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Air pollution is a significant global concern that is continually increasing and 

threatening both the environment and human health. Air pollution is the principal factor 

leading to the deterioration of Indoor Air Quality (IAQ) in buildings. Carbon dioxide 

(CO2) significantly contributes to indoor pollution intensifying, primarily from human 

activities. The demand for effective IAQ systems has increased due to the necessity for 

sustainable building development. The artificial intelligence (AI) models presented in 

this work utilized Machine Learning (ML) and Deep Learning (DL) methodologies to 

train the available dataset. This dataset was collected by the indoor sensors in Shanghai 

from November 2016 to March 2017 to predict CO2 concentration and obtain pertinent 

information. The accuracy and the result of Ml and DL algorithms may differ depending 

on the datasets used and the algorithms' suitability for the specific data and application 

domain. Therefore, a significant benefit would be achieved by finding the best-fitted 

ML and DL models concerning the actual datasets and the application area. This 

necessity was fulfilled through an intensive review of the already existing DL and ML 

models. This analysis aims to implement the specified models and assess the efficiency 

of their prediction by computing several performance metrics like Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), Median Absolute Error (Median AE), and 

Coefficient of determination (R2). Among implemented models, the Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) have performed better results in 

forecasting IAQ. 
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1. Introduction 

Indoor Air Quality (IAQ) profoundly 

impacts human health, comfort, productivity, 

and general well-being. Poor IAQ can 

contribute to conditions, including Sick 

Building Syndrome (SBS) and Building-

Related Illness (BRI), where occupants of 

buildings feel uncomfortable and have health 

problems due to their continued exposure to 

indoor pollutants [1]. Besides causing health 

and psychological problems, the occurrence of 
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SBS indicates the regulatory frameworks 

relating to the quality of air, starting with the Air 

Quality Act of 1967, followed by its 

amendments in 1977 and 1990, which had been 

targeted to make amends in the air quality. 

While the primary concern of these regulations 

is related to outdoor air pollution, the same 

regulations assert the importance of maintaining 

a good IAQ in the environment [2]. 

Rapid urbanization and heavy infrastructure 

shortages, especially in developing countries, 

trigger rising pollution levels, notably from 
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vehicle emissions. Transportation continues to 

be the leading source of urban air pollution, 

followed by industrial and agricultural 

activities. It is dangerous because such sources 

emit dangerous pollutants into the atmosphere 

that could affect human health, ranging from 

mild to severe, depending on the duration of 

exposure, concentration of pollutants, and 

health status of the people exposed. While 

outdoor air pollution is considered a widespread 

health threat, it is usually forgotten that indoor 

air quality can have profound implications for 

human health. Since more and more people 

nowadays work in 'closed' office spaces, recent 

research has placed greater emphasis on IAQ in 

workplaces, studying specific pollutants-

emitting sources like photocopiers and printers. 

A prerequisite for good IAQ is the availability 

of purified outdoor air [3]. However, buildings 

located near sources of outdoor air pollution, 

such as freeways or markets, cannot consistently 

provide good indoor air quality owing to the 

infiltration of polluted outdoor air. Several 

surveys have reported that the detrimental 

effects of indoor air pollutants are equally 

harmful as those of outdoor, which alone can 

cause a wide range of health issues [4]. 

The three main indoor pollutant types 

identified by researchers include gases, 

particulate matter, and biological contaminants. 

Most indoor pollutants studied worldwide have 

included volatile organic compounds, 

aldehydes, ammonia, and particulate matter. 

Low ventilation has been linked with higher 

allergen concentrations and asthma, apart from 

the increased case of SBS. Buildings with too 

low ventilation consume more energy to 

maintain a comfortable indoor climate [5]. 

Naturally, ventilation usually cannot solve 

IAQ problems in heavily populated urban areas. 

It simply does not suffice to remove 

contaminated indoor air, especially when 

outdoor air is commonly or heavily polluted. 

Natural ventilation might be less adequate 

because of the timing of window operations for 

indoor activities. In addition to outdoor air 

quality, indoor Carbon Dioxide (CO2) levels 

depend on human activity within the space [6]. 

One of the most effective ways to guarantee 

IAQ is by providing a constant supply of fresh 

air. However, this is usually difficult when the 

outdoor air is also of poor quality. The 

relationship between outdoor air quality and 

indoor health outcomes has been determined 

within the last several years. This is also 

reflected in the regulation of the Clean Air Act. 

Indeed, the Clean Air Act has evolved from the 

early beginnings of the Air Pollution Control 

Act of 1955 into a current thrust toward IAQ 

issues, particularly in heavily populated urban 

areas [7, 8]. Due to this, other regulations, such 

as the Clean Windows and Doors Act, were 

enacted in the 1960s and 1970s to better 

preserve indoor environments inside office 

buildings. Besides air pollution, other factors, 

such as noise pollution, also threaten the health 

of the occupants [9]. Several health disorders 

have been discovered that are directly linked to 

high levels of indoor contaminants; these 

include SBS and BRI, which can further result 

in chronic health disorders. The World Health 

Organization (WHO) estimated that indoor air 

pollutants accounted for 2.7% of the total global 

diseases in 2010 and estimated that as many as 

3.8 million deaths were caused by poor IAQ in 

2018. Besides, air pollutants like carbon 

compounds, nitrogen oxides, sulfur oxides, 

ultra-fine particles, and particulate matter can 

enter the buildings through ventilation facilities, 

thereby developing IAQ problems [10, 11].  

Recent research targets Artificial 

Intelligence (AI) techniques to regulate and 

enhance IAQ. Application systems, with the 

incorporation of AI, fuzzy logic (FL), and 

genetic algorithms (GA), are starting to appear 

in literature as intelligent ventilation systems 

and show a promising reduction in CO2 and 

other harmful pollutants [12]. Such approaches 

use variables like temperature and humidity to 

make decisions using decision trees that forecast 

CO2 levels in smart homes. When incorporated 

into a building management system, these 

advanced models promise even better IAQ 

predictions and energy efficiency [13, 14]. 

Other studies compare methods to model CO2 in 

offices and examine the effectiveness of 

Machine Learning (ML) and Deep Learning 

(DL) techniques in indoor pollutant-level 

predictions [15, 16]. The main contributions of 

this paper are as follows:  
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1. Implementing diverse ML and DL models to 

efficiently predict IAQ, including Decision 

Tree Regressor (DTR), Random Forest 

(RF), K-Nearest Neighbors(K-NN), Support 

Vector Regressor (SVR), and Gradient 

Boosting Regressor (GBR), Deep Adaptive 

Quantization Feature Fusion (DAQFF), 

Long Short-Term Memory (LSTM), 

Convolutional Neural Network (CNN), 

Gated Recurrent Unit (GRU), Bidirectional 

Long Short-Term Memory (Bi-LSTM), 

Random Forest-Long Short-Term Memory 

(RF-LSTM), CNN-LSTM, and Deep Neural 

Network (DNN). 

2. Checking the performance of implemented 

models in predicting indoor CO2 

concentration while finding out which 

methods are most effective for assuring the 

best condition related to IAQ inside 

buildings using a dataset with temperature, 

CO2, relative humidity, Particulate Matter 

(PM10), PM2.5, and Volatile Organic 

Compounds (VOCs) variables.  

3. Comparing the performance of implemented 

ML and DL models for indoor CO2 

prediction. While the GBR model 

outperforms existing ML algorithms with 

the highest benchmark for IAQ prediction, 

the LSTM model is strong enough to model 

temporal dependencies in time-series data. 

To address these challenges, recent 

advancements in artificial intelligence 

techniques for IAQ prediction have gained 

prominence. The next section reviews the 

existing literature, highlighting the 

contributions and limitations of prior works in 

this domain and identifying the gaps this study 

aims to fill. The paper is organized as follows: 

Section 2 covers the related work, while Section 

3 describes the Data Sources and Preparation. 

Section 4 explains the Methods utilized. Section 

5 introduces the Accuracy Evaluation Metrics, 

while Section 6 presents the performance 

metrics used to evaluate the models. Section 7 

discusses the results. Finally, Section 8 presents 

the conclusion. 

 

 

 

2. Related works 

Monitoring CO2 levels in buildings has 

various applications: controlling Heating, 

Ventilation, and Air Conditioning (HVAC) 

systems, predicting occupancy, and even 

performing Computational Fluid Dynamics 

(CFD) analysis. Combining CO2 monitoring 

with other building data may bring substantial 

value in optimizing building performance and 

energy use. 

Li and Sun [17] presented an ML framework 

that could predict CO2 emissions at a city level 

using open-access data. The feature selection 

methods used in this study included recursive 

feature elimination and Boruta to drive key 

variables for CO2 emissions. Consequently, 

XGBoost produced the best predictions, with an 

R² higher than 0.98, recording lower errors than 

the rest of the models. By investigating the 

Sulfur Dioxide (SO2) industrial emission as a 

socioeconomic predictor, it has been found that 

such a predictor can be used to estimate the CO2 

emissions in 182 Chinese cities. 

Taheri and Razban [18], presented an ML 

model to forecast indoor CO2 concentration for 

optimizing demand-controlled ventilation 

systems. The performance evaluation was 

accomplished for six algorithms involving the 

SVR, AdaBoost, RF, and Multilayer Perceptron 

(MLP) using data recorded in a classroom with 

variable occupation. Among all models, MLP 

gave the best results by providing highly 

accurate prediction values of CO2 concentration. 

This control strategy reduced energy use by 

HVAC by 51.4% while maintaining compliance 

with the ASHRAE standards. 

Marzouk and Atef [19], developed an IoT-

based IAQ monitoring system for academic 

building environments. This system allowed for 

real-time measurement and forecasting of 

temperature, humidity, air pressure, CO2, 

Carbon Monoxide (CO), and PM2.5 using 

sensor measures with AI models. It was suitable 

for the job, causing little interference with 

everyday activities, and hence capable of 

controlling and forecasting IAQ.  

Zhu et al. [20], developed an LSTM-based, 

IoT-enabled CO2 steady-state forecasting 

system to monitor IAQ. IoT sensors collect the 
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current CO2 level in real time; hence, this 

developed system uses LSTM to predict future 

concentrations with as low as 5.5% error 

margins. This system focused on measuring 

CO2 as a proxy for IAQ and infection risks, 

including COVID-19. 

Dai et al. [21], proposed a hybrid model of 

RF, tree-structured Parzen estimator, and LSTM 

for indoor CO2 concentration forecast in 

university classrooms is suggested, which 

includes RF selection of features, optimization 

by the estimator, and LSTM for time-series 

prediction. This model provided high accuracy 

with an R² of more than 98%, and the error has 

reduced to the least value with Mean Absolute 

Error (MAE) of 2.96 and Root Mean Squared 

Error (RMSE) of 5.54. 

Kim et al. [22], developed a CO2-driven ML 

model for the estimation of occupancy level 

inside buildings by considering IoT sensors, 

ventilation systems, and differential pressure 

gauges. This given research work has a very 

appropriate relevance to the correct estimation 

of occupancy in respect of IAQ management 

and infection transmission control. This model 

with RF and Artificial Neural Networks had an 

accuracy rate of 0.91 and 0.92 with CO2 and 

ventilation inputs, respectively. Including 

differential pressure data decreased the accuracy 

slightly; hence, further studies should tune this 

integration for better predictions. 

Kapoor et al. [2], conducted an exploratory 

investigation into the application of ML models 

for the prediction of CO2 levels in office 

buildings. Real-time metrics such as occupancy, 

space per person, outside temperature, wind 

speed, humidity, and the IAQ were employed as 

input. In this study, the optimized Gaussian 

process regression model performed better 

among the compared models, providing an 

accuracy of 0.98 and RMSE of 4.20 ppm. These 

results anticipate that this model could serve 

well in applications related to ventilation design 

and IAQ testing of urban buildings. 

Taheri and Razban [8] developed a ML 

based methodology to predict indoor CO2 

concentration and optimize DCV systems. SVR, 

AdaBoost, and MLP models were evaluated in 

this work using CO2 and meteorological data 

measured in a classroom with variable 

occupancy. Among those models, the best 

performance for predicting CO2 concentration 

was provided using the MLP. The developed 

control strategy achieved an average HVAC 

energy-use saving of 51.4%, and the calculated 

average IAQ was within the acceptable standard 

set by ASHRAE IAQ.  

While previous studies demonstrate the 

potential of ML and DL models for IAQ 

prediction, a comprehensive comparison of their 

performance using diverse metrics remains 

underexplored. This study addresses these gaps 

by implementing and evaluating a wide range of 

ML and DL models, as described in the 

methodology section. 

3. Artificial intelligence techniques 

Computing systems that mimic human 

cognition, action, and behavior are known as AI 

technologies. AI is a subfield of computer 

science that aims to give computers the ability 

to think and reason like humans [23]. One 

branch of AI is ML, which allows computers to 

gradually improve their performance by 

analyzing data and applying what they've 

learned, all without human intervention or code. 

A subfield of ML is DL, which utilizes neural 

networks to detect subtle and complicated 

patterns within the data. ML is an aspect of AI's 

larger goal of automating tasks [24].  

Several ML models improve the ability of a 

computing device to acquire knowledge and 

modify it without explicit instructions [25]. 

These algorithms use analytical and predictive 

modeling approaches to help computers 

distinguish different patterns. In ML, the 

presented information may be analyzed to 

determine the model's ability to extract and 

identify further hidden patterns and data 

correlations using data from the drop column. 

ML models are grouped into three types; 

supervised, unsupervised, and reinforcement 

learning. Each is distinct and created 

specifically to address the many issues 

connected with analyzing information and 

prediction [26]. DL is an advanced subset of AI 

that explores the complexities of ML. In contrast 

to traditional ML, it utilizes complex neural 

network topologies designed to emulate neurons 
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in the human brain. The networks are designed 

to analyze and learn from extensive datasets, 

making DL very effective for jobs that require 

precision and accuracy [27, 28]. DL models 

involve the development of deep neural 

networks that can effectively make accurate 

classifications and provide precise numerical 

forecasts. These models auto-discover features, 

distinguish complex patterns, and enhance 

performance over time with processed data to 

achieve more accuracy and reliability in the 

outcomes [29]. 

4. Methodology 

In this work, various ML and DL models, 

were selected to predict IAQ. Each model was 

selected based on how it treats the dataset's 

complexities; thus, each may effectively predict 

CO2 concentration. Figure 1 illustrates the 

design and functionality of ML and DL models' 

utilization in IAQ prediction. 

 

 
Figure 1. Diagram of IAQ prediction system 

 

4.1 Data sources and pre-processing 

The presented study was based on a detailed 

air quality dataset from GAMS sensors obtained 

from GAMS Environmental Monitoring [30]. 

This dataset provides high-resolution 

environmental data and pollutant levels, 

enabling the complete and in-depth analysis of 

air quality patterns and trends. A sample of the 

GAMS dataset is illustrated in Figure 2.  

 
Figure 2. Sample of the GAMS dataset 
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The general information of this dataset 

(including the overall structure of the dataset, 

data collection frequency, and measured 

parameters) is depicted in Table 1. With this 

comprehensive dataset, we could delve into the 

complexities of air quality monitoring and its 

implications for the environment's health. The 

broader analysis of GAMS data may form an 

enlightening contribution to the capability of air 

quality monitoring technologies to protect 

public health. 

 
Table 1: Detail of the indoor GAMS dataset 

Terms Details 

Pollutants CO2, PM10, PM2.5, VOC 

Meteorology Temperature @Humidity 

Period November 2016 – March 2017 

No. of Samples 135099 

Interval Reading 1.36 Minutes 

 

The indoor dataset retrieved from the IAQ 

monitoring sensor GAMS was utilized. The 

documented factors are considered highly 

relevant for indoor environments. The dataset 

includes observations on indoor meteorological 

conditions such as CO2, PM10, PM2.5, and 

VOCs recorded at intervals of several minutes, 

along with variables such as temperature and 

humidity. Spanning approximately five months, 

from November 2016 to March 2017, the dataset 

contains slightly more than 135,000 

measurements. The dataset is divided into three 

subsets (training, validation, and testing) with a 

ratio of 60-20-20, as shown in Figure 3.  

Additionally, before training the models, all 

data were normalized, with each pollutant 

scaled to a range between [0, 1], as provided in 

the following formula: 

𝑁𝑜𝑟𝑚(𝑥) =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                    (1) 

Where x denotes the count of pollutants, xmin 

denotes the smallest amount, and xmax denotes 

the largest amount in the dataset. 

The imputation strategy was employed to 

deal with the missing values, which were 

replaced by the average of the available values 

in the relevant column. This imputation 

approach implies that missing data points occur 

at random and does not add major biases to the 

dataset, as provided in the following formula: 

�̅� =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
                                                                 (2) 

Where �̅� denotes the average of the missing 

values, 𝑥𝑖 denotes the individual non-missing 

values, and 𝑁 denotes the count of available data 

points. This approach was selected due to its 

simplicity, computational efficiency, and 

suitability for datasets with relatively sparse 

missing values. 

Figure 4 presents all the statistical 

information (Standard Deviation, minimum and 

maximum values, median, and mean 

percentages) to provide a clear and helpful 

picture of the utilized dataset and to understand 

the fundamental characteristics of each 

numerical variable. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. The number of readings in each subset after splitting 
 

 

 

 

8105927019

27021

No. of readings

Training Validation Testing



 
 Diyala Journal of Engineering Sciences Vol (18) No 1, 2025: 203-218 

209 

 

 

 
Figure 4. Descriptive statistics for the indoor GAMS dataset 

 

Figure 5 depicts a detailed description of the 

density distribution of several different 

indicators that are contained inside the GAMS 

dataset. These curves identify the outliers or 

anomalies in the datasets and give an idea of the 

behavior of each of the indicators. This view 

allows for a comparative examination of 

multiple GAMS columns, enabling us to 

identify widespread patterns or anomalies 

within the distributions. Investigations of this 

type are necessary because they allow the 

dependability and coherence of the recorded 

data to be reviewed quickly. It also helps map 

out the required information linked to the 

inquiries that may be proposed in the future. 

4.2 Feature selection 

The correlation matrix is a grid with one 

memory unit for each pair (i, j) of indicators. It 

determines how two data sets or two random 

variables are related. There are different 

correlation coefficients in correlation statistics, 

but the Pearson Correlation Coefficient is the 

most popular. This coefficient measures the 

linear correlation between two variables. Figure 

6 shows the correlation matrix among GAMS 

features. There are decimal numbers in the 

Pearson coefficient range, from -1 to +1. A 

positive association exists between two 

variables when variable "A" raises 

simultaneously with variable "B". When 

variables A and B decrease simultaneously, this 

is a negative correlation. However, a correlation 

value of 0 means that A and B do not have a 

linear relationship. The two variables are 

strongly related if the correlation value is greater 

than 0. Correlation Matrix encompasses several 

characteristics: 

 Symmetry: The correlation matrix is 

essentially symmetric, indicating that the 

correlation between variable X and variable 

Y is identical to that between variable Y and 

variable X.  

 Main Diagonal Elements: The elements 

located along the principal diagonal of the 

correlation matrix are always equal to one. 

This occurs because the autocorrelation of 

any variable is always equal to one. 

 Range of Values: All numerical values 

within the correlation matrix range from 

negative one to positive one (-1 to +1). A 

value of one indicates a perfect positive 

correlation, zero signifies no correlation, 

and a negative one denotes a perfect 

negative correlation. 

 Non-Negative Eigenvalues: Every 

eigenvalue of a correlation matrix must be 

non-negative. This guarantees that the 

matrix is positive and semi-definite, a 

prerequisite for qualifying it as a legitimate 

correlation matrix. 
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Figure 5. GAMS indicators’ distribution 

 

 
Figure 6. Correlation matrix between the features of the GAMS dataset 
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4.3 Model selection and justification 

In this work, some of the common types of 

ML models are used to predict indoor air CO2 

encompassing: 

 DTR: It evaluates input features and 

generates interpretable rules to predict CO2 

levels in a closed environment.  

 RF: It is an ensemble learning method 

designed to improve the accuracy of CO2 

estimates by aggregating many decision 

trees. To this end, it is capable of handling 

the complexity of the components that 

define the IAQ. 

 K-NN: It classifies the objects depending on 

the proximity of those objects. It is often 

used in the classification of CO2 or 

prediction of the indoor location due to the 

simplicity and efficacy of the algorithm.  

 SVR: It efficiently classifies data by 

determining the level that produces the 

maximum possible distance between data 

points. This particular characteristic is very 

useful in the estimates of CO2 generated 

from historical data, providing an accurate 

classification and forecast. 

 GBR: It is an ensemble learning 

methodology that combines numerous 

decision trees to make the CO2 forecasts 

more accurate over time. 

Furthermore, several prominent DL 

methodologies are used to predict indoor air 

CO2 concentrations encompassing: 

 DAQFF: It contains an integrated set of 

elements that work together to achieve 

specific goals.  

 LSTM: It is a type of recurrent neural 

network characterized by its capability to 

use its internal state memory for superior 

processing sequences. The middle LSTM 

layer is a forgotten gate, and this forgotten 

portal is used to make decisions. By 

predicting the CO2 data of the internal 

structure that should be saved, he forgets the 

data that should be saved. The middle layer 

will take the data from the input layer, while 

the output layer displays the result. 

 CNN: It is a modern form of Ancient neural 

networks in which each layer consists of a 

neuron that corresponds to neurons in the 

next layer, and so on. The specialty of this 

model is a multilayer convolution. CNN has 

applied filters, and the filter size 

automatically recognizes its task.   

 Bi-LSTM: It is considered more general for 

privacy when it has driving information 

because its output depends on all the above 

and the following. The structure of Bi-

LSTM consists of a dual forward layer and 

a white layer, while the LSTM modules will 

consist of understanding future and past 

information. 

 GRU: It is the simplest alternative to LSTM 

which consists of two gates: the "update 

gate," which consists of data entry gates and 

forget gates, and the "reset gate." The GRU 

architecture does not contain an additional 

memory cell to hold information, so it can 

only control the information contained 

within the unit. 

 RF-LSTM: This hybrid model of RF-LSTM 

is presented in this work to predict CO2 air 

quality. RF is employed to choose the data 

feature set, Subsequently, LSTM is 

employed, a highly effective model to 

forecast CO2 levels and enhance the model's 

predictions.  

 CNN-LSTM: Another hybrid model of the 

CNN-LSTM is also implemented in this 

work to forecast CO2 levels. Here, the CNN 

layer is adopted to extract features of CO2 

from the IAQ monitoring dataset generated 

from GAMS. After extraction, the captured 

features are transformed into a 1D- matrix to 

feed into the LSTM layer for conducting a 

time series feature analysis.  

 DNN: It is similar in structure to ANN 

which creates more than one hidden layer 

between the input and output layers, so, it 

allows the developer to gain good, more 

sustained, high-quality accuracy results. 

These models perform better with many 

dependencies on parameters and 

hyperparameters. Further model performance 

improvements are made based on the results 

from hyperparameter tuning. Table 2 and Table 

3 elaborately overview the different parameters 

and hyperparameters used in any ML/DL 

model. These elements must be properly tuned 

and selected to enhance model accuracy and 

efficiency.
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Table 2: The parameters and values of the various implemented ML models 

Model Parameter Value(s) 

DT Max Depth 8 

RF 
Max Depth 8 

Number of Trees 4000 

K-NN 
Max Depth 8 

N-neighbors 10 

SVR 

Max Depth 8 

Cost factor(C) 25 

Cache_size 200 

Max_iter -1 

GBR 

Max Depth 8 

Number of Trees 100 

Learning Rate 0.01 

 

Table 3: The parameters and values of the various implemented DL models 

Model 
No. of 

Layers 
No. of Units 

Loss 

Function 
Optimizer LR. 

No. of 

epoch 

(DAQFF) 7 64, 128, 256, 32, 16, 8, 1 MAP Adam 0.001 15 

LSTM 6 64, 128, 256, 128, 64, 32 MSE Adam 0.001 15 

CNN 5 32, 64, 128 MAP Adam 0.001 15 

GRU 5 64, 128, 256, 128, 64 MSE Adam 0.001 15 

Bi- LSTM 7 64, 128, 256, 512, 256, 128, 64 MSE Adam 0.001 15 

RF-LSTM 7 64, 128, 256, 512, 256, 128, 64 MSE Adam 0.001 15 

RF-LSTM 7 64, 128, 256, 512, 256, 128, 64 MSE Adam 0.001 15 

DNN 6 64, 128, 256, 512, 256, 128 MAP Adam 0.001 15 

 

In summary, this study utilized a 

comprehensive dataset and a suite of ML and 

DL models to predict IAQ, with CO2 

concentrations as the primary focus. The dataset 

underwent extensive preprocessing, including 

normalization and imputation of missing values, 

to ensure robust and accurate model 

performance. The selected models are tailored 

to leverage temporal dependencies, correlations, 

and non-linear relationships in the data. In the 

subsequent section, these models are evaluated, 

and their predictive performance is determined 

using MAE, RMSE, Median AE, and R² 

metrics. 

5. Results and discussion  

This section investigates the performance of 

the implemented ML and DL models in 

predicting CO2 levels for IAQ using the indoor 

dataset obtained from GAMS. 

5.1 Evaluation metrics  

In this work, four evaluation metrics are 

employed (RMSE, R2, MAE, and Median AE) 

to compare the performance of different 

implemented models and find their relative 

effectiveness. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
                                    (3) 

𝑅² = 1 −
 ∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

                                      (4) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖=1                                   (5) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑂𝑖 − 𝑃𝑖|)                (6) 

Where 𝑂𝑖 denotes the observed value for the 𝑖 −
𝑡ℎ observation, 𝑃𝑖  denotes the predicted value 

for the 𝑖 − 𝑡ℎ observation, �̅� denotes the mean 

of the observed values, 𝑛 denotes the total count 

of observations, the absolute errors |𝑂𝑖 − 𝑃𝑖| are 

computed for each observation, and the median 

of these absolute errors are taken to find the 

Median AE.  
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5.2 Comparative analysis 

Among the implemented ML models, the 

best performance was exhibited by GBR since, 

the boosting model becoming effective in 

dealing with complicated nonlinear 

relationships and large dispersions. GBR was 

able to catch a more granular pattern level 

between inputs and outputs, it also gave better 

predictions on IAQ prediction datasets that 

generally include many interdependent 

variables. The results were achieved by the ML 

models depicted in Table 4. The predicted result 

was compared with the actual outcomes, and the 

error performance metric was exploited to 

assess each model, as depicted in Figure 7. 

Table 4: The results obtained using ML Models 

Models MAE RMSE 
Median 

AE 
R2 

DTR 0.00217 0.00358 0.00113 0.099962 

RF 0.17479 0.24796 0.10434 0.081029 

K-NNs 0.00525 0.00950 0.00177 0.099734 

SVR 0.00923 0.01185 0.00668 0.099587 

GBR 0.00200 0.00353 0.00086 0.099963 

  

 

 
Figure 7. Actual versus predicted values for ML models 
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The LSTM model outperformed the other 

DL models due to its ability to retain 

information from previous periods without 

losing considerable details, making it an 

effective model for data prediction influenced 

by events from past times, such as temperature 

changes. The implemented DL models are 

tested on the same dataset, and the results are 

highlighted in Table 5 and Figure 8. 

 

Table 5: The results obtained using DL Models 

Models MAE RMSE Median AE R2 

DAQFF 0.002365 0.003715 0.001486 0.099956 

LSTM 0.001661 0.002744 0.000961 0.099976 

CNN 0.003189 0.005677 0.001286 0.099897 

GRU 0.001829 0.003026 0.001033 0.099971 

Bi-LSTM 0.010462 0.011502 0.009988 0.099576 

RF-LSTM  0.002014 0.003067 0.001373 0.099970 

CNN-LSTM 0.004360 0.006880 0.001797 0.099848 

DNN 0.026897 0.034500 0.022202 0.096189 
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Figure 8. DL models’ loss 

 

Among the assessed models, the LSTM 

model exhibited more outstanding performance. 

It attained the minimal MAE of (0.001661), 

RMSE of (0.002744), and Median AE of 

(0.000961). The LSTM model demonstrates a 

substantial R² value of 0.999976, demonstrating 

that it is exceptionally proficient in detecting 

temporal relationships and intricate patterns in 

IAQ data. In contrast, the DNN model had the 

highest error rates with maximal MAE of 

(0.026897), RMSE of (0.034500), and R² of 

0.096189, which is a pretty low result that would 

mean the DNN model did not express the IAQ 

data in its full complex details.  

The results reveal that the LSTM and GRU 

models outperform others in predicting IAQ 

parameters, owing to their ability to capture 

temporal dependencies. These findings 

highlight the importance of model selection for 

time-series data, as discussed in the following 

section, which explores the implications, 

limitations, and potential applications of these 

results. 

5.3 Implications of findings 

Compared to other models, LSTM and GRU 

performed better in predicting the parameters of 

IAQ. Both models have inherent memory, 

which relates to their ability to handle dynamic 

data intrinsically in time series analysis, which 

is required to forecast the air quality inside 

buildings. The performance of these models 

confirms that they have the potential to be 

applied in operational real-time IAQ monitoring 

systems. This is because these models are 

becoming more accurate by now. However, the 

low performance of the DNN model can be 

considered as evidence that it is not the best 

suited for tasks involving IAQ prediction, 

especially in the case of time series. 

This is particularly true in tasks where time 

series data must be handled. Therefore, careful 

consideration is needed when selecting models 

for specific data types and conditions. The 

results suggest that expanding the dataset's 

scope to include greater diversity in the types of 

sources could enhance model performance and 

generalization potential. A good example could 

be data from various residential and commercial 

buildings in different geographical areas. For 

further improvement, data could be collected 

during various seasons. Additionally, 

integrating external meteorological data on 

temperature and humidity could contribute to 

providing more accurate and detailed forecasts 

regarding indoor air quality, as this data offers 

insights into external weather conditions. 

5.4 Limitations and considerations 

While the findings of this study are 

encouraging, it is crucial to recognize the 

limitations that may impact the generalization 

and applicability of the results. A potential 

limitation is that the dataset refers to IAQ from 

environments that may differ in IAQ variations 

from other building types or regions. As a result, 

such models may be less successful when 

applied in contexts and situations outside those 

tested with this data. However, this limitation 

can be overcome by referring to other sources in 

further research to test the robustness of models 

and how well they perform under diverse 

conditions. 
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The most probable causes of this reduced 

generalizability are manifold. First, conditions 

from interior sites dominated the dataset on 

which training and testing were based. This 

naturally brings about bias because such models 

have been trained on data emanating from only 

one IAQ scenario. They can be less accurate if 

those models apply in diverse environments 

with different structures, ventilation systems, or 

occupation rates. Thus, it may be less applicable 

to IAQ predictions in various settings. 

Another consideration is model selection 

bias. Whereas the GBR and LSTM models 

perhaps showed more outstanding performance 

in this study, their performance could be strictly 

optimal for the kinds of patterns represented in 

this dataset; poor performance might otherwise 

have been observed for patterns more complex 

or otherwise unexpected in other data, given the 

non-representative nature of not all relevant 

variables or higher-order interactions in the data 

at hand. Further, the variability of the dataset 

may not account for other extraneous factors 

that may be influencing the variation of IAQ, 

such as seasonal changes, long-term 

environmental changes, and differences in 

sources of pollutants. Therefore, future research 

should be directed at extending the dataset to run 

a wide range of data over different building 

types, geographical regions, and seasonal 

variations to make the model generalize better. 

Overfitting is also risky, particularly for 

complex models like LSTM and CNN-LSTM, 

which try to learn minute patterns in time-series 

data. Though models might work fine during 

training, they usually fail to generalize on 

unseen data. If overfitting occurs, it drastically 

reduces the predictive power of the model when 

it is deployed. Such limitations require further 

studies with model refinement to make them 

more robust and generally applicable, thereby 

providing deeper insights into IAQ predictions. 

In light of these findings, this study 

emphasizes the critical role of advanced AI 

techniques in enhancing IAQ prediction. The 

conclusion summarizes the key contributions of 

this work, along with suggestions for future 

research to further improve model 

generalizability and applicability. 

 

6. Conclusions 

In this work, various ML and DL 

approaches have been employed to predict 

indoor environmental CO2 concentration. 

Various techniques adopted in this regard 

included the ML models comprising DTR, 

Random Forest, K-NN, SVR, and GBR, while 

DL models included DAQFF, LSTM, CNN, 

GRU, Bi-LSTM, RF-LSTM, and CNN-LSTM. 

The dataset obtained from GAMS includes 

variables such as CO2, humidity, PM10, PM2.5, 

temperature, and VOC. The models obtained 

this way were compared afterward using a 

fivefold cross-validation, following the custom 

of using 80% of data for training and 20% for 

testing. 

The outcome revealed GBR as the best 

method in predicting CO2 concentration, with 

low error metrics of MAE at 0.00200, RMSE at 

0.00353, and Median AE at 0.00086, with an R² 

value close to 1. Similarly, the LSTM model did 

a great job, with an MAE of 0.001661, 

confirming its strength in time-series prediction. 

These results provide valuable insights into 

future studies on indoor CO2 prediction given 

occupant health. 

While the obtained predictions were 

promising, several directions for further 

research are open to remedy the identified 

limitations and extend the generalizability of the 

models. Furthermore, the system would be more 

robust when more diverse data, such as 

residential and commercial buildings across 

different geographic locations and seasons, are 

included in the dataset. In this respect, external 

weather data, including outdoor temperature and 

humidity, would further put into perspective 

those factors affecting indoor air quality. 

The upcoming studies could also use more 

advanced models compared to what is already 

used in this study. For ML, attention could be 

given to the XGBoost and CatBoost models, 

which have proved to be considerably efficient 

in many applications and could enhance 

predictive accuracy. For DL, transformer 

models, or attention-based models, showing 

state-of-the-art performance in capturing 

intricate time-series relationships may be 

beneficial extensions. Lastly, more advanced 
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pre-processing techniques like sophisticated 

imputation of missing data and advanced 

smoothing of data could help significantly 

towards model performance improvement. 

Another direction of potential future work could 

be the application of ensemble learning 

techniques, including model stacking and model 

blending, where the strengths of different 

models are combined. Stacking traditional Ml 

models with DL approaches could explore 

further accuracy enhancement, again using the 

unique strengths of each method. 

In conclusion, the results derived from the 

present study provide a strong foundation for 

anyone interested in predicting the indoor 

concentration of CO2. Further research in these 

suggested areas can enhance the accuracy and 

applicability of such models for real-world use. 
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