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 Stability of different equations, especially for Homogeneous systems 
with constant coefficient, is a very important task of applied mathematics, 
since it has a wide range of application in different fields of real and 
physical life problems. Since the process of finding the general solution to 
a dynamical system is almost impossible for linear system with constant 
coefficient. 
 
 
1- UPhase plane, critical points:[3] 

 
We continue our discussion of homogeneous linear system  
 

AyY =′                                                                              ……..(1) 
 
now assuming that the (n × n) matrix A=[ajk ] is constant, that is, its 

entries do not depend on t. we wish to solve (1), for this we remember that 
a single equation KyY =′   has the solution ktceY = . A ccordingly, we try 

 
tXeY λ=                                                                          ……..(2) 

 
by substitution into (1) we get 
 

tt exAAyeXY λλλ ===′  
 

texAx λλ =    [ dividing by λe  , we are left with the eigenvalue problem ] 
 

xxA λ=                                                                            ……..(3) 
 

Thus the nontrivial solution of (1) are of form (2), where λ  is an eigen 
ralue of A and X is acorresponding eigenvector. 

Let us further assume that A has a basis of n eigenvectors X(1)….., X(n) 
corresponding to eigen values λ1, λ2, ….., λn ( which may all be different or 

Abstract 
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some of which – or all – may be equal ). Then the corresponding solutions 
(2) are 

 
tnnt neXYeXY λλ )()()1()1( ,........,1 ==                                                    ……..(4) 
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on the right, the exponential function is never zero, and the determinant 
is not zero ( | A | ≠ 0 ) because its columns are the linearly independent 
eigen vectors that form a basis. 

 
 

Theorem (1)

tn
n

tt nexcexcexcY λλλ )()2(
2

)1(
1 .........21 +++=

: ( General Solution )[4] 
 
If the constant matrix A in the system (1) has a linearly indepen set of n 

eigen vectors, then corresponding solution Y(1) , Y(2) , ……, Y(n) in (4) form 
a basis of solutions of (1), and the correspondingh general solution is 

 

                                     
……..(5) 
 
 
 
 
 
 
 



 2009مجلة كلية بغداد للعلوم الاقتصادية الجامعة  العدد الثاني والعشرون 
 
 

19 

Q1: How to plot solution, phase plane: 
 
We shall now concentrate on homogeneous linear system(1) with 

coefficients consisting of two equations: 
 

YAY =
/

 in components,       
2221212

2121111

yayaY
yayaY

+=′
+=′                             ……..(6) 
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• The Y1 y2 – plane is called the phase plane of (1) 
• If we fill the phase plane with trajectories of (6), we obtain the so – 

called phase portrait of (6) 
 
 
 
UExample (1)[2] U: Trajectories in the phase plane ( phase portrait ) find and 
plot solutions of the system 
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Solution: by substituting teXY λ=   and  teXY λλ=′   and dropping the 
exponential function we get XXA λ=  
 
The characteristic equation is 

086
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)(det 2 =++
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this gives the eigen ralues (λ1 = -2)    and  ( λ2 = -4) 
 
eigenvectors are then obtained from 
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if [ ]1221211 00)23(2 xxxxxx =⇒=+−⇒=++−⇒−=λ  
 
we can take  Tx ]11[)1( =                             tt exyexy 4)2()2(2)1()1( , −− ==  
 
for )(0)43(0)3(4 2121212 xxxxxx −=⇒=+−+⇒=−−+⇒−= λλ  
 
eigenvector is  .]11[)2( Tx −=    This gives the general solution 
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Fig ( 1 ): Trajectories of the system (8) ( Improper node ) 
 
 
 

2- Critical Points of the System (6)[1]: 
 
The point y=0 in fig(1) seems to be acommon point of all trajectories, 

and we want to explore the reason for this remarkable observation. The 
answer will follow by calculus. 

Indeed, from (6) we obtain 
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Y2 (t) = c2 (1
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This associates with every point P: ( y1 , y2 ) aunique tangent direction 

1

2

dy
dy  of the trajectory passing through P, except for the point P= Po ! (0, 0), 

where the right side of (9) becomes 0/0. This point Po, at which 
1

2

dy
dy  

becomes undertermined is called a critical point of (6). 
3- Five Types of Critical Points[4]: 
 

There are five types of critical points depending on the geometrical 
shape of the trajectories near them. They are called improper nodes, proper 
nodes, saddle points, centers, and spiral points. 

 
UExample (2)[3] U: ( continued ) improper node ( fig -1-y) 
 
An improper node is a critical point (Po ) at which all the trajectories, 

except for two of them, have the same limiting direction of the tangent. The 
two excptional trajectories also have a limiting direction of the tangent at Po 
which, however, is different. 

The system (8) has an improper node at (0), as its portrait fig(1) shows. 
The common limiting direction at (0) is that of the eigenvector  x(1) = [ 1    
1 ]T because e-4t goes to zero faster then e-2t as (t) increases. The exceptional 
limiting tangent direction is that of x(2) = [ 1    1 ]T. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig ( 2 ): Trajectories of the system (10) ( proper node ) 
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Example (3)[1]
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: Proper node ( fig -2-) 
 
A proper node is a critical point Po at which every trajectory having (d) 

as its limiting direction. The system 
 

                                                           

……..(10) 
 
has a proper node at the origin ( fig -2- ) because a general solution is  
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Fig ( 3 ): Trajectories of the system (11) ( saddle point ) 
 

tecy 11 =  

tecy 22 =  

1221 ycyc =  

Y2 

Y1 



 2009مجلة كلية بغداد للعلوم الاقتصادية الجامعة  العدد الثاني والعشرون 
 
 

23 

UExample (4)[3] U: Saddle node ( fig -3-) 
 
A saddle point is a critical point ( Po ) at which there are two incoming 

trajectories, two outgoing trajectories, and all the orther trajectories in a 
neighborhood of (Po) by pass Po. 

The system 
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has a saddle point at the origin because a general solution is: 
 

tt ececY −








+








=

1
0

0
1

21        or    t

t

ecy
ecy
−=

=

22

11      or    constyy =21  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig ( 4 ): Trajectories of the system (12) ( center ) 
 
 
UExample (5)[2] U: Center ( fig -4-) 
 
A center is a critical point that is enclosed by infinitely many closed 

trajectories. 
The system 
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has a center theorigin, as we now show. The characteristic equation is 

t1042 ⇒=+λ  has the eigenvalues ( 2i ) and ( -2i ) and eigen vectors [ 1     
2i]T and [ 1    -2i]T, respectively 
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Example (6)[1]
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: Spiral Point ( fig -5-) 
 
A spiral point is a critical point ( Po ) about which the trajectories spiral, 

approaching Po as t → ∞ ( or tracing these spiral in the opposite sense, a 
way from Po ). 

The system 
 

                                              

…….(13) 
 
has a spiral point at the origin, as we show. The characteristic equation 

is 0222 =++ λλ . It gives the eigenvalues ( -1+i) and ( -1-i). 
corresponding eigenvectors are obtained from ( -1-λ ) x1 + x2 = 0 for 

λ=-1+I this becomes ( - i x1 + x2 = 0 ) and we can take [ 1    i  ]T as a 
eigenvector corresponding ( -1 – i ) is [ 1   -i ]T. this gives the complex 
general solution. 
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Fig ( 5 ): Trajectories of the system (13) ( spiral point ) 
The next step would be the transformation of this complex to a real 

general solution by the Euler formula. But, as in the last example, we just 
wanted to see what eigenralues to expect in the case of a spiral point. 
Accordinaly, we start again from the beginning and instead of that rather 
lengthy systematic calculation. We use a shortcut. We multiply the first 
equation in (13) by y1, the second by y2, and add, obtaining 

 
)( 2

2
2
12211 yyyyyy +−=′+′  

 
introducing polar coordinates r , t , where 2

2
2
1

2 yyr +=  , we see that this 

equation becomes 22 )(
2
1 rr −=′  

now rrr ′=′ 2)( 2  by differentiation 
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by taking exponentials we have          tecr −=  
 
for each real c this is a spiral, as claimed 

Y2 

Y1 
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4- No Basis of Eigenvectors Available[3]: 
 
When could this happen and what could we do? Well, it cannot happen 

if the matrix (A) is symmetric ( ajk = akj ) or skew – symmetric ( ajk = -akj , 
thus ajj =0), and it also does not happen in many other cases ( in examples 5 
and 6 ). 

This is the case for any n, not just for n=2. if it happens, what can we 
do? 

Suppose that an n×n matrix (A) has a double eigenvalue µ [ that is, the 
product representation of det(A- λ I ) has a factor ( λ - µ )2 ] with only one 
eigenvector ( and its multiples corresponding to it, instead of two linearly 
independent eigenvectors, so that we first get only one solution 

texY µ=)1( . In this case we can obtain a second independent solution by 
substituting. 

 
tutu euetxY +=)2(                                                                          

………(14) 
 

ttttt euAetxAyAeuetxexY µµµµµ µµ +==++=′⇒ )2()2(  
 
since     µ x = A x 
 
the term µ x t eµt and Ax t eµ t cancel, and division by eµ t gives 
 

xuIAthusuAutx =−= )(, µµ                                              
………(15) 

 
although 0)(det =− IA µ  , this can always be solved for µ , as can be 

shown 
 
 
Example (7)[2]
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: No basis of eigenvectors available. Degenerate node 

finde a general solution of  
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Solution: The matrix (A) is not skew – symmetric 
 
⇒ characteristic equation is 
 

0)3(96
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=− λλλ
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λ IA  

 
it has a double root ( λ = 3 ). Eigenvectors are obtained from 

0)4( 21 =+− xxλ  thus from 021 =+ xx  
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and we can take simply ( u = [ 0     1 ]T ). This gives the answer ( fig -6-) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig ( 6 ): Degenerate node in Ex(7) 
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This critical point at the origin is often called a degenerate node ( or 

sometimes an improper node, although it differs from that in example (1) ). 
)1(

1 Yc  gives the heavy stright line, with c1 > 0  corresponding to the lower 
part and c1 < 0  corresponding to the upper part. Y(2) gives the right part of 
the heavy curve from 0 through the second, first, and finally fourth 
quadrants. Y(2) gives the other part of that curve. 

Now suppose that (1) consysts of three or more equations and that A has 
a triple eigenvalue ( µ ) with only a single linearly independent eigenvector 
corresponding to it.  

 
 
Then we get a second solution (14) with a vector satisfying (15), as just 

discaussed, and a third of the form 
 

tututu evetuetxy ++= 2)3(

2
1                                                       

………(16) 
 
with ( u ) satisfying (15) and (v) determined from 
 

uvIA =− )( µ                                                                              ….…..(17) 
 
which can always be solved 
 
We finally mention that if A has a triple eigenvalue ( µ ) and two 

linearly independent eigenvectors )2()1( , xx  corresponding to it, then three 
linearly independent solution are 

 
tutututu euetxYexyexY +=== )3()2()2()1()1( ,,                               ………(18) 

 
where x is a linear combination of x(1) and x(2)  
 

xIA =− µµ )(    is solvable for ( u )                                            ……...(19) 
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