase with an R2 of 0.92, RMSE
of 1.45, MAE of 1.11, and MedAE of 0.87. The XGBR
model, while showing slightly higher accuracy in the
training phase with an R2 of 0.96, RMSE of 1.11,
MAE of 0.83, and MedAE of 0.63, exhibited more
significant decreases in the testing phase to an R2

of 0.91, RMSE of 1.48, MAE of 1.13, and MedAE of
0.85 (Fig. 5). The smaller gap in performance met-
rics between the training and testing phases for the
HGBR model suggests it is more consistent model
and less prone to overfitting compared to the XGBR,
which displayed a more considerable performance
drop-off between the two phases. Thus, the HGBR
model outperformed the XGBR model, indicating a
more reliable and stable prediction capability for the
pan evaporation in this research.

Beyond the primary statistical metrics, a closer in-
spection of the scatter plots further reinforced the
comparative reliability of the HGBR model. The
HGBR’s predictions align more closely along the 1:1
reference line in both training and testing sets. This
indicated a better capture of the underlying func-
tional relationship between observed and predicted
pan evaporation values. The tight clustering around
the diagonal line in the HGBR model panels sug-
gested lower variance and fewer outliers. This is
particularly evident in the testing phase. In contrast,
although the XGBR model achieved a marginally
higher training R2, the increased dispersion of testing
data points away from the diagonal line revealed a
model more susceptible to overfitting. This deviation
becomes more pronounced for higher evaporation
values where XGBR model tends to underpredict. Ad-
ditionally, the HGBR model’s slightly higher MedAE
in training but lower increase in testing underscored
its ability to maintain robustness without sacrificing
generalization. These visual and statistical insights,
taken together, provided compelling evidence that
the HGBR model offered more balanced and depend-

able performance under unseen conditions. Which
made it a more practical choice for real-world hydro-
logical forecasting applications.

3.2. Comprehensive evaluation of HGBR and XGBR
models using bar charts and Taylor diagram

The comparative analysis of HGBR and XGBR mod-
els using performance metrics and Taylor diagram.
The HGBR model demonstrated a training R2 of 0.94,
RMSE of 1.34, MAE of 0.97, and MedAE of 0.75, with
a slight decrease in testing performance to an R2 of
0.92, RMSE of 1.45, MAE of 1.11, and MedAE of
0.87. Conversely, the XGBR model yielded a higher
training R2 of 0.96 with an RMSE of 1.11, MAE of
0.83, and MedAE of 0.63, though it experiences a
drop in testing performance to an R2 of 0.91, RMSE of
1.48, MAE of 1.13, and MedAE of 0.85. Further, the
Taylor diagram clarifies each model’s consistency and
accuracy in training and testing phases. The HGBR
model maintained close correlation coefficients be-
tween training CC = 0.97 and testing CC = 0.96 with
standard deviations slightly changing from 4.8 to 4.7.
The XGBR model, while showing a higher training CC
of 0.99, demonstrated a more considerable decrease
in testing to CC of 0.94 with a consistent standard
deviation of 4.8 across both phases (Fig. 6). These
findings reinforce the earlier results, showing HGBR’s
higher consistency and reduced risk of overfitting
compared to XGBR, thereby confirming HGBR model
as the more reliable algorithm for predicting the pan
evaporation in varied settings.

Further, the integration of bar charts and Taylor
diagram offered a holistic perspective on both the
magnitude and distributional consistency of model
performance across both phases. The bar charts dis-
tinctly illustrated that while XGBR model showed
slightly better training (e.g., lower RMSE and MAE),
the HGBR model maintained a more balanced and
stable transition into the testing phase, with minimal
deterioration in all four-performance metrics. This
behavior indicated that HGBR model generalizes bet-
ter and avoids the common pitfall of overfitting that
is subtly evident in XGBR model’s results. More com-
pelling insights emerged from the Taylor diagram,
where the proximity of HGBR model’s testing phase
demonstrated its strong correlation with observed
values (CC= 0.96) and minimal deviation in standard
deviation (4.7 vs. 4.8 for training). In contrast, al-
though XGBR model exhibited an exceptionally high
training correlation (CC = 0.99), the drop to 0.94
in testing, coupled with its fixed standard deviation,
suggested a narrower learning range that may strug-
gle with variability in unseen data.
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Fig. 5. Performance comparison ML models in predicting pan evaporation: (a) HGBR model training and testing performance; (b) XGBR
model training and testing performance.

3.3. Sensitivity analysis

The sensitivity analysis revealed the impact of
eliminating various features on the performance of
the HGBR and XGBR models. For the HGBR model,
eliminating minimum relative humidity proved
most impactful, significantly increasing the RMSE
in testing to 1.60 from the baseline of 1.45 and
decreasing the R2 to 0.90, indicating a lower model
accuracy without this feature (Table 3). In contrast,

eliminating sunshine had the least impact, with the
model maintaining a testing R2 of 0.92 and an RMSE
of 1.45, nearly identical to the baseline. For the XGBR
model, the removal of minimum temperature had the
most significant effect, reducing the testing R2 to 0.90
and increasing the RMSE to 1.56. Eliminating wind
speed had the least effect, with the testing R2 slightly
improving to 0.93 and the RMSE decreasing to 1.36,
showing robust model performance even without
this variable. These results underscore the critical
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Fig. 6. Assessment of ML models by: (a) bar charts, (b) Taylor diagram.

influence of specific features on model accuracy and
stability.

3.4. Lack of fit test evaluation

The lack of fit test was conducted to assess how
well the HGBR and XGBR models fit the dataset by
comparing the pure error and lack of fit error. For the
HGBR model, the total sum of squares of errors (SSE)
was 700.665 with an MSE of 1.925, and for the XGBR
model, the total SSE was 565.127 with an MSE of
1.553. The pure error, calculated using predicted data
from the testing phase as replicates, was 235.564 for
HGBR with an MSE of 2.265 and 244.812 for XGBR
with an MSE of 2.354. The lack of fit error, which is
the total error minus the pure error, was 465.101 for
HGBR and 320.315 for XGBR, with MSEs of 1.789 and

1.232, respectively (Table 4). The calculated F-values
for HGBR and XGBR were 0.790 and 0.523, both
below the critical F-value of 1.323, indicating that the
lack of fit was not significant for both models. This
confirms that both models passed the lack of fit test,
suggesting they adequately capture the variability in
the data without significant discrepancies due to the
model structure itself.

4. Discussion

This study’s analysis and results are positioned
within the broader context of recent research in
hydrological evaporation prediction, facilitating a
detailed comparison with findings from other signif-
icant studies. In this study, the hybrid ML models,
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Table 4. Evaluation of models’ lack of fit using F-statistics.

ML
Models Type of Error Error DF MSE

F-value
(Calculated)

F-value (Critical,
alpha = 0.05) F-test Comparison

Significance of
Lack of Fit

HGBR Total (SSE) 700.665 364 1.925 0.790 1.323 F-value
(Calculated) <
F-value (Critical)

Lack of Fit is not
significantPure (SSpure) 235.564 104 2.265

Lack of Fit (SSLoF) 465.101 260 1.789
XGBR Total (SSE) 565.127 364 1.553 0.523 1.323 F-value

(Calculated) <
F-value (Critical)

Lack of Fit is not
significantPure (SSpure) 244.812 104 2.354

Lack of Fit (SSLoF) 320.315 260 1.232

particularly the integration of spectral clustering with
advanced regression techniques such as HGBR and
XGBR, have demonstrated substantial improvements
in pan evaporation prediction. Notably, the test-
ing phase metrics, with an R2 of 0.92 for HGBR
and 0.91 for XGBR, highlight the models’ robust-
ness. These results are competitive when compared
with the findings of [44], where a deep-LSTM model
for Adana station achieved an R2 of 0.932 in sim-
ilar conditions, indicating that while DL models
provide slightly higher predictive accuracy, the com-
putational efficiency and simpler implementation of
regression-based models like those used in our study
might offer practical advantages in certain applica-
tions. Further, [45] used GBDT model, achieving an
R2 of 0.73 indicating lower accuracy to models (i.e.
HGBR and XGBR) used in our study, this could be
due to the integration of spectral clustering that offers
a novel approach to enhancing model performance,
particularly in handling non-linear data relationships
in climatic variables.

Moreover, A study [46], introduced advanced ML
techniques (EEMD-MT and EEMD-SVM), which sig-
nificantly improved upon traditional SVM and MT
models. The findings of this study reported im-
provements in NSE and WI by 36 and 44.7% using
EEMD-MT respectively. Similarly, in our study, the
use of spectral clustering has provided a method-
ological advancement over traditional regression
techniques, demonstrating better data segmentation
and consequently, more accurate evaporation predic-
tions. This suggests a consistent trend where hybrid
and advanced methodologies tend to outperform tra-
ditional ML and empirical models in hydrological
predictions. Furthermore, the improvements in RMSE
and MAE in our study are consistent with those ob-
served in [47], where TNN models were used. Both
studies highlight the efficacy of advanced modeling
techniques in reducing prediction errors compared to
empirical models. Moreover, the application of ML
to enhance prediction accuracy in pan evaporation,
as seen across the studies especially [7, 8, 44–50],
underscores a general consensus about the potential
of these methods in environmental science.

Despite the successes reported in this paper and
others, there are notable contrasts, particularly
regarding the type of ML models and their specific
applications. For instance, the study [44], used
LSTM-GWO for forecasting evaporation shows
a different approach focusing on time-series
decomposition, which contrasts with our method
focusing on regression enhancements through
clustering. This divergence highlights the varied
ways ML can be tailored to specific hydrological
tasks, depending on the data characteristics and the
specific requirements of the study area. Further, the
comparison of results from the studies [8, 49] with
our findings suggests varying degrees of effectiveness
across different geographic locations and climatic
conditions. While the models in [49] were specifically
optimized for conditions in Iran and India, our
models are more aligned with the climatic data
characteristics from regions similar to those described
in Paper [8], indicating that location-specific model
tuning is crucial for achieving optimal performance.

In addition to aligning our results with prior re-
search, this study adds further depth through its
incorporation of interpretability and model adequacy
assessments that are often overlooked. The inclusion
of the Lack of Fit Test serves as a rigorous statis-
tical validation of the models’ structural soundness,
ensuring that the predictive outcomes are not only
statistically significant but also practically reliable.
Furthermore, the use of sensitivity analysis helped un-
cover the specific contribution of each climatic input
variable, allowing for more informed interpretation
of feature importance. These components collectively
enhance the confidence in the model’s behavior and
offer valuable guidance for future applications in di-
verse climatic settings.

This thorough discussion of results from this re-
search in the context of existing literature reveals
both convergences and divergences in the application
and effectiveness of ML models in pan evaporation
prediction. The consistently superior performance of
hybrid models across most studies indicates a shift
towards more complex, yet robust modeling tech-
niques in hydrology. Meanwhile, the contrasts among
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different studies highlight the importance of context-
specific adaptations in model development. Overall,
this comparative analysis not only situates the current
study within the broader research landscape but also
sets a benchmark for future research, suggesting path-
ways for enhancing model reliability and predictive
accuracy in hydrological studies.

5. Conclusion

This study addressed the pressing need for accu-
rate pan evaporation prediction, crucial for effective
water resource management in the face of changing
global climate conditions. The primary objective was
to enhance the prediction accuracy and reliability
of pan evaporation estimates through the develop-
ment of a hybrid ML model that integrates spectral
clustering with advanced regression techniques. The
methodology employed involved the use of spectral
clustering for data preprocessing and models’ per-
formance improvements to ensure a homogeneous
input for subsequent modeling with the use of two
advanced regression models, HGBR and XGBR, which
were rigorously tuned and validated. A sensitivity
analysis was conducted to identify the impact of in-
dividual features on model performance, followed by
a lack of fit test to verify the model’s usability and
adequacy. The results demonstrated the effectiveness
of the proposed approach. Where, the HGBR model
exhibited superior performance with a training R2 of
0.94 and an RMSE of 1.34 and maintained robust-
ness during testing with an R2 of 0.92 and an RMSE
of 1.45. Conversely, the XGBR model, while effec-
tive, showed a slight decrease in testing performance
(training R2 of 0.96 and RMSE of 1.11; testing R2

of 0.91 and RMSE of 1.48). The closer performance
metrics between training and testing phases for the
HGBR model indicated a higher consistency and less
susceptibility to overfitting compared to the XGBR
model. In summary, this research provided three key
contributions: (i) it introduced a novel use of spec-
tral clustering to improve input data structure prior
to model training. This significantly enhanced pre-
diction accuracy; (ii) it demonstrated the practical
advantage of HGBR model over XGBR model in terms
of stability and generalization. It was supported by
multiple statistical metrics and a lack of fit test; and
(iii) it established a comprehensive evaluation frame-
work that combined performance metrics, sensitivity
analysis, and model adequacy checks. It provided a
reliable blueprint for future studies in hydrological
modeling. Based on these findings, it is recommended
that hybrid ML models similar to the ones developed
in this study be considered for broader applications in

hydrological predictions. These models have shown
potential for enhancing the precision and reliability of
environmental forecasting tools, which are essential
for planning and management in various hydrologi-
cal and agricultural settings. Future research should
focus on expanding the application of these models
to other geographic locations to further validate their
effectiveness and adaptability. Additionally, integrat-
ing more diverse climatic variables could enhance
the models’ predictive capabilities, catering to the
specific needs of different regions affected by varying
climatic impacts.
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