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ABSTRACT

As global climate variability intensifies, the need for accurate and reliable weather forecasting becomes increasingly
important. This study aimed to classify daily weather conditions in Kabul, Afghanistan, by comparing two decision-tree-
based machine learning (ML) models that includes Decision Tree Classifier (DTC) and Extra Trees Classifier (ETC). A
complete year dataset consisting of 366 daily meteorological observations collected from a central weather station in
the region for 2024 was used. Results revealed that the DTC model consistently outperformed the ETC model, obtained
an overall accuracy of 99% in both the training and testing phases, compared to the ETC model’s accuracy of 96%
(training) and 89% (testing). Specifically, the DTC model showed almost perfect weighted-average precision (0.99),
recall (0.99), and F1-scores (0.99) for both phases training and testing respectively, whereas ETC demonstrated lower
metrics in testing phase with weighted-average precision of 0.90, recall of 0.89, and F1-score of 0.88. Furthermore,
sensitivity analysis demonstrated that precipitation probability is 40%, cloud cover is 31%, snow is 18%, temperature
fleeks like max is 8%, and solar radiation is 3% as the most impactful variables in weather classification. Scientifically,
this study contributes to enhancing the effectiveness of localized weather prediction, providing critical support for urban
planning, agriculture, and disaster management decisions in regions with similar climatic conditions.

Keywords: Climate analytics, Predictive meteorology, Environmental decision-making, Advanced weather forecasting,
Regional climate modeling

1. Introduction

Weather condition classification is a fundamental
aspect of meteorological science [1], leveraging the
predictive capabilities of various analytical models to
enhance forecasting accuracy [2]. As global climate
variability increases, the need for precise and reliable
weather prediction becomes more critical [3, 4]. Tra-
ditional meteorological methods have evolved with
the integration of ML techniques [5, 6], which of-
fer significant improvements in the processing and
interpretation of large datasets typical in weather
analysis [2, 7]. These advancements have enabled

more nuanced classifications of weather patterns, es-
sential for timely decision-making in areas ranging
from aviation to agriculture and disaster management
[8, 9]. Further, the integration of ML techniques in
meteorological applications has not only optimized
the predictive accuracy of weather models but also
broadened the scope of their applicability across dif-
ferent environmental conditions [10, 11]. The ability
of ML to handle complex, nonlinear relationships be-
tween meteorological factors is transforming weather
forecasting into a more dynamic and responsive tool
[12, 13], paving the way for innovations in how we
understand and react to atmospheric phenomena.
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Numerous studies have explored the application
of ML techniques in weather classification, each
contributing unique insights and methodologies to
address the challenges of meteorological forecast-
ing. For instance, a study conducted in Jiangyin,
Jiangsu, China, employed autoencoders (AEs) for
classifying dry and wet periods using commercial
microwave link (CML) data and rain sensors [14].
The researchers achieved high true positive rates
(TPR) and true negative rates (TNR), effectively
leveraging signal attenuation data from CMLs [14].
However, the study’s dependency on accurate clas-
sification of dry periods and the risk of overfitting
on unbalanced datasets presented challenges, partic-
ularly for light rain events [14]. Similarly, a research
based in Chengdu, China, explored a multi-model
fusion approach using ResNet50, ResNet101, and
DenseNet121 for classifying weather images into nine
types, including rain, dew, snow, and fog [15]. While
the study achieved a notable classification accuracy
of 81.25%, the limited dataset size impacted the ro-
bustness and scalability of the models, highlighting
the importance of larger datasets for generalization
[15]. Further, in another notable study, conducted
in Hefei, China, authors used convolutional neural
networks (CNNs) integrated with Mask R-CNN for
edge extraction, significantly improving the accuracy
of weather classification across four types encom-
passing sunny, foggy, rainy, and snowy [16]. This
approach achieved impressive accuracy rates, such
as 97.94% for sunny and 98.22% for snowy condi-
tions, but its performance under nuanced or mixed
weather conditions remained unexplored [16]. Ad-
ditionally, a study leveraging Himawari-8 infrared
data in Langfang, China, employed XGBoost to clas-
sify cloud types with obtaining an overall accuracy
of 86.22% [17]. Although the model demonstrated
robust performance across temporal and seasonal
variations, its reliance on Himawari-8 data limited
its applicability to other satellite systems or regions
with different data availability [17]. A more detailed
review of literature is summarized in Table 1, signify-
ing the diverse applications and advancements in ML
for weather and environmental classification.

While significant progress has been made in apply-
ing ML techniques for weather classification, previous
studies primarily employed generalized models with-
out explicitly addressing localized daily weather pre-
diction in areas characterized by complex climates.
Specifically, regions such as Kabul, Afghanistan, with
distinct climatic variability and topographical com-
plexity, remain underrepresented in prior literature,
leaving a notable gap regarding practical and locally-
adapted ML applications. To bridge this gap, this
study explicitly compared the DTC and ETC, lever-

aged daily meteorological data specific to Kabul to get
improved accuracy, interpretability, reliability, and
reproducibility in localized weather predictions. Con-
sequently, this research significantly contributed to
the scientific understanding by introducing a compar-
ative decision tree-based modeling approach clearly
adopted for Kabul’s unique climatic and environmen-
tal conditions. Beyond local applications in agricul-
ture, urban planning, and disaster management, this
study offers a replicable methodological framework
to guide similar ML implementations in other regions
experiencing limited data availability, high climatic
variability, or complex environmental conditions.

This study aims to address key gaps in the field of
weather classification by leveraging ML techniques
to tackle region-specific challenges, with the objec-
tives of: (i) classifying weather conditions in Kabul,
Afghanistan, using decision tree-based ML models
trained on a comprehensive dataset; (ii) evaluating
the accuracy and performance of these models in
predicting local weather patterns and identifying me-
teorological complexities specific to the region; and
(iii) contributing to the local and global in terms
of scientific and practical in understanding of how
tailored ML approaches can be applied effectively in
underrepresented regions with unique climatic and
environmental characteristics.

2. Methods and materials

2.1. Models development

The development of the ML models in this study
involved a structured and systematic process com-
prising several critical phases, as illustrated in Fig. 1.
Initially, the methodology started with defining the
study region (Kabul Province, Afghanistan), consid-
ering its unique meteorological significance. Subse-
quently, daily meteorological data from a centrally
located weather station in Kabul were collected and
analyzed comprehensively for quality and consis-
tency, ensuring reliability for model training. After
the preliminary data analysis, the dataset was ran-
domized to remove any biases and then divided into
two subsets of 70% for model training and 30%
kept for model testing. During the training phase,
two decision-tree-based ML models including DTC
and ETC were developed and trained. Each model
underwent systematic hyperparameter tuning, lever-
aging a grid search approach with cross-validation to
identify optimal parameter configurations that max-
imized predictive accuracy. Upon completing model
training, each model’s performance was assessed us-
ing the testing dataset. Performance metrics included
accuracy, precision, recall, F1-score, ROC-AUC, and
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Fig. 1. Models’ development process flowchart.

confusion matrices. A validation step was imple-
mented, examining model predictions against actual
observed weather conditions to ensure robustness and
generalizability. Following validation, model accu-
racy was critically assessed to determine suitability.
Hyperparameters for both DTC and ETC models were
optimized through iterative manual tuning. Differ-
ent parameter settings were systematically tested,
and model accuracy was evaluated separately for the
training and testing datasets. The final hyperparame-
ters chosen were those providing the highest overall
accuracy on the independent testing dataset. When
the models demonstrated sufficient accuracy, the
best-performing model (the “ultimate model”) was
selected and saved for practical applications. Finally,

sensitivity analysis was performed on the ultimate
model to quantify the importance and contribution
of each meteorological parameter to prediction accu-
racy. This analysis identified the critical predictors
influenced weather condition classification, facili-
tating practical decision-making for meteorological
applications in the study area.

2.2. Study region

The selected study region is Kabul province, the
capital of Afghanistan [10], spans an area of 6563
km2 located in the eastern part of the country. Se-
lected for its meteorological significance and rapid
urban growth [24], Kabul presents unique challenges
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and opportunities for weather-related studies [25].
Situated in an arid to semi-arid climatic zone, the
city experiences diverse weather patterns that sig-
nificantly influence both its ecological balance and
urban development [10]. Kabul receives an average
annual rainfall of 330 mm, emphasizing the necessity
to study precipitation trends crucial for urban plan-
ning and agricultural activities [26]. The importance
of predicting weather conditions such as clear days,
cloudy, rain, snow, and partly cloudy skies in Kabul is
underscored by its expanding population and limited
natural water resources [27]. Accurate weather pre-
dictions are vital for managing water supply, which
is a critical issue in the region due to the rapid deple-
tion of groundwater levels and increasing demands
from a growing population [28]. These forecasts are
essential for effective agricultural planning, disaster
management, and mitigating the impacts of climate
variability on the city’s infrastructure [29]. Further,
Kabul’s geographic coordinates, bound between lati-
tudes 34.697 and 34.515 and longitudes 69.857 and
69.845, place it in a strategic location for meteoro-
logical studies. The diverse topography of the region,
including plains, hills, and mountains, further compli-
cates weather patterns, making the study of meteorol-
ogy here both challenging and essential [30]. Fig. 2 il-
lustrates the location of Afghanistan on a world map,
focusing into Kabul province on Afghanistan’s map
and figuring out the detailed map of Kabul province,
underscoring the strategic importance of this study
area for weather classification and prediction in a
region facing significant environmental challenges.

2.3. Data collection and analysis

The data used in this study was carefully collected
over the period of January 1, 2024, to December 31,
2024, covering a complete year with 366 records to
account for the leap year. The weather data was ob-
tained from Visual Crossing’s historical weather API
for Kabul, Afghanistan [31]. The data was obtained
from a central station at latitude 34.5331 and longi-
tude 69.1022, located almost in the center of Kabul
province. This central location is pivotal as it serves
as a representative sampling point for the overall
regional weather conditions, reducing the variability
that might arise from using multiple stations. This is
due to the change that is generally possible in weather
conditions from station to station. Further, the sta-
tistical characteristics of the input data are compre-
hensively detailed in Table 2, indicating variability
and trends across several meteorological parameters.
For instance, temperatures range widely from severe
lows to moderate highs, illustrating Kabul’s climatic
extremes. The precipitation data indicate sporadic

rainfall, which is critical for understanding seasonal
water availability in this arid region.

Moreover, a frequency analysis of key meteorolog-
ical parameters took place, where visually summa-
rizing the distribution of data points. For example,
the wind speed histogram reveals a predominance
of moderate wind conditions, crucial for modeling
weather patterns that affect air quality and temper-
ature regulation. The distribution of solar radiation
and cloud cover also provides insights into the solar
exposure and potential for solar energy harvesting in
Kabul, which is essential for energy resource plan-
ning. Overall, the frequency distributions of all input
parameters are visualized in Fig. 3. The classification
of weather conditions into categories such as clear
days, cloudy, and rain, detailed in Table 3, reflects the
predominant weather patterns. This categorization is
crucial for the predictive modeling process, helping to
enhance the accuracy of weather forecasts, essential
for agricultural planning and disaster management.
This methodical approach to data collection and anal-
ysis ensures a reliable framework for understanding
the dynamic meteorological conditions in Kabul, pro-
viding a robust scientific basis for the conclusions
drawn in this study.

2.3.1. Data quality assessment
To ensure the reliability of the collected data, a

quality assessment was performed using conventional
statistical methods, including completeness analysis,
consistency checks, and outlier detection. Data
completeness was calculated using the following
formula [32]:

Completeness (%) =
Nvalid

Ntotal
× 100 (1)

Where Nvalid is the number of valid observations
and Ntotal is the total expected number of observa-
tions. The dataset demonstrated 100% completeness,
as all 366 daily observations were recorded without
missing values.

The consistency of the dataset was checked by per-
forming correlation analysis among key meteorologi-
cal variables (temperature, humidity, and solar radi-
ation) to detect any anomalous deviations. Pearson’s
correlation coefficient (r) was calculated as [33]:

r =
∑n

i=1
(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2∑n
i=1

(
Yi − Ȳ

)2 (2)

where Xi and Yi are paired meteorological variables,
and X̄, Ȳ denote their means, respectively. The results
confirmed high internal consistency among the vari-
ables (e.g., temperature and feels-like temperature
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Fig. 2. Study Region: (A) Afghanistan’s location on world map, (B) Kabul province location on Afghanistan’s map, (C) Kabul province map.

showed r = 0.998, temperature and solar radiation
r = 0.663), demonstrated data reliability (Table 4).

2.4. Applied machine learning (ML) models

In this study, DTC and ETC models were selected
for their power in handling non-linear data and

their capacity to model complex decision boundaries
effectively and accurately, making them particularly
suitable for meteorological data which often contains
complex and non-linear relationships between
variables. These models are preferred over others
because of their interpretability and efficiency in
processing large datasets, which are important for
obtaining accurate and timely weather predictions.
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Table 2. Statistical characteristics of the input data.

Factors count mean std min 25% 50% 75% max skew kurt

tempmax (°C) 366 15.89 10.10 −5.70 7.00 17.00 25.18 32.40 −0.17 −1.25
tempmin (°C) 366 2.83 9.04 −21.30 −4.48 4.55 9.90 17.20 −0.53 −0.45
temp (°C) 366 9.29 9.70 −13.60 0.40 10.70 17.70 24.30 −0.31 −1.01
feelslikemax (°C) 366 15.53 9.94 −5.70 6.73 17.00 25.18 30.10 −0.25 −1.28
feelslikemin (°C) 366 1.36 10.45 −27.00 −6.50 3.70 9.85 17.20 −0.61 −0.33
feelslike (°C) 366 8.60 10.37 −17.80 −0.15 10.35 17.68 23.70 −0.42 −0.85
dew (°C) 366 −0.85 8.09 −23.70 −6.08 0.50 5.50 16.50 −0.51 −0.54
humidity (%) 366 54.11 15.96 17.00 43.05 53.00 63.38 98.60 0.44 −0.02
precip (mm) 366 1.59 4.60 0.00 0.00 0.00 0.80 44.90 5.03 32.68
precipprob (%) 366 39.62 48.98 0.00 0.00 0.00 100.00 100.00 0.43 −1.83
precipcover (%) 366 13.63 25.63 0.00 0.00 0.00 16.67 100.00 2.22 4.14
snow (mm) 366 0.29 1.63 0.00 0.00 0.00 0.00 18.20 7.82 67.95
snowdepth (mm) 366 6.75 16.22 0.00 0.00 0.00 0.00 74.30 2.72 6.77
windgust (km/h) 366 26.50 7.74 12.20 20.50 24.50 31.30 48.60 0.72 −0.21
windspeed (km/h) 366 8.88 2.61 4.00 6.80 8.60 10.10 23.00 1.10 2.07
winddir (degrees) 366 192.53 134.57 0.30 38.93 274.05 303.63 359.40 −0.30 −1.75
sealevelpressure (hPa) 366 1015.13 6.47 998.70 1010.05 1016.45 1020.10 1027.90 −0.38 −0.78
cloudcover (%) 366 27.38 29.43 0.00 3.13 16.95 42.05 100.00 1.09 0.07
visibility (km) 366 22.68 4.28 0.00 24.10 24.10 24.10 24.10 −3.68 13.60
solarradiation (W/m2) 366 235.42 79.31 36.60 163.50 238.30 303.75 364.60 −0.16 −1.11
solarenergy (MJ/m2) 366 20.33 6.86 3.10 14.03 20.70 26.30 31.50 −0.16 −1.11
uvindex 366 7.94 1.91 2.00 6.00 8.00 10.00 10.00 −0.67 −0.28
moonphase 366 0.49 0.29 0.00 0.25 0.50 0.75 0.98 −0.03 −1.22

Table 3. Desired classes for prediction with their respective
data points.

Used class in paper Actual class No of data points

Class A Clear day 166
Class B Cloudy day 2
Class C Partly cloudy day 53
Class D Rainy-day 114
Class E Snowy day 31

Table 4. Pearson’s correlation among selected meteorologi-
cal variables.

Correlation
Variable Pair Coefficient (r)

Temp. max vs. Feels-like Temp. max 0.998
Temp. vs. Feels-like Temp. 0.998
Temp. min vs. Feels-like Temp. min 0.997
Temp. min vs. Dew point 0.908
Temp. vs. Dew point 0.858
Dew point vs. Humidity 0.137
Precipitation vs. Humidity 0.602
Precipitation Probability vs. Cloud Cover 0.560
Solar Radiation vs. Temperature 0.636
Wind speed vs. Wind gust 0.728
Sea Level Pressure vs. Temperature −0.874
Visibility vs. Precipitation −0.724
Visibility vs. Cloud cover −0.607
UV Index vs. Solar Radiation 0.963

The subsequent sections provided more details and
the way of each model performance, exploring their
workability and effectiveness in classifying various
weather conditions. The detailed hyperparameters,
configurations, and structural specifics of both

DTC and ETC models employed in this study
are comprehensively summarized in Table 5.
This information provides clarity and facilitates
reproducibility of the modeling framework.

2.4.1. Decision trees classifier (DTC)
The Decision Trees Classifier is renowned for its

robustness and simplicity, making it highly effective
for categorizing complex and heterogeneous datasets
like meteorological data [34]. This model constructs
a tree-like structure where each node represents a
decision rule that splits the data based on the most
significant features [35]. It operates using the formula
for Information Gain, defined as [36, 37]:

Gain = Entropy (parent)−
[

Nleft

N
×Entropy(left child)

+
Nright

N
× Entropy(right child)

]
(3)

Where, ‘parent’ represent the total dataset at the
current node, entropy measures the impurity of the
dataset, Nleft and Nright are the number of samples
in the left and right child nodes, respectively, and N
is the total number of samples at the current node
[38]. This approach optimizes the decision-making
process by maximizing information gain and reduc-
ing uncertainty at each split [39]. The effectiveness
and efficiency of this classifier in handling complex
datasets make it ideal for weather prediction, which
involves intricate and variable data inputs [40].
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Table 5. Hyperparameters and structural configuration of ML models.

Model Hyperparameter Selected Setting Alternative Options Description

Decision Tree Criterion Gini Gini, Entropy Function to measure the quality of splits
Classifier (DTC) Splitter Best Best, Random Strategy used to choose the split at each

node
Max Depth 5 None, 1, 2, 3, . . . Maximum depth of the tree
Min Samples Split 3 2, 3, 4, . . . Minimum samples required to split an

internal node
Min Samples Leaf 3 1, 2, 3, . . . Minimum samples required at a leaf

node
Random State 938 Any integer Ensures reproducibility of the results

Extra Trees Number of Estimators (Trees) 5 10, 50, 100, . . . Number of trees in the ensemble
Classifier (ETC) Max Features sqrt auto, sqrt, log2 Number of features considered at each

split
Max Depth 6 None, 1, 2, 3, . . . Maximum allowed depth of each tree
Min Samples Split 2 2, 3, 4, . . . Minimum samples required to split an

internal node
Min Samples Leaf 1 1, 2, 3, . . . Minimum samples required at a leaf

node
Random State 938 Any integer Ensures reproducibility of the results

The DTC method involved first randomizing the
dataset and splitting it into training 70% and
testing 30% subsets. The model’s hyperparameters
were manually optimized through iterative trials.
The final hyperparameters that yielded the high-
est accuracy were criterion (Gini), splitter (Best),
max depth (5), min samples split (3), min sam-
ples leaf (3), and random state (938). After training
and evaluating the model’s performance using stan-
dard classification metrics, the optimized model
was saved and used for further feature importance
analysis.

2.4.2. Extra trees classifier (ETC)
The ETC is an ensemble learning technique that

builds on the principles of random forests by ran-
domly selecting data points and features at each split
to create a multitude of decision trees [41, 42]. This
approach enhances model robustness and reduces
overfitting by averaging multiple deep decision trees,
each constructed from different random subsets of the
data. The method operates by calculating the Gini
index for each feature at every possible split within
a randomly selected subset of the dataset [43]. The
formula for the Gini index is [44]:

Gini (D) = 1−
J∑

i=1

p2
i (4)

Where, D is a dataset in a node, J represents the
number of classes, and pi is the proportion of class
i instances within the dataset D. The splits that
yield the lowest Gini index are selected to ensure
that the trees are as pure as possible, thereby

effectively increasing the prediction accuracy.
This classifier is particularly effective in dealing
with complex datasets like weather data, where
high dimensionality and feature interactions can
significantly affect prediction outcomes.

The ETC method began with randomizing the
dataset and dividing it into training 70% and testing
30% subsets. The model’s hyperparameters were it-
eratively optimized through manual trials, ultimately
selecting the following parameters that yielded the
highest accuracy: number of estimators (5), max fea-
tures (sqrt), max depth (6), min samples split (2),
min samples leaf (1), and random state (938). The
ETC model was then trained, evaluated using stan-
dard classification metrics, and saved for subsequent
feature importance analysis.

2.5. Performance evaluation metrics

In this study, a comprehensive set of performance
evaluation metrics is employed to assess the effec-
tiveness of the machine learning models used. These
metrics provide insights into the accuracy and relia-
bility of the classification outcomes across different
weather conditions [45, 46].

Precision: The proportion of true positive predic-
tions relative to the total predicted positives:

Precision =
TP

TP+ FP
(5)

Recall (Sensitivity): Measures the proportion of
true positives accurately identified out of all actual
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positive cases:

Recall =
TP

TP+ FN
(6)

F1-score: Harmonic mean of Precision and Recall,
providing a balance between these two metrics:

F1-score = 2×
Precision × Recall
Precision + Recall

(7)

Overall Accuracy: The ratio of correctly predicted
observations (both positive and negative) to the total
number of predictions:

Overall Accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)

Weighted Average (Precision, Recall, F1-score):
Unlike macro averaging, the weighted-average calcu-
lation accounts for the number of instances in each
class. Thus, classes with more instances influence the
metrics proportionally more:

Weighted avg Precision

=

∑(
number of instances in each class

total instances

× Precision of each class
)

(9)

Weighted avg Recall

=

∑(
number of instances in each class

total instances

× Recall of each class
)

(10)

Weighted avg F1-score

=

∑(
number of instances in each class

total instances

× F1-score of each class
)

(11)

Macro Average (Precision, Recall, F1-score): This
calculation treats all classes equally, averaging the
metrics across all classes regardless of the number
of instances per class. It helps indicate the model’s
overall ability to handle various classes, particularly
useful for datasets with imbalanced categories.

Macro avg F1-score =
∑

(F1-score of each class)
number of classes

(12)

Macro Avg Precision =
∑(

Precision of each class
)

number of classes
(13)

Macro Avg Recall =
∑(

Recall of each class
)

number of classes
(14)

Where, TP (True Positives) is the number of
correctly predicted positive observations. FP (False
Positives) is the number of incorrect predictions
where the model predicted positive, but the truth
was negative [47]. TN (True Negatives) indicates the
number of correctly predicted negative observations.
FN (False Negatives) is the number of incorrect pre-
dictions where the model predicted negative, but the
truth was positive [48]. Sensitivity (Recall) demon-
strates the metric indicating the model’s ability to
correctly identify positives. These metrics collectively
offer a nuanced view of the models’ performance, cap-
turing both their accuracy and their ability to handle
different classes in the dataset, essential for validating
the robustness of weather prediction models.

3. Results representations

3.1. Performance evaluation of DTC and ETC models
using confusion matrices

For the DTC model, the training phase results in-
dicated that Class A (clear day) had 116 correct
classifications, Class C (partly cloudy day) had 37,
Class D (rainy day) had 80, and Class E (snowy
day) had 21, with one miss classifications for Class
B (cloudy day). The testing set for the DTC model
indicates 50 correct classifications for Class A, 16 for
Class C, 34 for Class D, and 9 for Class E, with a mis-
classification of 1 in Class B (Fig. 4). As the datapoints
for Class B in whole year were 2 datapoints, this indi-
cates low datapoints have low accuracy, where those
of huge datapoints classified correctly. Conversely,
the ETC model demonstrated a slightly different per-
formance. In the training phase, Class A (clear day)
and Class D (rainy day) were perfectly classified with
116 and 80 correct classifications respectively, Class
C had 31, Class E had 19, and Class B had 1 misclas-
sification. In the testing phase, Class A maintained a
high accuracy with 50 correct predictions, but Class
D showed 32 correct classified and 2 misclassified,
Class C 7 correct classified and 9 misclassified, and
Class E to 8 correct and 1 missed, with only 1 mis-
classification in Class B. From this analysis, the DTC
model appears to slightly outperform the ETC model
in terms of overall accuracy and consistency across
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Fig. 4. Confusion matrix analysis for multi-class classification on training and testing phases; (a) DTC model, (b) ETC model.

both the training and testing sets, suggesting it as the
best model for handling multi-class classification for
weather conditions.

3.2. Detailed performance metrics for DTC and ETC
models

The detailed overall performance metrics for the
DTC and ETC models are visualized in Fig. 5. Where,
during the training phase the DTC model achieved
an overall accuracy of 0.99, with macro avg and

weighted avg for precision, recall, and F1-scores ob-
tained high values of 0.79 and 0.99 respectively.
In contrast, the ETC model during training phase
recorded slightly lower overall accuracy at 0.96 but
exhibited strong macro avg precision of 0.98 and
macro avg recall of 0.94, with both macro avg and
weighted avg for F1-scores at 0.96. During testing
phase, the DTC model maintained high overall accu-
racy at 0.99, with macro avg for precision and recall
at 0.79 and 0.80 respectively, and similarly high
weighted metrics. The ETC model, however, showed
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Fig. 5. Comparative analysis of model performance metrics across training and testing phases; (a) DTC model, (b) ETC model.

a decrease in testing metrics with an overall accuracy
of 0.89, macro avg precision of 0.92, and macro avg
recall of 0.85, along with macro avg and weighted
avg for F1-scores of 0.86 and 0.88 respectively.

Building upon the detailed above evaluation, Fig. 6
further delineates class-specific performance metrics
for the DTC and ETC models, demonstrating distinct
strengths and weaknesses across various classes. For
the DTC model, precision, recall, and F1-score in the
training phase are perfect (1.00) for Class A, while
Class B notably underperforms with zeros across all
metrics. Consistently the issue with class B stands
for low number of datapoints. Class C shows strong

precision (0.97) and perfect recall (1.00), resulting in
an F1-score of 0.99. Classes D and E also exhibit high
performance with respective F1-scores of 0.99 and
0.98. In the testing phase, the DTC model retains high
metrics for Classes A, D, and E, all achieving perfect
scores (1.00) across precision, recall, and F1-Score.
Class C, despite a lower precision of 0.94, achieves
perfect recall and an F1-score of 0.97. On the other
hand, the ETC model shows a varied performance
spectrum. In training, Class A’s metrics slightly lag
behind with a precision of 0.95 but perfect recall,
and Class C’s lower recall of 0.84 brings its F1-score
down to 0.91. However, Classes B and E excel with
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Fig. 6. Class-wise performance metrics in training and testing for model’s evaluation; (a) DTC model, (b) ETC model.

perfect precision and recall, leading to an F1-score
of 1.00 and 0.93, respectively. The testing phase re-
veals some weaknesses, with Class C only achieving a
precision of 1.00 but a lower recall of 0.44, resulting
in a decreased F1-score of 0.61. Conversely, Class B
maintains perfect scores, underscoring its robustness
in both training and testing scenarios. Conclusively,
while the ETC model shows exceptional results in
certain classes, the DTC model demonstrates a more
consistent and superior performance across a broader
range of metrics, establishing it as the best performing
model for this multi-class classification task.

3.3. Enhancing model evaluation with ROC curve
analysis

The Receiver Operating Characteristic (ROC)
curve, a graphical plot that illustrates the diagnostic
ability of a binary classifier system, varies the

discrimination threshold and plots the True Positive
Rate (TPR) against the False Positive Rate (FPR).
This method provides a comprehensive measure of
model performance at different threshold settings.
For the DTC model, the training and testing phases
achieved perfect Area Under Curve (AUC) scores of
1.00 for all classes (A through E), indicating flawless
classification without any false positives or negatives
(Fig. 7a). Similarly, the ETC model showed nearly
perfect AUC scores in training, with Class A, B, D,
and E with scores of 1.00 and Class C slightly lower
at 0.99. Testing metrics for the ETC model revealed
minor variations, with Class A scoring 0.97, Class
B, D, and E maintaining a perfect score of 1.00,
and Class C at 0.92, indicating excellent but not
flawless performance (Fig. 7b). These ROC curve
results strongly support the findings of current study,
demonstrating that both models exhibit robust clas-
sification capabilities, with the DTC model showing
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Fig. 7. ROC curve analysis by multi-class classification for ML models performance evaluation; (a) DTC model, (b) ETC model.

significantly superior performance in maintaining
consistent excellence across all scenarios.

3.4. Sensitivity analysis

Feature analysis and importance on how the DTC
and ETC models utilized different subsets of features
to obtain high predictive accuracy were carried out.
The findings indicated that the DTC model highlights
a focused approach, utilizing only five significant fea-
tures: Precipitation Probability (40%), Cloud Cover
(31%), Snow (18%), temperature Feels Like Max
(8%), and Solar Radiation (3%) (Fig. 8a). This
indicates that fewer features are required for data col-
lection, making the DTC model efficient and effective
for scenarios where limited data inputs are available.

Conversely, the ETC model leverages a broader range
of inputs, showing significant importance in nine
features including Precipitation Probability (33%),
Cloud Cover (16%), Dew (9%), Temperature Max
(8%), Pressure (7%), temperature Feels Like Min
(6%), Solar Energy (5%), Wind Max (5%), and Solar
Radiation (4%) (Fig. 8b). This diversity suggests the
ETC model’s ability to incorporate and effectively
utilize a wide variety of datapoints, enhancing its ro-
bustness and adaptability in more complex scenarios
where more detailed environmental data is accessi-
ble. Conclusively, both models have their strengths,
the DTC model is ideal for applications requiring
fewer data inputs and where ease of interpretation
is crucial. In contrast, the ETC model is preferable
in situations where comprehensive data collection is
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Fig. 8. Analysis of feature importance in predictive modeling; (a) DTC model, (b) ETC model.

feasible, and a more detailed analysis is beneficial.
Ultimately, the choice between using the DTC or ETC
model based on feature importance should be based
on the specific needs and limitations of the applica-
tion, as both offer valuable capabilities tailored to
different operational preferences and conditions.

4. Discussion

The findings from the current study offers valuable
insights into the efficacy of ML techniques in the clas-
sification of weather conditions, specifically within
the challenging meteorological landscape of study
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region (Kabul, Afghanistan). This study differs signifi-
cantly from other studies discussed below in its focus
on a region with unique geographical and climatic
challenges. The incorporation of specific models,
namely the DTC and ETC, tailored to handle the
complex, non-linear interactions of meteorological
variables in Kabul, marks a distinct approach com-
pared to other studies that have often employed more
generic ML models across broader geographic areas.

In comparison, studies like [49, 50], explored
weather classification using deep learning (DL) meth-
ods applied to image data, which contrasts with the
current study’s reliance on numerical weather data
and structured decision tree methodologies. These
differences highlight the varied applications of ML
in meteorology, depending on the nature of the data
and the specific requirements of the study area. Simi-
larly, [51] used of convolutional neural networks for
classifying weather images shows a different method-
ological approach, emphasizing visual data over
numerical weather data used in the current study.

The findings of this study align closely with those of
[52–54], where ML models demonstrated high accu-
racy in weather prediction. For example, the overall
accuracy achieved by the DTC model in this study
(99% in testing) is comparable to the high accuracy
levels noted in [52] as 89.71% using ANN for visi-
bility classification, and the study [53] obtained 97%
accuracy in weather image classification using SVM.
This similarity underscores the effectiveness of ML
in accurately predicting weather conditions across
different regions and datasets.

However, there is a contrast with studies like
[55, 56], where the focus was on synthetic data and
solar forecasting, respectively. These studies used
ML for different applications within the meteorology
field, indicating the versatility of ML techniques
but also their specific adaptability to distinct study
objectives and data types. The current study’s used
of real, ground-based meteorological data provides a
direct analysis of weather patterns without the need
for synthetic augmentation or the specific prediction
of solar outputs.

The use of decision tree-based models in this
study provides a clear, interpretable framework
for classification, which is particularly important in
operational settings such as agricultural planning and
disaster management in the region. This approach
aligns with the methodologies seen in [57, 58], where
clear, actionable outputs from ML models are critical
for real-time decision-making. On the other hand,
the high dimensionality and feature interactions
explored in studies like [59, 60], which use more
complex algorithms such as boosted trees and hybrid
models, offer a different perspective on handling

meteorological data, emphasizing the trade-offs
between model complexity and interpretability.

In summary, the current study not only advances
our understanding of ML applications in meteorology
for a specific regional context but also contributes
to the broader discourse on the best practices and
methodologies for weather classification across
diverse environments. Its alignment with several
previous studies highlights the robustness of ML
in this field, while its distinctions underscore the
importance of tailored approaches to meet specific
regional challenges. This balance between adaptation
to local conditions and alignment with global ML
practices in meteorology forms a valuable part of the
ongoing evolution of technological applications in
environmental science.

5. Limitations, practical implications, and
generalizability

Despite demonstrating high accuracy and effec-
tiveness in classifying daily weather conditions, this
study has certain limitations that should be acknowl-
edged. The model’s performance heavily relies on
the quality, quantity, and representativeness of the
local meteorological data collected specifically from
Kabul, potentially affecting its direct applicability
to other regions with significantly different climatic
or topographical conditions. However, the practical
implications remain substantial, as local authori-
ties, urban planners, and agricultural stakeholders in
Kabul can directly benefit from improved, reliable,
and interpretable daily weather forecasts provided
by these models. Regarding generalizability, while
the specific results are most applicable to Kabul and
similarly structured regions, the decision tree-based
modeling framework, methodology, and systematic
process developed herein offer broad applicability
and can serve as a valuable blueprint for adapting and
implementing similar ML-based forecasting systems
in other regions facing comparable meteorological
and environmental complexities.

6. Conclusion

Weather condition classification through advanced
ML techniques represents a crucial advancement in
meteorological sciences, allowing for more accurate
and timely predictions critical for effective resource
management and emergency response. This study ob-
jectives concentrated to implement and evaluate DTC
and ETC advanced ML models for weather prediction
in Kabul province of Afghanistan, assessing the
models’ effectiveness in different weather conditions,
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and explore the applicability of these models for
local and global meteorological challenges. Where,
a novel methodology involved a detailed analysis
of data collected over a complete year (1.1.2024 to
31.12.2024 with 366 records) from a central station
in the region, followed by the application of ML
algorithms. The models were carefully trained and
tested, ensuring comprehensive coverage of different
atmospheric conditions prevalent in the region.
Results indicated that the DTC model obtained an
overall accuracy of 99% in both training and testing
phases, with average precision, average recall, and
average F1-scores of 0.79, 0.80 and 0.99 respectively
in the testing phase. In contrast, the ETC model,
while powerful in the training phase with an overall
accuracy of 96% and macro average precision of 0.98,
showed decreased performance in the testing phase
with an overall accuracy of 89%, macro average
precision of 0.92, and macro average F1-score of 0.86.
These findings signify the outperforming of the DTC
model over ETC model in handling different weather
conditions efficiently, suggesting its potential for
broader implementation in similar climatic regions.
Given the results, it is recommended that further
validation with larger datasets be conducted to
confirm the models’ reliability and adaptability. In
addition, consideration should be given to integrating
real-time data feeds to enhance predictive capabilities
and model responsiveness. Future research should
focus on exploring ensemble methods that combine
the strengths of different ML techniques to improve
prediction accuracy. Investigating the impact of
extreme weather events on model performance and
extending the application of these models to other
regions with different climatic conditions are also
critical areas for further study.

Abbreviations

ML: Machine Learning
DTC: Decision Tree Classifier
ETC: Extra Trees Classifier
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ROC-AUC: Receiver Operating Characteristic - Area
Under Curve
RF: Random Forest
SVM: Support Vector Machine
ANN: Artificial Neural Networks
K-NN: K-Nearest Neighbors
YOLOv3: You Only Look Once version 3
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