Genotypic, phenotypic correlation of genotypes of Zea Mays L.

Saja Abbas Abdul-Jabbar 1Manal Abdul-Muttalib Al-Hayali2, Mohammad Subhi Al-Taweel3, Hussein Abbas Muhammad4

1,2Department of Biology/College of Education for Girls/University of Mosul

3Department of Field Crops / College of Agriculture and Forestry / University of Mosul

4Dabbaneh Modern Agriculture Co. Ltd.

Abstract

In this study, 10 genotypes of maize (Zea mays L.) from Al-Dabbaneh Modern Agriculture Co. Ltd. were used. This study was conducted during the Autumn planting season of (2021). It included a field experiment conducted in two sites, the first in Nineveh province (Al Rashidiya), and the second in Erbil province (Al-Dabbaneh Modern Agriculture Company Ltd.) for three replications. The traits were studied: date to tasseling, date to silking, plant height, number of leaves per plant, area of main leaf ear, number of ear, ear length, Number of rows per ear, number of grains per row, number of grains per ear, weight of 300 grains, grain yield per plant and oil percent %. The results showed that the mean squares of the genotypes were significant at the 1% probability level for most of the studied traits and for both locations. The genotype (Reserave) for the Mosul location, and the genotype (215472) for Erbil location were excelled for most of the studied traits. The genetic correlation was significant and positive for the location of Erbil between the grain yield per plant and each of the number of rows per ear and the number of grains per ear

Key words: Maize, analysis of variance, genotypes genetic, environmental and phenotypic correlations

Introduction

Maize (Zea mays L.) is considered one of the important crops belonging to the Maydeae tribe and the Poaceae family. It is an important food and industrial grain crop in many countries of the world, including Iraq, where it is considered direct food for humans and animal feed and constitutes an important source of income for millions of people in countries around The World [12]. This is because its grains contain starch, protein, oil, vitamins and minerals, as well as being used as a source of biofuel, such as producing ethanol [2]. The global production rate of this crop reached 1148.49 million tons, while the cultivated area amounted to 197.2 million ha-, with a productivity rate of 5.8 tons' ha- 1 . [6], while the cultivated area of the maize crop in Iraq for the year (2021) amounted to about (325.9) thousand dunums, and the production reached (374.4) thousand tons to the [5].

Genetic variations are the basic material on which plant breeders build in improving the studied traits. As specialists were interested in studying the components of genetic and phenotypic variations for the studied traits, the selection programs depend mainly on the presence of genetic variation, knowledge and understanding of genetic behavior and the correlations between those traits, and the identification of the most influential traits as a criterion for selection comes by knowing the amount of correlations between these traits and the yield [3]. Knowing the correlation between pairs of important traits facilitates laying the right foundation for the most efficient breeding programs, and because of the interdependence of genes and the multiplicity of their influence, selection is either positive in which the improvement of one of the two traits follows the development of the other trait in the desired direction, or it is negative[14]. [7] indicated through their study on maize yield, that the genetic variances were higher than the environmental variances for the traits which are plant height, number of leaves per plant, ear length, number of rows per ear, number of grains per row and number of perches per plant. [1]found that genetic variance is greater than environmental variance for the trait of a date to tasseling, date to silking, plant height, number of rows per ear, number of grains per ear, weight of 100 grains and grain yield per plant, While the environmental variance was higher than the genetic variance for ear length of maize crop. [9]reached the excelled of one of the genotypes for the characteristics of plant height and grain yield per plant by studying several genotypes of maize. [15]observed the superiority of one of the genotypes for the plant height, number of rows per ear and percentage of oil when they studied 4 genotypes of maize. [17] found significant and positive values of genetic correlation of grain yield per plant traits with plant height traits, number of ears per plant, when they were studied on the genotypes of maize crop. [11] concluded through their study on 10 genotypes of maize plant that the trait of the grain yield per plant was phenotypically significantly positively correlated with the number of grains per ear, the length of the ear and the number of grains per row.

Materials and methods

The field experiment was conducted during the Autumn season (2020-2021) in two environmentally different locations, the first in Nineveh province (Al Rashidiya) and the second in Erbil province (Al-Dabbaneh Modern Agriculture Company Ltd.). The distance between the two location is (95 km).10 genotypes of maize (Zea Mays L.) from Al-Dabbaneh Research Station were grown as shown in Table (1) using The Randomized Complete Block Design (RCBD) for three replications, As the planting was done by placing (2-3) seeds in each hole and the distance between one hole was (25 cm) and a thinning was done for the cultivated plants by leaving one plant in each hole. The plants grown during the season were irrigated regularly for both location and DAP (Diammonium phosphate) fertilizer was added with the addition of urea fertilizer. According fertilizer recommendations, to the the necessary processes for plant germination and different under environmental growth conditions were performed. The harvest was conducted for the two locations, Erbil and Mosul, on 4/11/5/11/2021, respectively. The studied traits were studied after the harvest process, date to tasseling, date to silking, plant height, number of leaves per plant, main ear leaf area (cm2), number of ear per plant, ear length (cm), number of grains per row, number of grains per ear, weight of 300 grains (gm), grain yield per plant (gm/plant), oil percent (%). The analysis of variance was conducted for the studied traits according to randomized complete block design the (R.C.B.D) and according to what was reported by [4], the correlation coefficients, genetic (rG), environmental (rE) and phenotypic (rP) between the studied traits were estimated in the manner explained by [16] according to the following equations:

$$rG_{=} \frac{\sigma_{g_{\chi} g_{y}}}{\sqrt{\sigma^{2} G_{\chi} \cdot \sigma^{2} G_{y}}} \quad \text{, } rP = \frac{\sigma_{p_{\chi} p_{y}}}{\sqrt{\sigma^{2} p_{\chi} \cdot \sigma^{2} p_{y}}} \quad \text{, }$$
$$rE_{=} \frac{\sigma_{E_{\chi} E_{y}}}{\sqrt{\sigma^{2} E_{\chi} \cdot \sigma^{2} E_{y}}}$$

Genotype name	Source	
AGN 720	American Genetics	
Jameson	American Genetics	
Reserave	American Genetics	
Konsens	Syngenta	
215479	KWS	
215475	American Genetics	
215480	American Genetics	
215481	American Genetics	
215482	American Genetics	
215472	American Genetics	
	AGN 720 Jameson Reserave Konsens 215479 215475 215480 215481 215482	AGN 720American GeneticsJamesonAmerican GeneticsReseraveAmerican GeneticsKonsensSyngenta215479KWS215475American Genetics215480American Genetics215481American Genetics215482American Genetics

Table (1) Names and source of genotypes from maize and their numbers used in the study.

Results and discussion

Table (2) shows the mean squares of the genotypes for Al-Mosul location were significant for most of the studied traits except for the number of leaves (cm) and number of ears per plants. While Table (3) shows the mean squares of the genotypes for Erbil location that they were significant for most traits except for the two traits of the date to silking, Number of ears per plants and the percentage of oil (%). This finding is in line with what was found by [7], [1] and [10]. This is an indication of the possibility of benefiting from significant traits in plant breeding and improvement programmers, such selection for significant traits. as

Euphrates Journal of Agriculture Science-14 (4): 271-282 , (2022)

degrees of freedom	studied traits												
	date to tasseling	date to silking	plant height (cm)	number of leaves per plant	Area of the main ear leaf (cm2)	Number of ears per plant	ear length cm))	Number of rows per ear	Number of grains per row	Number of grains per ear	Weight 300 grains (gm)	Grain yield per plant(g/plant)	Oil percent %.
2	1.348	3.249	10.169	3.959	139.545	0.037	0.289	0.232	0.427	481.359	60.447	35.845	0.0003
9	** 1.540	** 3.600	** 133.516	N.S. 0.586	** 1100.707	N.S. 0.043	** 2.319	** 0.979	** 9.553	** 4031.312	** 130.905	** 856.795	** 0.0003
18	0.385	0.302	2.162	0.241	105.746	0.014	0.397	0.118	0.454	161.514	11.658	10.930	0.00003
	of freedom 2 9	degrees of freedomdate to tasseling21.3489** 1.540180.385	degrees of freedom date to tasseling date to silking 2 1.348 3.249 9 ** ** 1.540 3.600 18 0.385 0.302	degrees of freedomdate to tasselingdate to silkingplant height (cm)21.3483.24910.1699******1.5403.600133.516180.3850.3022.162	degrees of freedomdate to tasselingdate to silkingplant height (cm)number of leaves per plant21.3483.24910.1693.9599** 1.540** 3.600** 133.516N.S. 0.586180.3850.3022.1620.241	degrees of freedom $date$ to to tasseling $date$ to silking $date$ to consisting $date$ to ilking $date$ to consisting $date$ to silking $date$	$\begin{array}{c} \\ \begin{tikzed}{l l l l l l l l l l l l l l l l l l l $	$\begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	degrees of freedom $date$ to asseling $date$ to silking $date$ to date to dat	degrees of freedom $date$ to silking of eaves per plant $date$ (cm2) $date$ of the main ear leaf (cm2) $date$ plant $date$ (cm2) $date$	$ \begin{array}{c} \\ \begin{tikzed} \hline \begin{tikzed} \begin{tikzed} \\ \end{tikzed} \\ ti$	degrees of freedomdate to saselingdate to silkingplant height cm)number of of saves per plantNumber of ser er (cm2)Number of ser printNumber lears of geans per plantNumber ser plantNumber of ser plantNumber ser plantNumber of sers printNumber ser plantNumber ser ser plantNumber ser ser plantNumber ser ser plantNumber ser ser plantNumber ser ser ser ser ser ser ser plantNumber se	$\begin{array}{c} \\ \begin{tikzbulkzematrix} \hline \hline \ \ \ \begin{tikzbulkzematrix} \hline \hline \ \ \ \ \begin{tikzbulkzematrix} \hline \hline \ \ \ \ \begin{tikzbulkzematrix} \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Table (2): Analysis of variance for genotypes according to a randomized complete block design for the studied traits of the Mosul location.

** Significant at probability level (1%).

		studied trait	idied traits											
sources of variation	degrees of freedom	date to tasseling	date to silking	plant height (cm)	number of leaves per plant	Area of the main ear leaf (cm2)	Number of ears per plant	ear length (cm)	Number of rows per ear	Number of grains per row	Number of grains per ear	Weight 300 grains (gm)	Grain yield per plant(g/plant)	Oil per %.
replications	2	0.192	3.448	0.295	0.087	56.050	0.013	0.992	0.030	1.271	7.367	34.560	0.502	0.0
genotypes	9	** 3.326	N.S. 0.684	** 183.240	** 0.704	** 3820.789	N.S. 0.050	** 2.263	** 1.603	** 12.202	** 5902.572	** 111.703	** 1744.413	N.S 0.0
experimental error	18	0.274	0.505	0.646	0.059	123.307	0.033	0.403	0.140	0.354	8.650	6.674	3.542	0.0

Table (3): Analysis of variance for genotypes according to a randomized complete block design for the studied traits for Erbil location.

** Significant at probability level (1%)

The results of Table (4) show the means of the genotypes of the studied traits for Mosul location, in which the genotypes (215475) (Reserave) and (Konsens) showed an early date to tasseling. For the trait of the date to silking, the genotype (AGN 720) excelled. The two genotypes (215472) (215482) had the highest plant height, as for the trait number of leaves per plant, the genotypes (215,475), (215482) and (Konsens) excelled. The genotypes (Konsens) and (Reserave) showed significantly for the traits of number of ears per plants. For the ear length trait, the genotype (215481) gave the highest value for the trait, which differed significantly from the rest of the genotypes. When estimating the trait of the number of rows in the ear, the genotypes (Konsens) and (Reserave) were distinguished by the highest value. As for the number of grains in the row, the genotype (Konsens) showed the highest mean, which does not differ significantly from the two genotypes (Reserave) (215472). As for the number of grains in the ear, it gave the genotype (Reserave) the highest value and the genotype (215482) showed significantly for the trait of weight of 300 grains. While the genotype (Reserave) showed the highest mean for the grain yield per plant, and the two genotypes (Reserave) and (215481) for the oil percentage trait. From the foregoing, it is clear that the genetic structure (Reserave) is superior for 7 traits, which are the date to tasseling, number of ears per plants, the number of rows per ear, the number of grains per row, the number of grains per ear, grain yield per plant and the percentage of oil. Table (5) indicates the means of the genotypes of the studied traits for the Erbil site, as it showed that the genotype (Jameson) exceeded date to tasseling, which did not differ significantly from the genotype (215481). While the genotypes (Jameson) and (Konsens) were recorded. (215475) and (215482) excelled for the date to silking. The genotypes (Reserave) and (Konsens) gave the highest plant height. The genotypes (215480), (215482) and (215472) were superior to the number of leaves per plant. For the main ear-leaf area

trait, the genotype (Jameson) showed the highest value for the trait. The genotype (215479) showed the highest mean for the trait of number of ears per plant. The genotype (Jameson) gave the highest mean for the ear length, which did not differ significantly from the genotype (Reserave). The genotypes (215472) and (AGN 720) for the traits excelled on the number of rows per ear, the number of grains per row, the number of grains per ear. While the two genotypes (215480) and (215481) recorded the highest mean for the weight of 300 grains. The two genotypes (215472) and (AGN 720) gave the highest value for the trait of grain yield per plant. When estimating the percentage of oil, the two genotypes (Reserave) excelled (215481) with the highest value. We note from Table (5) that the genotype (215472) was excelled for 5 traits, namely number of leaves per plant, number of rows per ear, number of grains per row, number of grains per ear. Grain yield per plantand these results are in line with that of [1], [9] and [15] It is noted from these results that there is a wide variation in the performance of the genotypes for both sites, which gives the opportunity to select some genotypes, namely (Reserave), for the location of Mosul, and the genotype (215472) for Al-Erbil location in order to be included in future experiments.

Table (4) The mean performance of genotypes for thirteen phenotypes in maize for Mosul location

traits	date to tasseling	date to silking	plant height (cm)	number of leaves per plant	Area of the main ear leaf (cm2)	Number of ears per plant	Ear length (cm)	Number of rows per ear	Number of grains per row	Number of grains per ear	Weight 300 grains (gm)	Grain yield per plant(g/plant)	Oil percent %.
AGN 720	53.777 أب جـ	54.333 ه	171.733 - -	12.233 أب	506.758 و	1.711 أب	23.866 أ ب	13.256 د	33.335 د	442.690 و	116.444 ب ج ـ	179.489 د هـ	2.039 د
Jameson	53.555 أ-د	55.888 جـ د	170.622 جـد	11.666 ب	506.592	1.733 أب	21.366 د	14.231 أب جـ	32.610 د هـ	467.140 هـ	116.889 ب ج ـ	206.289 ب	2.043 جـد
Reserave	52.777 جـد	55.111 د هـ	171.778 - -	12.700 أ ب	553.286 أب	1.822	22.600 - -	14.977	36.717	551.030	111.778 جـد	227.422	2.072
Konsens	52.666 جـد	55.111 د هـ	168.133 د هـ	12.722 أب	529.278 د هـ	1.844 j	22.800	14.631 أب	36.757 1	533.680 أ ب	126.556	209.933 ب	2.045 ب جـ د
215479	54.444 أ ب	57.444 أ ب	160.003 و	11.833 أب	527.308 د هـ	1.555 أب	22.222 جـد	13.268 د	31.911 هـ	439.810 و	116.111 ب ج ـ	207.378 ب	2.061 أب جـ
215475	52.444 د	55.222 د هـ	165.822 ھ	12.855	545.308 ب ج	1.466 ب	23.755 أ ب	13.451 جـد	35.066 ب ج	479.800 د هـ	110.222 د	184.000 جـد	2.055 أ- د
215480	54.555	56.555 ب ج ـ	177.011 ب	12.077 أ ب	562.261	1.777 أ ب	23.755 أب	14.364 أ ب	36.033 أ ب	519.320 ب ج	108.778 د	174.222 ه	2.058 أ- د
215481	53.333 أـد	56.777 أب جـ	176.333 ب	11.811 أ ب	536.067 جـد	1.688 أ ب	24.266	14.064 ب ج د	35.961 أب	503.510 جـد	116.333 ب ج ـ	187.644 - -	2.065 j
215482	53.222 ب ج د	55.777 جـد	181.689 1	12.733 أ ب	549.089 أب ج ـ	1.622 أب	23.022 ب ج ـ	13.917 ب جـ د	34.606 ÷	484.760 د هـ	129.000	209.378 ب	2.059 أ- د
215472	53.000 جـد	57.666 1	180.044 j	12.411 أ ب	519.392 هـ و	1.777 أ ب	23.266 أب ج ـ	14.072 ب ج د	36.568 j	496.490 جـد	121.000 ب	189.822 ->	2.065 أ ب

Euphrates Journal of Agriculture Science-14 (4): 271-282 , (2022)

Abdul-Jabbar et al

traits genotype	date to tasseling	date to silking	plant height (cm)	number of leaves per plant	Area of the main ear leaf (cm2)	Number of ears per plant	ear length (cm)	Number of rows per ear	Number of grains per row	Number of grains per ear	Weight 300 grains (gm)	Grain yield per plant(g/plant)	Oil percent %
AGN 720	55.222 ب ج	58.333 أ ب	150.088 ھ	13.811 ھ	623.452 - -	1.955 أب	25.577 أب ج ـ	15.177 1	40.181	598.800	116.778 1	216.244	2.104 أب
Jameson	53.333 ب	57.888 أ ب	156.444 د	15.066 أب ج ـ	677.813 1	1.955 أب	26.577 1	13.382 د	37.249 - -	495.300 هـ و	110.444 ب	177.822 ه	2.026
Reserave	54.888 ب جـ د	58.000 أ ب	172.300	14.666 جـد	617.643 - -	1.911 أب	26.511	13.544 جـد	37.091 - -	497.889 د هـ	105.000 - -	171.289 و	2.125
Konsens	55.666 ب	57.000 ب	172.777 j	14.611 جـد	586.581 د	1.822 أب	25.355 ب ج	13.851 ب جـ د	38.378 ب	529.978 ج	105.667 ج	183.911	2.077 أب جـ
215479	57.000	58.777 1	159.877 ج	14.366 د هـ	576.967 د	2.044	26.066 أب ج ـ	13.153 د	36.506 جـد	482.667 7	111.667 ب	147.022 ⁷	2.082 أب جـ
215475	54.222 ج- و	57.888 أ ب	171.422 j	14.533 ج- د	620.645 ÷	1.866 أب	26.400 أ ب	13.522 جـد	36.604 جـد	487.422 زح	110.444 ب	162.067	2.072 أب جـ
215480	54.333 جو	58.111 أ ب	157.377 د	15.377 i	669.947 เ	1.844 أ ب	25.133 -	14.191 ب ج ـ	35.634 د هـ	501.178 د	120.222 1	203.022	2.078 أب جـ
215481	53.777 هـ و	58.000 أ ب	160.600 ج	14.688 ب ج د	588.704 د	1.688 ب	23.755	14.417 ب	34.822 ھ	491.533 و ز	119.667 1	211.578 ب	2.123 أ ب
215482	ر 54.111 د هـ و	57.888 أب	166.211 ب	 15.133 أب ج ـ	585.220 د	1.622 ب	25.044 	۔ 13.591 جـد	34.599 a	472.022 لط	112.889 ب	۔ 174.933 ھ	2.082 أب جـ
215472	54.555 جـدهـ	58.555	بـ 157.277 د	<u>اب</u> أب	- 641.516 ب	ب 1.755 أب	 26.022 أب ج	15.220	40.461			215.556	<u>2.046</u> ب جـ

Table (5) The mean performance of genotypes for thirteen phenotypes in maize for the Erbil location

It is clear from Table (7) the correlation coefficients of the studied traits for the location of Mosul. where the genetic correlation coefficient positive was significantly between: (1) number of ears per plants per plant, each of the number of grains per ear, the number of grains per row, and the number of rows per ear. (2) The number of rows per ear, each of the number of grains per ear, and the number of grains per row. (3) The number of grains in the row and the number of grains in ear. While the genetic correlation was significantly negative between: (1) ear length and grain yield per plant, and the environmental correlation was positively significant between: (1) number of ears per plant per plant and each of the grain yield per plant, the number of rows in ear and the length of ear. (2) The length of ear and the grain yield per plant. (3) The number of rows per ear and the number of grains per ear While the environmental correlation was significantly negative between: (1) number of ears per plants per plant and the number of grains per ear. (2) The length of the ear and the number of rows in the ear. (3) The number of grains per row and the weight of 300 grains. (4) Weight of 300 grains and grain yield per plant. The phenotypic correlation was significantly positive between: (1) number of ears per plants per plant and each of the grain yield per plant, the number of grains per ear, the number of grains per row, and the number of rows per ear. (2) The length of the ear and the number of grains in a row. (3) The number of rows per ear, each of the grain yield per plant, the number of grains per ear, and the number of grains per row. (4) The number of grains per row and the number of grains per ear. (5) The number of grains per ear and the grain vield per plant. (6) The weight of 300 grains and the grain yield per plant, while the correlation was phenotypic significantly negative between: (1) the length of ear and each of the grain yield per plant, the weight of 300 grains, and the number of rows in ear. This indicates that any increase in one of the two related traits leads to a decrease in the other. We conclude from Table (6) that there significant environmental a positive, is

279

correlation between the grain yield per plant and each of number of ears per plant per plant and the length of ear. While the phenotypic correlation was positive between the grain vield per plant and each of the number of perforations per plant, the number of rows per ear, the number of grains per ear and the weight of 300 grain. Table (7) shows the correlation coefficients for the studied traits for Erbil location, where the genetic correlation coefficient was significant positive between: (1) number of ears per plant per plant and the ear length. (2) The number of rows per ear and each of the grain yield per plant, the number of grains per ear and the number of grains per row. (3) The number of grains per row and the number of grains per ear. (4) The number of grains per ear and the grain yield per plant, while the genetic significantly correlation was negative between: (1) the length of the ear and each of the grain yield per plant and the weight of 300 grains, (2) The number of grains per row and the weight of 300 grains. The environmental correlation was positive and significant between: (1) the number of perforations per plant and each of the number of grains per ear and the number of rows per ear. (2) The ear length and the number of rows in ear. (3) The number of rows per ear and each of the grain yield per plantand the number of grains per ear

. While the environmental correlation was significantly negative between: (1) the number of perforations per plant and each of the weight of 300 grains, the number of grains per row and ear length. (2) The number of rows in the ear and each of the weight of 300 grains and the number of grains in a row. (3) The number of grains per row and each of the grain yield per plant and the number of grains per ear. (5) The number of grains per ear and the weight of 300 grains. (6) Weight of 300 grains and grain yield per plant. The phenotypic correlation was significantly positive between: (1) number of ears per plant and each of the number of grains per row and the ear length. (2) The ear length and the number of grains in a row. (3) The number of rows per ear and each of the grain yield per plant, the number of grains per ear and the number of grains per

row. (4) The number of grains per row and each of the grain yield per plant and the number of grains per ear. (5) The number of grains per ear and the grain yield per plant. (6) The weight of 300 grains and the grain yield per plant, while the phenotypic correlation was significantly negative between: (1) number of ears per plants per plant and each of the grain yield per plant and the number of rows per ear. (2) The ear length, each of the grain yield per plant, the weight of 300 grains, and the number of rows per ear. (3) The number of grains per row and the weight of 300 grains. (4) The number of grains per ear and the weight of 300 grains. In general, the positive significantly correlation indicates that the genetic systems cooperate synergistically by affecting each of the two linked traits, and that selection for any of them will affect the other

in the same direction. Whereas, the phenotypic positive correlation indicates that any increase in one of the two traits leads to an increase in the other trait. These results are in line with what was reported by [17], [8] and [11]. It is clear from Table No. (7) that there is a positive significant genetic correlation between the grain yield per plant and each of the number of rows per ear and the number of grains per ear. While the environmental correlation was significant and positive between the grain yield per plant and the number of rows in ear. The phenotypic correlation was significant and positive between the grain yield per plant and each of the number of rows per ear, number of grains per ear, number of grains per row and weight 300 of grains.

 Table (6) the genetic, environmental and phenotypic correlation of the studied traits for Mosul location

traits	correlat ion	traits grain yield per plant (g/plant)	Weight 300 grain(g)	Number of grains per ear	Number of grains per row	The number of rows per ear	ear length (cm)
Number of	Rg	0.066	0.060	*0.225	*0.175	*0.245	-0.066
ears per plant in	Re	**0.378	-0.083	**-0.368	0.000	*0.229	**0.293
plants	Rp	*0.212	0.127	**0.504	**0.448	**0.678	-0.052
1 .1	Rg	*-0.240	-0.062	0.040	0.147	-0.064	
ear length	Re	**0.313	-0.126	-0.061	0.063	*-0.246	
(cm)	Rp	**-0.633	*-0.193	0.101	**0.409	*-0.230	
The	Rg	0.160	0.015	**0.298	*0.230		
number of rows per	Re	0.076	0.090	*0.221	-0.057		
ear	Rp	**0.457	0.058	**0.856	**0.628		
Number of	Rg	0.001	0.019	**0.297			
grains per	Re	0.001	**-0.329	0.048			
row	Rp	0.002	0.014	**0.857			
Number of	Rg	0.103	-0.005				
grains per	Re	0.089	-0.136				
ear	Rp	**0.305	-0.030				
Weight	Rg	0.127					
300	Re	**-0.521					
grain(g)	Rp	**0.328					

		traits					
traits	correlat ion	The grain yield per plant (g/plant)	Weight 300 grain(g)	Number of grains per ear	Number of grains per row	The number of rows per ear	ear length (cm)
Number of	Rg	-0.131	-0.016	0.030	0.131	-0.103	*0.247
ears per	Re	0.125	*-0.183	**0.342	**-0.344	*0.176	**-0.277
plant in plants	Rp	**-0.299	-0.090	0.087	*0.228	*-0.167	**0.429
ann lan ath	Rg	*-0.170	*-0.208	0.026	0.142	-0.130	
ear length	Re	0.130	-0.079	0.123	0.029	**0.440	
(cm)	Rp	**-0.464	**-0.574	0.074	**0.391	*-0.246	
The number	Rg	**0.306	0.045	**0.286	*0.206		
of rows per	Re	**0.358	**-0.335	**0.346	**-0.360		
ear	Rp	**0.890	0.079	**0.830	**0.551		
Number of	Rg	0.129	*-0.170	**0.305			
grains per	Re	**-0.312	-0.008	**-0.400			
row	Rp	**0.376	**-0.489	**0.897			
Number of	Rg	*0.230	-0.072				
grains per	Re	-0.101	**-0.384				
ear	Rp	**0.689	*-0.216				
W	Rg	0.093					
Weight 300	Re	*-0.243					
grain(g)	Rp	**0.265					

 Table (7) The genetic, environmental and phenotypic correlation of the studied traits for Erbil location

References

- Ahmed, N. A, Chowdhury, Md. S, Uddin and M. Rashad. 2020. Genetic variability, correlation and path analysis of exotic and local hybrid Maize (*Zea mays* L.) genotypes. Asian J. Med. Biol. Res. 6 (1): 8-15.
- Akande, S. R., and Lamidi G. O. 2006. Performance of quality protein maize varieties and disease reaction in the derived-savanna agro-ecology of South-West Nigeria. African Journal of Biotechnology, 19(5): 1744-1748
- 3. Al-Jubouri, J. M. A., Al-Jubouri, A. H. and Al-Qaisi I. K. 2011. Correlations and pathway analysis for quantitative traits in barley (Hordeum vulgare L.).

The Fifth Scientific Conference of the College of Agriculture - Tikrit University.

- Al-Rawi, K. M. and, Khalaf Allah. A. (2000) Design and analysis of agricultural experiments. Ministry of Scientific Education, University of Mosul.
- 5. Central Statistical Organization., 2021, Ministry of Planning and Development Cooperation, Directorate of Agricultural Statistics - Iraq.
- 6. FAO, 2021.http://www. fao.org/faostat/en / # rankings/commodities by country.
- Hadi, B. H., Wuhaib, K. M., Hassan, W. A. (2017) Estimation of genetic parameters and path coefficients,

growth traits, yield and components of yellow maize parents and hybrids, Iraqi Agricultural Research Journal (special issue) 22:(19) 142-153

- Hassan, E. I. (2019). Effect of agricultural loop on some phenotypic and productive traits of maize cultivars (Zea mays L.) Master's Thesis, Faculty of Agricultural Engineering, Euphrates University, Syria.
- Khattab, O. (2021), Effect of different concentrations of salinity on the performance of crosses of maize (Zea mays L.)) Syrian Journal of Agricultural Research 856-856: 8(6):
- Luji, M. A. I. 2021. Evaluation of the performance of several synthetic varieties of maize and the estimation of some of their genetic parameters by varying several levels of humic acid, Master's thesis. College of Agriculture - Tikrit University.
- Magar, B. T., Acharya, S., Gyawali, B., Timilsena, K., Upadhayaya, J., & Shrestha, J. (2021). Genetic variability and trait association in maize (*Zea mays* L.) varieties for growth and yield traits. Heliyon, 7(9), e07939
- 12. Salami, H. A., Sika, K. C., Padonou, W., Aly, D., Yallou, C., Adjanohoun, A., ... & Baba-Moussa, L. (2016). Genetic diversity of maize accessions (Zea mays L.) cultivated from Benin using microsatellites markers.. American J. of Molecular Bio., 6(1): 12-24.
- 13. Silva, M. F., Maciel, G. M., Finzi, R. R., Peixoto, J. V. M., Rezende, W. S., & Castoldi, R. (2020). Selection indexes for agronomic and chemical traits in segregating sweet corn populations. *Horticultura Brasileira*, 38, 71-77.
- 14. Tantawi, A. A., (1965). Agricultural Animal Genetics (Part One), Dar Al Maaref in Egypt, p. 256
- 15. Tripathi, M. P., Koirala, K. B., Gautam, D., Subedi, S., Upadhyay, J., Shrestha, H. K., & Issa, A. B.

(2021). Field performance of threeway cross yellow and white maize hybrids in Nepal.. Asian Journal of Advances in Agricultural Research. 15(1): 24-33

- 16. Walter, A. B. 1975. Manual of quantative genetic. (3rd edition), Washington State Univ. Prees. U. S. A
- 17. Wuhaib, K. M., Hadi, B. H .and Hassan, W. A. 2018. Genetic and phenotypic correlations in maize and pathway coefficient (Zea mays L.)), Iraqi Journal of Agricultural Sciences.187-179:(2)49.