Stability of Homogenous Systems
with Constant Coefficients

Dr.Kuther Abood Nemaa
Hayder Abood Nemaa
Adel Nahi Alwan

15




16



2009 sl s U aaall Gaalal) duslaBY) o slall Slais S Alaa

Abstract

Stability of different equations, especially for Homogeneous systems
with constant coefficient, is a very important task of applied mathematics,
since it has a wide range of application in different fields of real and
physical life problems. Since the process of finding the general solution to
a dynamical system is almost impossible for linear system with constant
coefficient.

1- Phase plane, critical points:[3]

We continue our discussion of homogeneous linear system
Y'=AY (¢D)
now assuming that the (n x n) matrix A=[ajk ] is constant, that is, its
entries do not depend on t. we wish to solve (1), for this we remember that
a single equation Y'=Ky has the solution Y =ce* . A ccordingly, we try
Y=Xe* (2)
by substitution into (1) we get
Y'=1Xe"=Ay=Axe"
Ax=Axe*" [dividing by e* , we are left with the eigenvalue problem ]
AX=AX
Thus the nontrivial solution of (1) are of form (2), where A is an eigen
ralue of A and X is acorresponding eigenvector.

Let us further assume that A has a basis of n eigenvectors X®....., X®
corresponding to eigen values Ay, Ay, ..... , An (which may all be different or
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some of which — or all — may be equal ). Then the corresponding solutions
(2) are

YO_XWeat L y®oxMent (4)
XWert .. X W en
(1) g/t
WY® Ly )= X @ et Xp e
Xr(]l) eﬂit ......... Xr(]n) elnt
& )
X0 X
o (")
JPRIPRESRIN Ko7 X,
X XtV

on the right, the exponential function is never zero, and the determinant
Is not zero (| A | # 0 ) because its columns are the linearly independent
eigen vectors that form a basis.

Theorem (1): ( General Solution )[4]

If the constant matrix A in the system (1) has a linearly indepen set of n
eigen vectors, then corresponding solution Y&, Y@ | .. ... , Y™ in (4) form
a basis of solutions of (1), and the correspondingh general solution is

Y=cxWet4e, xP et 4 e XM et
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Q1: How to plot solution, phase plane:

We shall now concentrate on homogeneous linear system(1) with
coefficients consisting of two equations:

/ . Y.'=a +a
Y=AY in components, 1T it Y. (6)

Yzl =ay Y, tayy,

Y, (1) }
Y(t)=
© [yz (2)
e The Yy, - plane is called the phase plane of (1)
o [f we fill the phase plane with trajectories of (6), we obtain the so -
called phase portrait of (6)

Example (1)[2]: Trajectories in the phase plane ( phase portrait ) find and
plot solutions of the system

Y’:AY:{
1

1
3}Y, thus  Y/=-3y,+Y,
Y2':y1_3Y2

Solution: by substituting Y=Xe** and Y’'=iXe* and dropping the
exponential function we get AX =1 X

The characteristic equation is

-3-1 1

det(A—/ll)z‘ 1 3_ 1

‘ P+61+8=0

this gives the eigen ralues (A, =-2) and (A, =-4)

eigenvectors are then obtained from

{—3—/1 1 }(XlJ (Oj
= = (-3-1)x,+X,=0=
1 -3-2]\X, 0
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if 4,=—2=(-3+2)%+x,=0= —x,+X,=0 =[x, =x,]
we can take x@=[1 1] yO=xWe? = y@_x@e

for 2,=—4=x,+(-3-2)%x,=0 => % +(-3+4)x, =0 = (X =-X,)

eigenvector is x®=[1 -1]". This gives the general solution

_ Y1 _ (€N} 2) _ 1 -2t 1 -4t
Y{yj—cly +c, ¥y =c, 1 e, C 1 e

v\“ Y® (#)cy {!1} ™

AN 2" Y g lget

—
.

v

y N

Fig (1): Trajectories of the system (8) ( Improper node )

2- Critical Points of the System (6)[1]:

The point y=0 in fig(1) seems to be acommon point of all trajectories,
and we want to explore the reason for this remarkable observation. The
answer will follow by calculus.

Indeed, from (6) we obtain

%:dYZ/dt _y_é_ an Y1 t35Y, (9)

dy, dy,/dt y, a,y, +a,Y,
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This associates with every point P: (y; , Y» ) aunique tangent direction
?% of the trajectory passing through P, except for the point P= P, ! (0, 0),

Y1
where the right side of (9) becomes 0/0. This point P,, at which %
becomes undertermined is called a critical point of (6).
3- Five Types of Critical Points[4]:

There are five types of critical points depending on the geometrical
shape of the trajectories near them. They are called improper nodes, proper
nodes, saddle points, centers, and spiral points.

Example (2)[3]: ( continued ) improper node ( fig -1-y)

An improper node is a critical point (P, ) at which all the trajectories,
except for two of them, have the same limiting direction of the tangent. The
two excptional trajectories also have a limiting direction of the tangent at P,
which, however, is different.

The system (8) has an improper node at (0), as its portrait fig(1) shows.
The common limiting direction at (0) is that of the eigenvector x™ =[ 1
11" because e™ goes to zero faster then e as (t) increases. The exceptional
limiting tangent direction is that of xX? =[1 117"

Y2

A

Fig (2 ): Trajectories of the system (10) ( proper node )
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Example (3)[1]: Proper node ( fig -2-)

A proper node is a critical point P, at which every trajectory having (d)
as its limiting direction. The system

10 Y. =
Y'= Y, thus * Y
01 Y,=Y,

has a proper node at the origin ( fig -2- ) because a general solution is

1 t 0 t t
Y:c10e+c2 A e or y, = Cé€

t

Yy, = C,€

or CGY,=GCY,

Fig (3): Trajectories of the system (11) ( saddle point)
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Example (4)[3]: Saddle node ( fig -3-)

A saddle point is a critical point ( P, ) at which there are two incoming
trajectories, two outgoing trajectories, and all the orther trajectories in a
neighborhood of (P,) by pass P,.

The system

has a saddle point at the origin because a general solution is:
1 0 =c, e

Y=c| |€ +c, e or N17H eit or y,y,=const
0 1 y,=¢C,¢€

/\YZ

N\
N

Fig (4 ): Trajectories of the system (12) ( center )

\

Example (5)[2]: Center ( fig -4-)

A center is a critical point that is enclosed by infinitely many closed
trajectories.
The system
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1 1 Y/=
Y’=[ } y, thus * V2
-4 0 y,=—4y,

has a center theorigin, as we now show. The characteristic equation is
A, +4=0 =1t has the eigenvalues ( 2i ) and ( -2i ) and eigen vectors [ 1
2i]"and [1 -2i]", respectively

2it -2it
Y,=c, e’ +c,e

1| . 1 .
=(12*)Y=c, | _|e" +c,| . |e™, thus R
2i —2i y,=2ic e”" -2ic,e™"

Example (6)[1]: Spiral Point ( fig -5-)

A spiral point is a critical point ( P, ) about which the trajectories spiral,
approaching P, as t — oo ( or tracing these spiral in the opposite sense, a
way from P, ).

The system
-1 1 Y,/ =-
|:Y’:|: :| y , thUS 1, yl + y2
-1 -1 Yo ==Y =Y,
....... (13)

has a spiral point at the origin, as we show. The characteristic equation
IS 77 +21+2=0. It gives the eigenvalues ( -1+i) and ( -1-i).

corresponding eigenvectors are obtained from ( -1-A ) x; + X, = 0 for
A=-1+1 this becomes (-ix; + x,=0)andwecantake [1 i ]  asa
eigenvector corresponding (-1 —i)is[1 -i]". this gives the complex
general solution.

Y=c, {ﬂ et 1 ¢ { 1i} R
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Y2

Fig (5): Trajectories of the system (13) ( spiral point)

The next step would be the transformation of this complex to a real
general solution by the Euler formula. But, as in the last example, we just
wanted to see what eigenralues to expect in the case of a spiral point.
Accordinaly, we start again from the beginning and instead of that rather
lengthy systematic calculation. We use a shortcut. We multiply the first
equation in (13) by yi, the second by y,, and add, obtaining

ViVi+ Y, Yo==(Y; + ;)
introducing polar coordinates r , t , where r?=y? +y2 , we see that this

equation becomes %(rz)’= —r?

now (r®)'=2rr’ by differentiation

2

%(rz)’:rr’:—r

r'=—r
Lnr=—t + ¢’
by taking exponentials we have r=ce’

for each real c this is a spiral, as claimed
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4- No Basis of Eigenvectors Available[3]:

When could this happen and what could we do? Well, it cannot happen
if the matrix (A) is symmetric ( aj = ax; ) or skew — symmetric ( aj = -ay; ,
thus a;; =0), and it also does not happen in many other cases ( in examples 5
and 6).

This is the case for any n, not just for n=2. if it happens, what can we
do?

Suppose that an nxn matrix (A) has a double eigenvalue u [ that is, the
product representation of det(A- A 1) has a factor ( A - p )? ] with only one
eigenvector ( and its multiples corresponding to it, instead of two linearly
independent eigenvectors, so that we first get only one solution
Y ® =xe**. In this case we can obtain a second independent solution by
substituting.

Y@ —xte' +yet

=Y'® = xe"' + uxte” + yue’ =Ay® =Axte” + Aue*
since ux=AX
the term p x t " and Ax t e cancel, and division by e" ' gives

xtuu=Au, thus (A—pul)u=x

although det(A-x1)=0 , this can always be solved for u , as can be
shown

Example (7)[2]: No basis of eigenvectors available. Degenerate node

: : 4 1
finde a general solution of Y’:Ayz[ . Z}Y
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Solution: The matrix (A) is not skew — symmetric
= characteristic equation is

1

4-
det(A-A1)= =12 —64+9=(1-3)2=0
-1 2-4

it has a double root (A = 3 ). Eigenvectors are obtained from
(4— 1) x, +x,=0 thus from x,+x,=0

=xP=[1 -11"

1 1 1 u,+u,=1
=(A-31)u= u= , thus v
1 -1 -1 —u,—u, =—1

and we can take simply (u=[0 1]"). This gives the answer ( fig -6-)

Y(2)
Y(1)

Fig (6 ): Degenerate node in Ex(7)
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1 1 0
Y=c y®P+c, y?@=¢ e +c t + e
1Y 2 Y 1 _q 2| 1 1

This critical point at the origin is often called a degenerate node ( or
sometimes an improper node, although it differs from that in example (1) ).
c,Y® gives the heavy stright line, with ¢; > 0 corresponding to the lower
part and c; < 0 corresponding to the upper part. Y@ gives the right part of
the heavy curve from O through the second, first, and finally fourth
quadrants. Y gives the other part of that curve.

Now suppose that (1) consysts of three or more equations and that A has
a triple eigenvalue ( 1) with only a single linearly independent eigenvector
corresponding to it.

Then we get a second solution (14) with a vector satisfying (15), as just
discaussed, and a third of the form

y® == xt? e"' + ute" +ve"

with (u ) satisfying (15) and (v) determined from
(A—ul)v=u (17)
which can always be solved

We finally mention that if A has a triple eigenvalue ( n ) and two
linearly independent eigenvectors x®, x® corresponding to it, then three
linearly independent solution are

YO =x®e't | y@=_x@e't yO_xte'" yue'* ... (18)
where X is a linear combination of x'¥ and x?

(A—ul)u=x issolvable for (u) ceeeenn(19)
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