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Abstract 
In this paper, a powerful algorithm of the homotopy analysis method were developed and used 

to find theapproximate solution of integro-differential equations of fractional order. Which consist 

of fractional order ofdifferentiation and fractional order of integration. 

The fractional derivative is described in the Caputo sense and the fractional integration is 

described in the Riemann-Liouville sense. In addition some examples are used to illustrate the 

accuracy and validity of this approach. 
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Introduction 
Fractional calculus has found diverse 

applications in various scientific and 

technological fields [1, 2, 3, 4], such  

as thermal engineering, acoustic, 

electromagnetism, control, robotics, 

viscoelasticity, diffusion, signal processing 

and many other physical processes. 

There are several definitions of a fractional 

derivative of order α>0 [4], two most 

commonly used definitions are Riemann-

Liouville and Caputo. Each definitions uses 

Riemann-Liouville fractional integration and 

derivatives of whole orders. 

Integro-differential equations of fractional 

order may be considered as a branch of 

fractional integral equations which arise in 

modeling processing in applied sciences 

(physics, engineering, finance, biology, …), 

[5]. 

Throughout this paper we will exhibit 

integro-differential equations of fractional 

order of the form  
 

D∗
αy(t) = f(t) + IβK[y(t)]. ........................... (1) 

 

Where the fractional derivative is 

considered in Caputo sense of order α while 

the fractional integral is considered  in 

Riemann-Liouville sense of order β. Integro-

differential equations of fractional order are 

attacked by many researchers such as [5, 6, 7] 

where the fractional appeared in the derivative 

only. While [8, 9] treated the fractional order 

integro-differential equations in which the 

derivative and the integral are of fractional 

order using Adomian decomposition method 

and variational iteration method, respectively. 

Another approach will be used in this 

paper to find the approximate solution of the 

integro-differential equations (1) using the 

reliable algorithm of the homotopy analysis 

method. 

The homotopy analysis method (HAM) 

was first proposed by Lioa in his Ph.D. thesis 

[10]. A systematic and clear exposition on 

HAM is given in [11]. In recent years, this 

method has been successfully employed to 

solve many types of nonlinear, homogenous or 

non homogeneous equations and systems of 

equations, as well as, problems in science and 

engineering [10, 11, 12, 13, 14]. 

The HAM contains a certain auxiliary 

parameter to which provides us with a simple 

way to adjust and control the convergence 

region and rate of convergence of the series 

solution. Moreover, by means of the so-called 

ℎcurve, it is easy to determine the valid region 

of ℎ to gain a convergent series solution. Thus, 

through HAM, explicit analytic solutions of 

nonlinear problems are possible. 

Odibat and etal [15] extended the 

application of the homotopy analysis method 

proposed by Lioa [10] to solve nonlinear 

differential equations of fractional order.  

In this paper we shall use the approach of 

Odibat, [15] to find the approximate solution 

of integro-differential equations of fractional 

order given by equation (1). 
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Basic concepts [4] 

In this section some definitions and 

properties related to fractional differentiation 

and integration are given: 

the Riemann-Liouville fractional 

integration of order β is defined as, 

 

Iβf(t) =
1

Γ(β)
∫ (x − s)β−1f(s)ds, β ∈ ℝ+, t >

t

0

0.  ................................................................. (2) 

 

The next two equations define Riemann-

Liouville and Caputo fractional derivatives of 

order α, respectively, 

Dαf(t)=
dm

dxm
(IM−αf(t)). ................................. (3) 

D∗
αf(t) = IM−α(

dm

dxm f(t))  .............................. (4) 
 

Where m − 1 <α≤ m and m ∈ N.from 

now, Caputo fractional derivative will be 

denoted by D∗
α to maintain a clear distinction 

with Riemann-Liouville fractional derivative. 

In the following we shall list some useful 

properties of Caputo fractional derivative. 

1- Caputo introduced an alternative, 

definition, which has the advantage of 

defining integer order initial conditions 

for fractional order differential equations. 

2- IαD∗
αf(t) = f(t) − ∑ f (k)(0+)

tk

k!

m−1
k=0  

 

Caputo fractional differentiation is a linear 

operator which is similar to integer order 

differentiation  

 

D∗
α[λ1f(t) + λ2g(t)]

= λ1D∗
αf(x) + λ2D∗

αg(x), λ1, λ2

∈ ℝ 
 

The Homotopy Analysis method [11]: 

Consider the nonlinear equation in 

operatorform: 
 

𝑁[𝑦(𝑡)] = 0, 𝑡 ∈ ℝ  ..................................... (5) 
 

Where  

𝑁= nonlinear operator 

𝑦= unknown function 

𝑡= the independent variable. 

Let 𝑦0 denote an initial gusess for the exact 

solution 𝑦, ℎ ≠  0 an auxiliary parameter, 

𝐻(𝑡)  ≠ 0  ∀ 𝑡 ∈ ℝ an auxiliary function and 

𝐿 an auxiliary linear operator with theproperty 

that 𝐿[𝑦(𝑡)] = 0 when 𝑦(𝑡)=0. Then using q ∈

[0,1]as an embedding parameter, we construct 

such a homotopy which is called the zero order 

deformation:. 
 

(1 − q)L[φ(t, q) − y0(t)] = qhH(t)N[φ(t, q)].
 .................................. (6) 

 

It should be emphasized that we have a 

great freedom to choose the initial guess 𝑦0, 

the auxiliary linear operator L, the nonzero 

auxiliary function H(t). when q=0, the zero-

order deformation equation (6) becomes 
 

φ(t, 0) = y0(t). ............................................ (7) 
 

and when q = 1, since h ≠ 0 and H(t) ≠ 0, 

the zero-order deformation equation (6) is 

equivalent to 
 

φ(t, 1) = y(t)  .............................................. (8) 
 

Thus, according to (7) and (8), as the 

embedding parameter q increases from 0 to 1, 

φ(t, q) various continuously from the initial 

approximation 𝑦0(𝑡), to the exact solution 

𝑦(𝑡) Such a kind of continous variation is 

called deformation in homotopy. 

By Taylor’s theorem, φ(t, q)may be 

expanded in a power series of q as follows: 
 

φ(t, q) = y0(t) + ∑ ymqm∞
m=1   .................... (9) 

 

Where 

ym(t) =
1

m!

∂mφ(t,q)

∂qm |
q=0

. ............................. (10) 

 

If the initial guess 𝑦0, auxiliary linear 

parameter 𝐿, the nonzero auxiliary parameter 

ℎ and the power series (9) of φ(t, q) converge 

at q=1. Then, we have under these 

assumptions the solution series: 
 

y(t) = φ(t, 1) = y0(t) + ∑ ym(t)∞
m=1 . ...... (11) 

 

For brevity, define the vector: 
 

y̅n(t) = {y0(t), y1(t), y2(t), … , yn(t)}. ...... (12) 

 

According to equation (11), the governing 

equation of 𝑦𝑚(𝑡), can be derived from the 

zero-order deformation equation (6) by 

differentiating the zero order deformation 

equation (6) m-times with respective to q and 

then dividing by m! and finally setting q=0, we 

have the so called mth –order deformation 

equation: 
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L[ym(t) − χ
m

ym−1(t)] = hH(x)Rm( y̅m−1(t))  

  ................................ (13) 
 

where: 
 

Rm(y̅m−1(t)) =
1

(m−1)!

∂m−1N[φ(t,q)]

∂qm−1 |
q=0

. ... (14) 

And 

χ
m

= {
0,      m ≤ 1
1,      m > 1

 

 

Note that the high-order deformation 

equation (12) is governed by the linear 

operator 𝐿 and the term Rm( y̅m−1(t)) can be 

expreesed simply by (13) for any nonlinear 

operator N. 

According to equation (13), the right-hand 

side of equation (13) is only dependent upon 

y̅m−1(t). Thus, we gain 𝑦1(𝑡), 𝑦2(𝑡), … , by 

means of solving the linear high-order 

deformation equation (13) one after the other 

respectively. 

 

The Reliable Algorithm 

The homotopy analysis method which 

provides an analytical approximate solution is 

applied to various nonlinear problems. 

In this section, we shall present a reliable 

approach of the homotopy analysis method 

that given in [15]. 

This modification can be implemented for 

integer order and fractional order nonlinear 

equations. To illustrate the basic ideas of this 

algorithm, we consider the following nonlinear 

integro-differential equation of fractional 

order: 

 

D∗
αy(t) = N(y) + g(t),    t > 0. .................. (15) 

 

Where m − 1 <α≤ m, N is a nonlinear 

operator which might include integer order or 

fractional order integration, g is a known 

analytic function and D∗
α is the Caputo 

fractional derivative of order α. 

In view of the homotopy technique, the 

following homotopy may be constructed: 
 

(1 − q)L[φ(t, q) − φ
0

(t)] = qhH(D∗
αφ(t, q) −

N[φ(t, q)] − g(t)). ..................................... (16) 

Where qϵ[0,1] is the embedding 

parameter, ℎ ≠ 0 is a nonzero auxiliary 

parameter, 𝐻(𝑡)  ≠ 0 is an auixiliary 

function,φ
0

(t) is an initial guess of 𝑦(𝑡) and 

L = D∗
𝛼 . 

 

When q=0, equation (16) becomes: 

L[φ(t, 0) − φ
0

(t)] = 0. .............................. (17) 
 

It is obvious that when q=1, equation (16) 

becomes the original nonlinear equation (15). 

Thus as q various from 0 to 1, the solution 

𝑦(𝑡, 𝑞) varies from the initial guess 𝑦0 to the 

solution φ(t, 1) = y(t). The basic assumption 

of this approach is that the solution of equation 

(16) can be expressed as a power series in q, as 

follows: 
 

φ = φ
0

+ qφ
1

+ q2φ
2

+  ........................... (18) 
 

Substituting the series (18) into the 

homotopy (16) and then equating the 

coefficient of the like powers of q, we obtain 

the high-order deformation equations, 
 

L[φ
1

] = hH(D∗
αφ

0
-𝑁0(φ

0
) − g(t) 

L[φ
2

] = L[φ
1

] + hH(D∗
αφ

1
-N1(φ

0
, φ

1
)) 

L[φ
3

] = L[φ
2

] + hH(D∗
αφ

2
-N2(φ

0
, φ

1
, φ

2
)).

 ................................ (19) 

L[φ
4

] = L[φ
3

] + hH(D∗
αφ

3
-

N3(φ
0

, φ
1

, φ
2

, φ
3

))  ⋮ 
 

Where  

N(φ
0

+ qφ
1

+ q2φ
2

+ ⋯)=N0(φ
0

) +

qN1(φ
0

, φ
1

) + q2N2(φ
0

, φ
1

, φ
2

)… . 

 

The approximate solution of equation (15), 

therefore, can be readily obtained,  

 

y(t) = lim
q→1

φ = φ
0

+ φ
1

+ φ
2

+ ................ (20) 

 

The success of the technique is based on 

the proper selection of the initial guess φ
0
, 

Applying the operator 𝐼𝛼 to both sides of 

equation (15) gives,  
 

y(t) = ∑ yk(0+)
tk

k!
+ IαN(y) + Iαg(t), t > 0m−1

k=0  

 ................................ (21) 
 

Neglecting the nonlinear term IαN(y) on 

the right hand side of equation (21), we can 

use the remaining part as the initial guess of 

the solution. That is 
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φ
0

(t) = ∑ yk(0+)
tk

k!
+ Iαg(t)m−1

k=0  . ............ (22) 

 

The Reliable Algorithm for Solving Integro-

Differential Equations of Fractional Order 

Using HAM 

In this section we shall use the reliable 

algorithm of the HAM that is given in the last 

section in order to find the approximate 

solution of the integro-differential equation of 

fractional order given by 
 

D∗
αy(t) = f(t) + N(y). ................................ (23) 

 

Where m − 1 <α≤ m, N is a non-linear 

operator given by 
 

N(y) = Iβk(y(t))  ...................................... (24) 
 

Where 
 

Iβk(y(t)) =
1

Γ(β)
∫ (x − s)β−1k(y(s))ds

t

0
  ... (25) 

 

To find the approximate solution of 

equation (23) we construct the following 

homotopy  
 

(1 − q)L[φ(t, q) − φ
0

(t)] = qhH(D∗
αφ(t, q) −

N(φ(t, q)) − f(t)). ..................................... (26) 
 

Where qϵ[0,1], ℎ ≠ 0 is a nonzero 

auxiliary parameter, 𝐻(𝑡)  ≠ 0is an auixilary 

function,φ
0
(t) is an initial guess of 𝑦(𝑡) and 𝐿 

is an auxiliary linear operator defined as  

L= D∗
α. 

Substituting equation (18) into equation 

(26) and then equating the coefficient of like 

powers of q, we obtain a high-order 

deformation equations as given in equations 

(19) with 

N0(φ
0

) =
1

Γ(β)
∫ (x − s)β−1A0(s)ds

t

0

 

N1(φ
0

, φ
1

)) =
1

Γ(β)
∫ (x − s)β−1A1(s)ds

t

0

 

N2(φ
0

, φ
1

, φ
2

)) =
1

Γ(β)
∫ (x − s)β−1A2(s)ds

t

0

 

Nn(φ
0

, φ
1

, φ
2

, … , φ
n

)

=
1

Γ(β)
∫ (x − s)β−1An(s)ds

t

0

 

 

Where 

An =
1

𝑛!
[

dn

dλ
n k(∑ λ

iyi)
n
i=0 ]

𝜆=0
, n = 0,1,2, …  

And according to equation (22),φ
0
(t) will 

be of the form 

φ
0

(t) = ∑ yk(0+)
tk

k!
+ Iαf(t),m−1

k=0 . ............. (27) 
 

Illustrative examples: 

In this section, we shall give some 

problems for linear and nonlinear operators in 

order to illustrate the validity and accuracy of 

the proposed method. 
 

Example (1): 
Consider the nonlinear fractional order 

integro-differential equation  
 

D∗
0.75y(t) =

1

Γ(1.25)
t0.25 −

2

Γ(4.5)
t3.5 +

I1.5(y(t))2  ................................................ (28). 
 

Where 𝑦(0) = 0, 𝑡 ∈ [0,1] 
The exact solution was given in [9] as 

𝑦(𝑡) = 𝑡. 

Similar to equation (27) φ
0
(t) will be of the 

form 

φ
0

(t) = t −
2

Γ(5.25)
t4.25 

According to the proposed algorithm given 

in section five with 𝐿= D∗
0.75., we have: 

L[φ
1

] = hH(D∗
0.75φ

0
(t) − N0(φ

0
)

−
1

Γ(1.25)
t0.25 −

2

Γ(4.5)
t3.5) 

L[φ
2

] = L[φ
1

] + hH(D∗
0.75φ

1
(t)-

N1(φ
0

, φ
1

)) 

     L[φ
3

] = L[φ
2

] + hH(D∗
0.75φ

2
(t)- 

N2(φ
0

, φ
1

, φ
2

)) ⋮ 

 

L[φ
n

] = L[φ
n−1

] + hH(D∗
0.75φ

n−1
(t)- 

Nn−1(φ
0

, φ
1

, φ
2

, … , φ
n−1

)) 

Settingℎ = −1and 𝐻(𝑡) = 1, therefore the 

above equations becomes: 

φ
1

(t) = I0.75(N0(φ
0

)) 

φ
2

(t) = I0.75(N1(φ
0

, φ
1

)) 

φ
3

(t) = I0.75(N2(φ
0

, φ
1

, φ
2

)) 

⋮ 
φ

𝑛
(𝑡) = 𝐼0.75(Nn−1(φ

0
, φ

1
, φ

2
, … , φ

n−1
)) 

Where 

N0(φ
0

) =
1

Γ(1.5)
∫ (t − s)0.5(φ

0
(s))2ds

t

0
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N1(φ
0

, φ
1

) =
1

Γ(1.5)
∫ (t

t

0

− s)0.5(2φ
0

(s)φ
1

(s))ds 

N2(φ
0

, φ
1

, φ
2

) =
1

Γ(1.5)
∫ (t

t

0

− s)0.5(2φ
0

(s)φ
2

(s)

+ (φ
1

(s))2)ds 

 

And so on. 

Table (1) represent the comparison 

between the approximate solution of example 

(1) using the reliable algorithm of HAM up to 

three terms and the exact solution. 

 

Table (1) 

Comparison of the Approximate Solution of 

Example (1) using the Reliable HAM with 

the Exact solution. 
 

t 
Approximate Solution 

using Reliable HAM 

Exact 

Solution 

0.1 0.1 0.1 

0.2 0.2 0.2 

0.3 0.3 0.3 

0.4 0.4 0.4 

0.5 0.5 0.5 

0.6 0.6 0.6 

0.7 0.7 0.7 

0.8 0.8 0.8 

0.9 0.9 0.9 
 

Example (2):  

Consider the linear fractional order 

integro-differential equation 

D∗
0.25y(t) =

6

Γ(3.75)
t2.75 −

6

Γ(5.5)
t4.5

+ I1.5y(t) 

𝑦(0) = 0,  𝑡 ∈ [0,1] 
 

The exact solution was given in [9] as 

𝑦(𝑡) = 𝑡3 

Similar to equation (27) φ
0
(t) will be 

φ
0

(t) = t3 −
6

Γ(5.75)
t4.75 

And φ
1
(t), φ

2
(t),…, will be evaluated 

according to the following equations 

L[φ
1

] = hH(D∗
0.25φ

0
(t)-I1.5(φ

0
(t)) −

(
6

Γ(3.75)
t2.75 −

6

Γ(5.5)
t4.5)) 

L[φ
2

] = L[φ
1

] + hH(D∗
0.25φ

1
(t)-

I1.5(φ
1

(t))) 

L[φ
3

] = L[φ
2

] + hH(D∗
0.25φ

2
(t)-

I1.5(φ
2

(t))) 

⋮ 
L[φ

𝑛
] = L[φ

n−1
] + hH(D∗

0.25φ
n−1

(t)-

I1.5(φ
n−1

(t))) 

Seek 𝐿= D∗
0.25. ,ℎ = −1 and 𝐻(𝑥) = 1 then 

the above equations becomes 

φ
1

(t) = I1.75φ
0

(t) 

φ
2

(t) = I1.75φ
1

(t) 

φ
3

(t) = I1.75φ
2

(t) 

⋮ 
φ

n
(t) = I1.75φ

n−1
(t) 

 

Following table (2) represent a comparison 

between the approximate solution of example 

(2) using the reliable algorithm of HAM up to 

three terms and the exact solution. 
 

Table (2) 

Comparison of the Approximate Solution of 

Example (2) using the Reliable HAM with 

the Exact solution. 
 

t 
Approximate Solution 

using Reliable HAM 

Exact 

Solution 

0.1 0.001 0.001 

0.2 0.008 0.008 

0.3 0.027 0.027 

0.4 0.064 0.064 

0.5 0.125 0.125 

0.6 0.216 0.216 

0.7 0.343 0.343 

0.8 0.512 0.512 

0.9 0.729 0.729 
 

Example(3):  
Consider the nonlinear fractional integro-

differential equation 

D∗
0.5y(t) =

2

Γ(2.5)
t1.5 −

5

Γ(5.5)
t4.5

+ I0.5(y(t))2 

Where 𝑦(0) = 0, 𝑡 ∈ [0,1] 
 

The exact solution was given in [9] as 

𝑦(𝑡) = 𝑡2 
φ

0
(t) will be of the form 

φ
0

(t) = t2 −
Γ(5)

Γ(6)
t5 
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As given in equations (19) with 𝐿= D∗
0.5. 

L[φ
1

] = hH(D∗
0.5φ

0
(t)-I1.5φ

0
(t) −

N0(φ
0

) − (
2

Γ(2.5)
t1.5 −

5

Γ(5.5)
t4.5)) 

L[φ
2

] = L[φ
1

] + hH(D∗
0.5φ

1
(t)-

N1(φ
0

, φ
1

)) 

L[φ
3

] = L[φ
2

] + hH(D∗
0.5φ

2
(t)-

N2(φ
0

, φ
1

, φ
2

)) ⋮ 

L[φ
n

] = L[φ
n−1

] + hH(D∗
0.5φ

n−1
(t)- 

Nn−1(φ
0

, φ
1

, φ
2

, … , φ
n−1

)) 

Seek ℎ = −1and 𝐻 = 1, therefore the 

above equations becomes 

φ
1

(t) = I0.5(N0(φ
0

)) 

φ
2

(t) = I0.5(N1(φ
0

, φ
1

)) 

φ
3

(t) = I0.5(N2(φ
0

, φ
1

, φ
2

)) ⋮ 

φ
n

(t) = I0.5(Nn−1(φ
0

, φ
1

, φ
2

, … , φ
n−1

)) 
 

Where 

N0(φ
0

) =
1

Γ(0.5)
∫ (t − s)−0.5(φ

0
(s))2ds

t

0

 

N1(φ
0

, φ
1

) =
1

Γ(0.5)
∫ (t

t

0

− s)−0.5(2φ
0

(s)φ
1

(s))ds 

N2(φ
0

, φ
1

, φ
2

) =
1

Γ(0.5)
∫ (t

t

0

− s)−0.5(2φ
0

(s)φ
2

(s)

+ (φ
1

(s))2)ds 
 

And so on. 

Following table (3) represent a comparison 

between the approximate solution of example 

(3) the reliable algorithm of HAM up to three 

terms and the exact solution. 
 

Table (3) 

Comparison of the Approximate Solution of 

Example (3) using the Reliable HAM with 

the Exact solution. 

t 
Approximate Solution 

using Reliable HAM 

Exact 

Solution 

0.1 0.01 0.01 

0.2 0.04 0.04 

0.3 0.09 0.09 

0.4 0.16 0.16 

0.5 0.25 0.25 

0.6 0.36 0.36 

0.7 0.49 0.49 

0.8 0.639 0.64 

0.9 0.806 0.81 

Conclusions 

Besides, we simply construct the high-

order deformation equation of the HAM, we 

obtain an approximate solutions in power 

series and these approximate solutions are in 

good agreement with the exact solution and 

some times as given in examples one and two 

gives the exact solution although we are used a 

few terms. It is remarkable that all methods 

that used to solve the integro-differential 

equations of fractional order such as Adomian 

decomposition method and the variational 

iteration method may be considered as special 

cases from the HAM when ℎ = −1 and hence 

it is a special case from the proposed 

approach. 
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 الخلاصة

في هذا البحث تم استخدام خوارزمية مطورة لطريقة 
التفاضلية -تحليل الهوموتوبي لتقريب حل المعادلات التكاملية

نة من مشتقة ذات رتبة كسرية ذات الرتب الكسرية والمتكو 
 وتكامل من الرتبة الكسرية.

المشتقة الكسرية التي تم استخدامها هي من نوع كابوتو 
والتكامل الكسري من نوع ريمان ليوفيلي. بالأضافة الى ذلك 
تم اعطاء بعض الأمثلة لتوضيح دقة وفعالية الأسلوب 

 المقترح.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


