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Abstract 

In this paper, we will study and introduce the higher-order weak variable order methods for 

approximation the solution of functionals diffusion of Itô kind. Under appropriate regularity 

conditions, it is shown that variable order method allows a considerable increase in the weak order 

of convergence of a discrete time one step approximation method. Numerical method experiments 

indicate the efficiency of variable order based on higher-order weak scheme for stochastic ordinary 

differential equations with additive noise. 
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Introduction 

The development of numerical methods for 

stochastic ordinary differential equations 

(SODE’s for short) has intensified over the 

past two decades. As indicated in Paradoux 

and Talay [1], Kloeden and Platen [2] and 

Newton [3], their theoretical and practical 

investigation become of increasing 

importance. A challenging task is the 

construction of efficient higher-order 

approximations for the simulation of 

functionals of Itô diffusions, for example their 

moments and Lyapunov exponents, [4]. 

SODE’s are differential equations in which 

one or more of its terms are stochastic 

processes, and therefore will give solutions 

which are itself stochastic processes, [5]. Also, 

they are used in a wide range of applications, 

such as environmental modeling, engineering 

and biological modeling, [6], [7]. 

Now days, there is a great many of 

researchers, which deals with numerical 

methods for solving SODE’s. Yet the gap 

between the well developed theory of SODE’s 

and its application still wide in range and a 

crucial task in bridging this gap is the 

development ofan efficient numerical methods 

for solving SODE’s, therefore in this 

connection one of the numerical methods is 

the stochasticlinear multi-step methods (which 

is abbreviated by SLMM’s), which is one of 

the most important of development numerical 

methods used to give the optimal accuracy to 

the approximate solution, [2]. 

In addition, variable order methods provide 

a class of higher order weak approximation 

methods which are efficient in many cases; 

there are also important practical situations in 

variable order methods providing general and 

efficient class of algorithms for the higher 

order weak approximation of SODE’s. 

However, further investigations are still 

required to develop variable order methods for 

SODE’s that have some performances 

comparable to those already known methods 

for solving ordinary differential equations.  

With this aim, in this paper we will 

establish global error expansions for higher-

order weak Taylor scheme, and we shall then 

use these expansions to construct variable 

order methods based on these higher-order 

schemes. This will allow range of SODE’s to 

be handled numerically. Also, in this paper, we 

will study the numerical solution of SODE’s 

by using variable order method of higher order 

weak approximation. 

 

Preliminaries 

In this section, some fundamental and 

basic necessary concepts related to the theory 

of SODE’s are given. 

 

Definition , [8]: 

A stochastic process Wt, t  [0, ) is said 

to be a Brownian motion or Wiener process if: 

1. P(W0  0)  1, where P refers to the 

probability. 



Fadhel S. Fadhel 

 206 

2. For 0 < t0 < t1 < … < tn; the increments 

1 2t tW W , 
2 1t tW W , …, 

1n nt tW W


  

are independent. 

3. For an arbitrary t and h > 0, t h tW W   

has a Gaussian distribution with mean 0 

and variance h. 

 

Stochastic Ordinary Differential Equations, 

[8], [9] 

Among one of the general forms of 

SODE’s is the following: 

dyt  f(t, yt) dt + g(t, yt) dWt, 0 0ty y   ...... (1) 

where f : IR R, g : IR  R be a Borel 

measurable functions, we call f the drift 

function and g the diffusion function, yt is a 

stochastic process and Wt is the Wiener 

process. 

A solution yt of the SODE’s (1) must also 

satisfy another form of equation when it is 

written s a stochastic integral equation of the 

form: 

yt  0ty   + 

0

t

t
 f(s,ys) ds + 

0

t

t
 g(s,ys) dWs  ........ (2) 

Remark , [9]: 

The second integral given in the right hand 

of equation (2) cannot be defined in the direct 

meaning, where Ws is the Weiner process. The 

variance of the Weiner process satisfies 

var(Wt)  t, and so this is increased as time 

increased even thought on the mean stays at 0.  

 

Convergence Criteria, [2]: 

There are four commonly used concepts 

for studying the convergence of random 

sequences, which are: 

i. Convergence with probability one 

A sequence of random variables {xn()} is 

said to be converges with probability one 

(written as p-w.P.1 or w.P.1) to x(), if: 

P({   : lim
n

xn()  x()})  1 

This is also called almost sure 

convergence. 
 

ii. Mean-square convergence 

A sequence of random variables {xn()}, 

such that E(
2
nx ) < , for all n is said to be 

mean square converge to x(), if: 

lim
n

E(|xn  x|2)  0 

where E refers to the mathematical 

expectation. 
 

iii. Convergence in probability 

A sequence of random variables {xn()} is 

said to be converge in probability to x(), if: 

P({   : |xn()  x()|  })  0,   > 0 
 

iv. Convergence in distribution 

A sequence of random variables {xn()} is 

said to be converge in distribution to a random 

variable x(), if: 

lim
n

F(xn)  F(x) 

where F(x) is known the continuous 

distribution function. 

It is remarkable that, in the above four 

definitions of convergence, the random 

variables are defined on a common probability 

space (, F, P), where  is the sample space F 

is the class of all subset of  , and P is 

aprobability function with domine  and 

counter domine in the interval [0,1].  

Now two main types of convergence 

criterion may be considered, which are the 

strong and the weak convergence depending 

on the problem under consideration. 

 

Strong convergence criterion,[10] 

Consider the sample path of the Wiener 

process, i.e., Wt is given (and hence known), 

therefore, there is no randomness in the SDE 

and hence no randomness in XT, The 

increments in the given Wiener process are 

then used to obtain the numerical 

approximation Y(T). The expectation of the 

absolute error is defined as: 

  E(|XT  Y(T)|) 

here, the Euclidean norm is used, XT is the 

Itô process at time T, while Y(T) is the 

approximation obtained by approximately 

integrating the DE in a sequence of time steps. 

The numerical scheme is consistent if the 

approximation Y(T) converge to T as t tends 

to zero. Therefore, a discrete time 

approximation Y(T) with maximum time step 

size  converges strongly to Y at time T if [4]: 

 

0
lim


 E(|XT  Y(T)|)  0  ............................... (3) 

A discrete time approximation Yp converge 

strongly with order p > 0 at time t if there 
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exists a positive constant C, which does not 

depend on , and 0 > 0, such that: 
 

()  E(|XT  Y(T)|)  Cp 

for each   (0, 0), [10]. 
 

Weak convergence criterion, [10]: 

The numerical approximation Y(T) is also a 

random variable, because Y(T) is obtained 

using samples of Wiener process increments. 

The convergence in distribution is analyzed in 

terms of means g(X(T)) of certain test 

functions g(x). 

The test function g is bounded, infinitely 

differentiable and the mean exist as |X| tends to 

infinity. The numerical scheme is weak pth 

order accurate if the error: 

  |E(g(X(T)))  E(g(Y(T)))| 

is of order t p. Thus: 

|E(g(X(T)))  E(g(Y(T)))|  C
p
t  

A discrete time approximation Y with 

maximum step size  converges weakly to x at 

time T as   0 with respect to a class C of 

the test function g : 
dR   R, if we have: 

 

0
lim


|E(g(XT))  E(g(Y(T)))|  0, for g  C 

  ................................. (4) 

A discrete approximation Y converges 

weakly with order  > 0 to X at time T as  

  0, if for each polynomial g, there exists 

a positive constant C, which does not depend 

on , and a finite number 0, such that: 

|E(g(XT))  E(g(Y(T)))|  C
p
t  

for each   (0, 0), [10]. 
 

Stochastic Liner Multi-Step Methods, [11], 

[12], [13]: 

By the following notations and definitions, 

we denote by | . | the Eucledian norm in 
nR  

and || . || the corresponding matrix norm. The 

mean-square norm of a vector valued square 

integrable variable Z  L2(,
nR ) will be 

defined by: 
 

2
|| ||LZ  (E|Z|2)1/2 

Let us denote by Cs1,s the class of all 

functions V(t, y(t)) : J
nR   

nR  having 

continuous partial derivatives up to order s  1 

with respect to the first variable and 

continuous partial derivatives of order s with 

respect to the second variable. Moreover, let 

Ck be the class of functions V satisfying a 

linear growth condition of the form: 
 

|V(t, y)|  k(1 + |y|2)1/2,  t  J, y  nR   ...... (5) 
 

Furthermore, we introduce the notation: 
 

, ( )t t h
rI V  ( , ( )) ( )t h

j j r jt V s y s dW s
   ... (6) 

 

where d 0W (s)  ds. 

If V  1, then the integral ,
1
t t hI   is the one 

Wiener process and the increment W  W(t + 

h)  W(t) of the scalar Wiener process W. 

The next lemma presents the order of the 

one stochastic integral. 

 

Lemma , [12]: 

If VCk is any function and for t  J ,  

h > 0, such that t + h  J, then: 
 

E(
, ( )t t h

rI V
|Ft)  0, if r  0  ....................... (7) 

||E(
, ( )t t h

rI V
|Ft)|| 2L  ||

, ( )t t h
rI V

||
2L  

 O(

2
1 2

i
i

h


) .......................................... (8) 
 

where i1 is the number of zero indices 
1ir  

and i2 is the number of non-zero indices 
2ir . 

Now, we consider a stochastic linear k-step 

method for the approximation of the solution 

of the SODE given by equation (1), for n  k,  

k + 1, …, N, N N; which takes the form: 
 

0
k
j jynj  h 0

k
j jf(tnj, ynj) + 

0
k
j Gj(tnj, ynj)

1,n j n jt t
I      .................. (9) 

 

and setting without loss of generality  

0  1 and require the given initial and starting 

values y0, y1, …, yk1  L2(,
nR ), is the space 

of all integrable functions defined from  to 

R,such that yn is  

F 
nt -measurable for n  0, 1, …, k  1, [6]. 

As in the deterministic case, usually only  

y0  y(t0) is given by the stochastic initial value 

problem and the values y1, y2, …, yk1 need to 

be computed numerically and this can be made 

by any suitable one-step method, where one 

has to be careful to achieve the desired 
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accuracy. If 0  0, then the Stochastic linear 

multi-Step method (SLMM for short) given by 

equation (9) is said to be explicit, otherwise it 

is implicit. 

 

Variable Order Methods 

Using the SLMM’s in connection with 

variable order methods used for solving 

ODE’s to derived a new approach for solving 

SODE’s with more accurate results , in which 

this method will be reffered to as the variable 

method for solving SODE’s: 

Consider the SODE: 
 

dyt  f(t) dt + g(t) dWt; 0 0ty y   .............. (10) 

In this investigation, approximation are 

studied for expectations of functions of the 

solution, i.e., E(g(y(T))), where g is a real-

valued smooth function, that is, weak 

approximation. The weak error is defined as: 
 

E(g(y(T))  g(y(h)))  ................................... (11) 
 

The primary goal of this investigation is to 

prove that the variable order method has a 

weak error expansion of the form: 
 

E(g(y(T))  g(y(h)))  a1h + a2h
2 + …  ...... (12) 

 

where a1, a2, … are constants independent 

of h and by using several approximations 

E(g(y(h0))), E(g(y(h1))), E(g(y(h2))), …; with 

h0 > h1 > h2 > …; where h0, h1, h2, … are the 

step sizes.  

Now, to successively eliminate the terms 

in the error expansion, thereby producing 

approximations using methods of higher and 

higher order. The sequence of step sizes used 

was hj  h/2j; j  0, 1, 2, …; where h is some 

starting step size. If a1 in (12) is not zero, then 

the approximation scheme E(g(Y(T))) is only 

of order h. To obtain approximations of order 

h2, and we proceed as follows: 

Find the weak error expansion using two 

different step sizes h0 and h1, such that h1 < h0, 

as follows: 
 

2 3
0 1 0 2 0 3 0

2 3
1 1 1 2 1 3 1

( ( ( )) ( ( ))) ...

( ( ( )) ( ( ))) ...

E g yT g y h ah a h a h

E g yT g y h ah a h a h

     


     
 

  ............................... (13) 

and upon subtracting h0 times the second 

equation from h1 times the first equation and 

solving for E(g(y(T)), one may get: 

 

E(g(y(T)))  

1 0 0 1

1 0

( ( ( ))) ( ( ( )))hE g y h h E g y h
h h



  a2h0h1  

a3h0h1(h0 + h1)  a4(
2
0h  + h0h1 + 2

1h )  … 

 E(g(y(h1)))+ 1 0

0

1

( ( ( ))) ( ( ( )))

1

E g y h E g y h
h
h




 

 a2h0h1  a3h0h1(h0 + h1) a4(
2
0h  + h1h2 + 

2
1h )  … 

Thus , letting: 

E1(g(y(h0)))  E(g(y(h1))) + 

1 0

0

1

( ( ( ))) ( ( ( )))

1

E g y h E g y h
h
h




 

which is an O( 2
0h ) approximation to 

E(g(Y(T))). Since h1 < h0 and any two pair hj 

and hj+1 may be used in the above elimination 

process, one may see that in general: 

 

E1(g(y(hj)))  E(g(y(hj+1))) + 

1

1

( ( ( ))) ( ( ( )))

1

j j

j

j

E gY h E gY h
h

h








  ................. (14) 

which is also an O( 2
jh ) approximation to 

E(g(Y(T))). Now, we have: 
 

E(g(y(T)))  E1(g(y(h0)))  a2h0h1  a3h0h1(h0 

+ h1)  a4h0h1(
2
0h  + h0h1 + 

2
1h )  …  ........ (15) 

and  
 

E(g(y(T)))  E1(g(y(h1)))  a2h1h2  a3h1h2(h1 

+ h2)  a4h1h1(
2
1h  + h1h2 + 

2
2h )  …  ........ (16) 

 

and upon eliminating the terms involving 

a2, we obtain: 
 

E(g(y(T)))  E2(g(y(h0))) + a3h0h1h2 + 

a4h0h1h2(h0 + h1 + h2) + … 

 

Where: 



Journal of Al-Nahrain University           Vol.16 (4), December, 2013, pp.205-212                                             Science 

 209 

E2(g(y(h0)))  E1(g(y(h1))) + 

1 1 1 0

0

2

( ( ( ))) ( ( ( )))

1

E g y h E g y h
h
h




 

which is an O( 3
0h ) approximation to 

E(g(Y(T))). More generally: 

E2(g(y(hj)))  E1(g(y(hj+1))) + 

1 1 1 0

0

2

( ( ( ))) ( ( ( )))

1

E g y h E g y h
h
h




  .................... (17) 

which is also an O( 3
jh ) approximation to 

E(g(Y(T))). Similarly, continuing in this 

manner, the following recursively sequence 

may be derived: 
 

E0(g(y(hj)))  E(g(y(hj)))  ........................... (18) 

En(g(y(hj)))  En1(g(y(hj+1))) + 

1 1 -1( ( ( ))) ( ( ( )))

1

n j n j

j

j n

E g y h E g y h
h

h

 






  ......... (19) 

On the basis of the results for E(g(y(hj))) 

and E2(g(y(hj))), it seems that En(g(y(hj))) 

provides an O( 1n
jh  ) approximation to 

E(g(Y(T))). This may be verified directly by 

following the evolution of the general term 

anh
n in the error expansion, but is perhaps 

obtained more easily by the following 

alternative approach obtained from equations 

(18) and (19), which is given in the following 

table: 

 

Level O(hj) O(
2
jh ) O(

3
jh ) O(

4
jh )  

0 E0(g(y(h0)))     

1 E0(g(y(h1))) E1(g(y(h0)))    

           2 E0(g(y(h2))) E1(g(y(h1))) E2(g(y(h0)))   

3 E0(g(y(h3))) E1(g(y(h2))) E2(g(y(h2))) E3(g(y(h0)))  

      
 

Algorthim illustrate the procedure for solving                

SODE’s using variable order method: 
 

Algorthim 

1. Input 0 0,x y (initialcondition), 0h , 1h …;  

    :
2

j
j j

h
h   ,j:=0,1,2,…,(Step size). 

1. find the numerical solution jy with 

   :
2

j
j j

h
h  , using euler method 

       
1 1( ) ( )

n n n nt t t t n ny y hf y g y w w
     .            

2. Evatute E(g(y(hj))),  j=0,1,…where g is  
    any  Polynomial. 
3. Find  

    E0(g(y(hj)))  E(g(y(hj)))    

   En(g(y(hj)))En1(g(y(hj+1)))+        

1 1 -1( ( ( ))) ( ( ( )))

1

n j n j

j

j n

E g y h E g y h
h

h

 






 

For n:=1,2,… 

Now, two examples are given to illustrate 
the above scheme of variable order weak 
approximation: 
 

Example, [14]: 
Consider the SODE: 

dyt  yt dt + 
1
2

yt dWt 

with the initial condition y0  1, and for 
comparison purpose, the exact solution is 
given by: 

yt  y0exp(0.875t + 
1
2

Wt) 

and using Euler’s method (which is a one 

step explicit method) with step sizes h0  0.1, 

h1  0.05 and h2  0.025,and is defind for all 
n=0,1,…,N;by:  

 
1 1( ) ( )

n n n nt t t t n ny y hf y g y w w
      

Therefore, using equations (18) and (19), 
we get tables (1)-(3) the approximate variable 
order method, exact results and the absolute 
error, respectively for the weak solution: 
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Table (1) 

The approximate result for the weak solution using variable order method. 
 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.462     

1 1.472 1.483    

2 1.481        1.49  1.492   

3        1.51          1.54     1.558 1.791  

      

 
Table (2) 

The exact result for the weak solution using variable order method. 
 

Level O(hj) O(
2
jh ) O(

3
jh ) O(

4
jh )  

0 1.424     

1 1.419 1.414    

2 1.419        1.419 1.42   

3        1.439          1.46     1.474 1.482  

      

 
Table (3) 

The absolute error between the approximate and exact result for the weak  

solution using variable order. 
 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 0.038     

1 0.053 0.069    

2 0.062        0.071  0.072   

3        0.071          0.08     0.082 0.309  

      

 

Example, [14]: 

Consider the SODE given by: 

dyt  (1+0.01
2
ty )(1

2
ty )dt + 0.1(1

2
ty )dWt 

with the initial condition y0  0, and for 

comparison purpose, the exact solution is 

given in [5] by: 

yt  
2 0.2

2 0.2
1

1

t

t

t W

t W
e

e

 

 



 

and using Euler’s method with step sizes 

h0  0.1, h1  0.05 and h2  0.025. Therefore, 

using equations (18) and (19), we get tables 

(1)-(3) the approximate variable order method, 

exact results and the absolute error, 

respectively for the weak solution: 
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Table (1) 

The approximate result for the weak solution using variable order method. 
 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.003104     

1 9.975105 9.915105    

2 9.924104 9.872105 9.857105   

3 1.157104 1.335104 1.458104 1.676104  

      

 

Table (2) 

The exact result for the weak solution using variable order method. 
 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 9.894105     

1 9.89105 9.887105    

2 9.877105 9.863105 9.855105   

3 1.154104 1.334104 1.456104 1.526104  

      

 

Table (3) 

The absolute error between the approximate and exact result for the weak  

solution using variable order. 
 

Level O(hj) O(
2
jh ) O(

3
jh ) O(

4
jh )  

0 1.367106     

1 8.455107 3.2107    

2 4.682107      9108 2108   

3 3.163107      101010 2107 1.5105  

      

 

From the present study, we make 

 

Conclusion 
1. Variable order method give very high 

accurate result in comparsion between the 

approximate result and exact result. 

2. Other numerical method for solving 

SODE’s with higher order may be used 

insteadof Euler method using variable 

order method. 

3. Solution of non-Linear SODE’s using 

variable order method give more accurate 

result than the solution of linear SODE’s. 
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 الخلاصة
ذات  في هذا البحث، سنقوم بدراسة واستحداث طرائق

 weak variable order)الرتب المتغيرة الضعيفة

methods) ليا لتقريب حل المعادلات ومن الرتب الع
. حيث قمنا تحت شروط Itôالتفاضلية التصادفية من نوع 
تبة المتغيرة تؤدي غلى زيادة مناسبة باثبات ان طرية الر 

ملحوظة في الرتبة الضعيفة لتقارب حلول طرائق الخطوة 
الواحدة. حيث وضحت الامثلة العددية قيد الدرراسة دقة 
طريقة الرتبة المتغيرة المستندة على طرائق ذات رتب عليا 
ضعيفة للمعادلات التفاضلية التصادفية والتي تمتلك ضوضاء 

(additive noise). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


