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Satellite imagery often suffers from noise due to various atmospheric and sensor-

related factors, which can significantly degrade image quality and hinder subsequent 

analysis. This article presents a comprehensive study on denoising satellite images 

utilizing spline interpolation and exponential spline techniques. We propose a novel 

nonlinear filter designed to enhance the denoising process, and we compare its 

performance against traditional spline-based methods. The evaluation metrics 

employed include the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM), which are critical for assessing image quality. Our experimental results 

demonstrate that the proposed nonlinear filter consistently outperforms both spline 

interpolation and exponential spline methods, achieving superior PSNR and SSIM 

values. This study highlights the proposed filter's effectiveness in preserving image 

details while reducing noise and contributes to the ongoing advancements in remote 

sensing image processing techniques. The findings underscore the potential of 

nonlinear filtering approaches in enhancing the quality of satellite imagery for various 

applications. 
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1. Introduction 

Space telescopes have revolutionized 

our understanding of the universe, providing 

scientists with high-resolution images of 

distant stars, galaxies, and other celestial 

phenomena. However, the challenge of image 

degradation due to noise remains a significant 

obstacle to fully harnessing the potential of 

these instruments. One of the most pervasive 

types of interference encountered in space 

telescope images is Gaussian noise, a statistical 

noise that disrupts the clarity of the image by 

adding random variations in intensity. This 

noise can obscure vital details, making it 

difficult to accurately analyze the images and 

extract meaningful information about the 

objects being observed. The presence of 

Gaussian noise not only affects visual quality 

but also undermines the precision of 

quantitative data derived from these images, 

which can hinder scientific discovery. 

To address this issue, a variety of 

image-denoising techniques have been 

developed and applied in an attempt to restore 

image quality while preserving important 

structural details. Among these, the spline filter 

is a commonly used method due to its ability to 

smooth images while maintaining the integrity 

of edges and fine details. The spline filter 

works by fitting a smooth curve or surface to 

the noisy data, effectively reducing the 

fluctuations caused by noise. A related 

approach, the exponential spline filter, builds 

https://isj.edu.iq/index.php/rjes
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upon the spline filter by using an exponential 

weighting function, which allows for a more 

adaptive response to noise and helps retain 

sharper features in the image. 

While these techniques have 

demonstrated success in mitigating Gaussian 

noise, ongoing research continues to seek 

improvements in image restoration methods. In 

this article, we examine the performance of 

these established filters—spline and 

exponential spline—and introduce a new, 

proposed filter designed specifically to enhance 

the quality of space telescope images. This 

proposed filter is aimed at providing a more 

efficient balance between noise reduction and 

detail preservation, which is critical when 

dealing with the fine structures present in 

astronomical images. 

Through a comparative analysis of 

these three filters, we aim to evaluate their 

effectiveness in removing Gaussian noise from 

space telescope images. We will assess not 

only the visual improvements achieved by each 

method but also their impact on the accuracy of 

the data extracted from the images. By 

determining which filter provides the best 

results in terms of noise suppression and detail 

retention, this study seeks to contribute to the 

ongoing development of image-processing 

techniques that are essential for advancing our 

exploration of the universe. Ultimately, 

improving the quality of space telescope 

imagery will enable more accurate scientific 

observations and help unlock discoveries about 

the cosmos. 

2. Literature Review: 

In recent years, some researchers have 

addressed the use of these filters to reduce 

noise, including Oliveira et al. (2011) [24] 

proposed a built-in noise reduction method for 

reconstructed surfaces using a B-splines basis. 

The method was modified to accommodate 

different degrees of bases, ensuring smoothness 

levels. Simulations showed the BsART method 

had the smallest errors, demonstrating its 

superiority over post-filtered ART. 

Singh et al. (2012) [33] developed an 

exponential B-spline interpolation kernel using 

Fourier approximation, achieving a high signal-

to-noise ratio. The method is fast, considers 

polynomial spline as a special case, and uses a 

combination of FIR and IIR filters for fast 

signal decomposition and reconstruction. The 

interpolation function uses symmetric 

exponential functions of the 4th order, with 

complex trigonometric functions obtained for 

complex values. 

Zhou et al. (2012) [37] applied a new 

multiresolution theory based on orthogonal 

spline to image denoising, integrating 

symmetry, and separating noise and image. 

This method improves vision quality and 

preserves edge information for denoised 

images via soft thresholding. 

Fahmy's (2013) [9] study introduced a 

technique to enhance images by minimizing the 

variation function of detail coefficients in E-

spline-based wavelet decomposition. This 

technique improves interpolated image quality 

and removes dependency, with examples 

comparing it to existing approaches. 

Fahmy et al. (2013) [11] introduced a 

technique using E-splines for image-denoising, 

which uses sub-band decomposition and E-

spline-based perfect reconstruction. This 

selective technique outperforms other methods 

due to its smooth transition between continuous 

and discrete domains. 

Fahmy et al. (2013) [10] introduced a 

technique to minimize aliasing effects in high-

frequency images using an Exponential spline 

scheme. They provided examples to verify the 

enhancement of their method. 

Parveen and Tokas (2015) [29] 

proposed an efficient image interpolation 

algorithm using the cubic spline interpolation 

method. The algorithm enlarges the image area 

by inserting zeros based on zooming intensity, 

and estimates correct zero values. 

Parsania and Virparia (2016) [28] 

analyzed seven nonadaptive image 
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interpolation algorithms for real-time 

applications. Catmull-Rom and Mitchell-

Netravali algorithms provided the best image 

quality and computational complexity, while 

Bicubic and Cubic B-spline showed less time 

complexity. Lanczos order 3 had the highest 

computational complexity. 

Abdullah et al. (2018) [1] utilized the 

Bi-Cubic spline interpolation method for image 

enlargement, achieving visually bright results. 

Future research could combine or compare 

algorithms like linear interpolation, Spline, and 

Bi-Cubic Spline to determine their 

performance. 

Mohammed et al. (2020) [26] focusing 

on the on two important criteria depending on the 

content including histogram and statistical criteria 

of the image for every color to convert images 

content. Several fake images are created whose 

content is altered. They reinforced by a number of 

forms, pictures, and schemes that clarify the. The 

steps for retrieving process have been clarified 

starting from statistically analysing the image and 

conforming it to the image formed in the database 

to arrange the images according to their similarity 

with the target one. 

3. Spline Interpolation 

Given a set of (n) data points (xi, yi), 

where (i = 0, 1, 2, ..., n-1), cubic spline 

interpolation constructs (n-1) cubic 

polynomials to represent the interpolated 

function [34]. Each cubic polynomial is 

defined within an interval (xi, xi+1) and passes 

through the data points (xi, yi) and (xi, yi+1) [3]. 

These cubic polynomials are chosen such that 

they are smooth (continuously differentiable) at 

the data points, meaning that the first and 

second derivatives match at the interior data 

points [20]. The general form of a cubic 

polynomial Si(x) within the interval (xi, xi+1) is 

given by: 

                                  
   

           
     (1) 

where: ai, bi, ci, di are the coefficients of the 

cubic polynomial Si(x) to be determined. xi and 

xi+1 are the endpoints of the interval. To find 

the coefficients ai, bi, ci, di, cubic spline 

interpolation imposes continuity and 

smoothness conditions at each data point xi. we 

require that the interpolated function passes 

through the data point [17]. This gives: 

               (2) 
                (3) 

Here smoothness is ensured by requiring that 

the first and second derivatives of adjacent 

cubic polynomials match at the interior data 

points [6]. This leads to two additional 

conditions: 

  
              

         (4) 

  
               

          (5) 

By combining the continuity and smoothness 

conditions with the general form of the cubic 

polynomial, we obtain a system of linear 

equations. Solving this system yields the 

coefficients (ai, bi, ci, di) for each interval (xi, 

xi+1). 

In image denoising, the noisy image        is 

treated as a set of data points (xi, yi), where (x) 

and (y) represent the spatial coordinates [1]. 

Cubic spline interpolation is applied to 

interpolate between these noisy pixel values, 

resulting in a smoother version of the image g 

(x, y) [23]. 

                                          
     (6) 

The smoothness of the interpolated image helps 

to reduce the impact of noise while preserving 

important image features. This interpolated 

image can then be further processed using 

additional denoising techniques, such as 

Gaussian filtering to the interpolated image to 

reduce the noise while preserving important 

image features [21]. Gaussian filtering involves 

convolving the image with a Gaussian kernel, 

which is a two-dimensional Gaussian function. 

The Gaussian kernel is defined as [34]: 

         
 

     
 

     

     (7) 

where ( ) is the standard deviation of the 

Gaussian distribution, controlling the amount 

of smoothing. Larger values of ( ) result in 

more smoothing, while smaller values preserve 

finer details. The spline denoising method 
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combines these two steps. First, the noisy 

image is interpolated using cubic spline 

interpolation to obtain a smoother version. 

Then, Gaussian filtering is applied to further 

smooth out the noise while preserving image 

details [7]. The resulting denoised image h (x, 

y) is a combination of both processes: 

        
                                               
   (8) 

where f (x, y) is the noisy input image, 

(CubicSplineInterpolation) represents the cubic 

spline interpolation function, and 

(GaussianFilter) represents the Gaussian 

filtering operation. 

 

4. Exponential Spline 

The exponential spline denoising method aims 

to smooth the noisy image while preserving 

edges and details [5]. The method involves 

applying a filter that computes a weighted 

average of neighboring pixel values, where the 

weights are determined by an exponential 

function [4]. The Exponential m
th

 order spline 

polynomial   
    , is constructed as m 

successive convolution of lower ones [19]. 

  
       

        
        

         
     

     (9) 

where   
        ,      . The vector   

can assume any positive, negative, or even 

complex conjugate values. This means 

considerable flexibility over cardinal B-spline 

polynomials that only use Haar functions. 

  
     is of finite support and equals zeros at t 

 0 and t  m. Between the knots    
         , it is represented by polynomials 

of order (m-1) in t. Due to its continuity and 

smoothness, it is used to expand continuous 

signals s(t). In the discrete case, s(n) can be 

expressed using the convolutional relation [15]. 

     ∑        
        (10) 

The ck coefficients are obtained using the 

concept of inverse filtering described in, an 

alternate approach given to determine these 

coefficients as the solution of the linear system 

         (11) 
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The solution of this system results in exact 

interpolation for any specified  . The L-

interpolated E-spline polynomial is defined by 

inserting (L-1) equal-spaced points between 

every two knots of the E-spline polynomial, i.e 

{  
         

 (
 

 
)}. the complete perfect 

reconstruction E-splines wavelet family has 

been constructed for any arbitrary choice of  . 

First, the E-spline 2-scale relation is defined by 

[22]. 

  
     ∑       

        
     (15) 

     
 

 
∑         

      (16) 

    
 

     (17) 

has been determined for any arbitrary n  . 

were, the wavelet E–spline function   
    , 

satisfying the orthogonality relation: 

∫   
      

      
 

  
      (18) 

  
     ∑       

        
     (19) 

     
 

 
∑         

      (20) 

Moreover, the Exponential dual scaling A(z) 

and wavelet E-spline functions B(z), have been 

constructed for any arbitrary   . Finally, it has 

been shown that the following perfect 

construction (PR) relation is satisfied [39]. 

                        (21) 

                          (22) 

to use the E-spline wavelet family discussed 

above in denoising noisy images. Wavelet 

decomposition amounts to representing signals 

by few nonzero coefficients. In case of a noisy 

data x, that represents a signal   corrupted with 

uncorrelated zero mean noise w, i.e.      , 

these coefficients are given by [14]. 

〈      〉  〈      〉  〈      〉 (23) 
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Where 〈 〉 is the inner product and Uj,m 

represents the j
th

 scale wavelet basis used. As 

physical signals like speech and images are 

nominally treated as baseband signals, the 

wavelet coefficients at fine scales, are mainly 

due to noise and have to be thresholded, for 

signals corrupted with zero mean Gaussian 

noise, the threshold level is [2]. 

         √      (24) 

N is the noisy signal length, while    is the 

associated noise variance. The variance is 

estimated from the median M of the noisy 

signal [40], as 

    
    

      
    (25) 

 

5. Proposed Filter: 
The proposed filter converts the image from 

RGB to YUV color space as step one, where 

the (Y, U, V) color space is a color 

representation used in digital image and video 

processing. It separates the luminance 

(brightness) information from the chrominance 

(color) information in an image [23]. then in 

step two, we split the image channels to extract 

the noisy (Y) channel and apply a bandwidth 

selection method on this (Y) channel, where 

the bandwidth selection, or smoothing 

parameter (h) is a crucial step in nonparametric 

estimation techniques, particularly kernel 

density estimation and kernel regression [16]. 

It involves determining an appropriate 

bandwidth parameter (h) that controls the 

smoothing or blurring effect of the kernel 

function [30].  

Nonparametric estimation aims to estimate an 

underlying probability density function or 

regression function from a given set of data 

points. The kernel function is a smooth, 

symmetric function cantered at each data point, 

and the bandwidth determines the width of this 

kernel function [31]. The choice of bandwidth 

significantly influences the quality and 

accuracy of the estimated function. If the 

bandwidth is too large, the estimate may 

become overly smooth and fail to capture 

important features or structures in the image. 

On the other hand, if the bandwidth is too 

small, the estimate may exhibit excessive noise 

and reflect the specific characteristics of 

individual data points rather than the 

underlying pattern. 

Cross-validation (CV) is a method that offers a 

criterion for optimality that works as an 

empirical analog of the (MISE) and so it allows 

us to estimate (h). There are three types of 

(CV), Least Squares Cross-Validation (LSCV), 

also called unbiased (UCV), involves the (ISE) 

[12]. 

     ∫   ̂             
 

  
  (26) 

Where (    ) and ( ̂    ) is the density and 

density estimator, which leads to  

 ̂                     (27) 

Biased Cross-Validation (BCV), where it 

attempts to directly minimize the (AMISE). 

This requires an estimation of the unknown 

     , which requires selecting another 

bandwidth [18].  

      
 

  
 

  
        

  
  (28) 

By replacing the unknown values in the 

{      } term with the estimate { ̃     }, we 

obtain the {    } estimator: 

     
 

  
 

  
 

  
( ( ̂ 

  )  
      

   ) (29) 

  ̂                  (30) 

Maximum Likelihood Cross Validation 

(MLCV). The rationale behind this method is 

to estimate the log-likelihood of the density at 

observation (xi) based on all observations 

except (xi). Averaging this log-likelihood over 

all observations results in the following 

(MLCV) score [32]. 

 ̂                   (31) 

MLCV seeks to test the hypothesis: 

    ̂    
    ̂    

}    (32) 

The next step, bandwidth parameters (h) for the 

(Y) channel that we get by (CV), use it for 

density estimation, where the Kernel density 

estimation (KDE) is a non-parametric method 

used to estimate the probability density 
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function (PDF) of a random variable based on a 

set of observed data points [10]. KDE works by 

placing a kernel (a smooth, symmetric, and 

non-negative function) on each data point and 

summing up these kernels to obtain the 

estimated PDF [32]. The estimated density at 

any point x is formulated as [8]. 

 ̂     
 

 
∑   

   (
      

 
)   (33) 

where      is a neighboring point to (x), (n) is 

the number of neighbors, K (·) is the kernel 

function, and (h) is the bandwidth. The kernel 

function can be considered a weighting factor 

that gives a larger value when x(i) is close to 

(x). This density estimation will reconstruct the 

(Y) channel then in the next step, we apply the 

denoising method to get the denoised (Y) 

channel which we use to rebuild the new 

denoised image in the final step.  For the 

denoising task, there are several denoising 

methods or filters.  

Total Variation (TV) is a technique used for 

image denoising and restoration. TV method 

effectively reduces noise while preserving 

edges and important image structures by 

minimizing the total variation of an image, 

which is a measure of the total amount of 

variation or changes between neighboring 

pixels [36]. For the image denoising task, TV 

assumes that the noisy image y(n) is of the 

form 

                         (34) 

where x(n) is a (approximately) piecewise 

constant signal and w(n) is white Gaussian 

noise. (TV) estimates the image x(n) by solving 

the optimization problem 

        {   
 

 
∑ |     |

    
    

 ∑ |         |
   
   }    (35) 

 

The regularization parameter λ > 0 controls the 

degree of smoothing. Increasing λ gives more 

weight to the second term which measures the 

fluctuation of the signal x(n) [38]. the TV 

denoising in equation (2) can be written 

compactly as: 

        {   
 

 
‖   ‖ 

   ‖  ‖ }     

(36) 

 

The N-point signal x is represented by the 

vector [13]: 

                
   (37) 

 

Classical ℓ1 TV computed independently on 

each color component [25]. 

‖ ‖  ∑‖  ‖                 (38) 

 

ℓ2 TV computes the Euclidean norm of the 

vector 

‖ ‖  (∑   
 

 )
 

           (39) 

 

Squared ℓ2 TV computes the squared 

Euclidean norm of the vector [27]. 

‖ ‖  (∑   
 

 )          (40) 

 

The matrix D is defined as [25] 

  [
     

   
     

]  (41) 

 

The first-order difference of an N-point image 

x is given by Dx where D is of size        
 . Note, for later, that DD

T
 is a tridiagonal 

matrix of the form: 

  

[
 
 
 
 

 
  

  
   

  

   

  
   

  
  
 ]

 
 
 
 

        

(42) 

 

The total variation of the N-point image x(n) is 

given by  

      ‖  ‖  ∑ |         |
   
             

(43) 

 

The main advantage of the TV formulation is 

the ability to preserve edges in the image due 

to the piecewise smooth regularization property 

of the TV norm.  

Finally, after we get the new denoised Y 

channel, we can reconstruct the denoised image 

by merging the new Y channel with the U and 
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V channels replace the denoised Y channel 

with the noise Y channel in the image.  

6. Results and discussion 

To compare the results of the filters used, we 

relied on two quality measurement criteria, The 

Peak Signal Noise Ratio (PSNR) which is the 

ratio of the maximum image values to the 

magnitude of noise affecting the image 

                  

(         
 )

     
          (41) 

 

Where the original image (X) and the resulting 

image (Y) are compared using the Max 

brightness value (255) and the mean square 

error (MSE) between the two images. 

 

And the SSIM index measures structural 

similarity between two images, with perfect 

quality indicating the quality of the other image 

being compared. 

          
(        )(       )

(  
    

    )(  
    

    )
                (42) 

 

The experiment was carried out by adding 

AWGN with zero mean and 0.75 variance to 

the approved image as shown in Figure 1, 

which is a dumbbell nebula, Considering the 

significance of these images, we should work 

to eliminate any noise that may have been 

introduced during the transmission and 

acquisition process. So, in this experiment, we 

added different percentages of Gaussian noise 

to the adopted image and then applied the 

adopted filters, the code of these filters is 

written using MATLAB. 
 

 
Figure 1: dumbbell nebula (A) Clean Image, (B) Noisy 

Image. 
 

 

The results indicate that the proposed filter 

performs best in terms of both PSNR and SSIM 

when there is a noise density of 0.01 where it is 

given the value 38.70 PSNR, and 0.96 SSIM 

respectively, while the Spline filter ranks 

second with 31.22 PSNR and 0.91 SSIM. 

According to measurements, E spline filters 

have the values 30.12 PSNR and 0.90 SSIM, 

respectively. Figure 2 displays the images that 

have been restored. 

 
Table 1: PSNR and SSIM Values for The Restored 

Images for Each Filter 

Filters 

Image Quality Measurements 

PSNR SSIM 

Proposed 38.70 0.96 

Spline 31.22 0.91  

E-Spline 30.12 0.90 
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FIGURE 2. Restored Image by (A) Proposed Filter, (B) 

Spline Filter, (C) E-Spline Filter. 

 

 The mechanism used by the proposed method 

to analyze the image, which was represented by 

a series of stages, is what accounts for its 

superiority. First, an appropriate bandwidth 

parameter was extracted using a plug-in 

method designed to minimize errors. The 

Gaussian density function was then estimated 

using this parameter by calculating the mean 

and variance of the noise contained in the 

image. Finally, a useful denoising method is to 

divide the image using thresholding. 

 

 
FIGURE 3. Image Quality in Different Gaussian Sigma 

and Spline Order Values. 

Spline filter algorithm depends on Spline 

Order, Spline Spacing, and Gaussian Sigma to 

achieve the denoising process. To choose the 

best parameters that minimize noise while 

preserving essential details, we experiment 

with different combinations of these 

parameters until we find the best balance 

between noise reduction and detail 

preservation. We experiment with Spline Order 

with the values (1, 2, 3, 4, 5), Spline Spacing 

with the values (1, 2, 3, 4, 5), and Gaussian 

sigma (1, 2, 3, 4). 

The exponential Spline algorithm depends on 

two parameters lambda ( ) and Sigma ( ). ( ) 

controls the strength of smoothing in the filter. 

Were a higher value of ( ) will result in 

stronger smoothing, while a lower value will 

have less smoothing effect. We start with a 

moderate value, such as (     ). This is a 

common starting point for many denoising 

tasks. And then adjust lambda based on visual 

inspection of the denoised image.  
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FIGURE 4. Image Quality in Different Lambda and 

Sigma Values. 

 

7. Conclusions 

The study presents a new method for denoising 

Gaussian noise in satellite images using YUV 

color space techniques. The method converts 

the noisy image to the YUV color space, 

focuses on the noisy Y channel, and estimates 

its density function using cross-validation. This 

method significantly outperforms traditional 

denoising methods in terms of visual quality 

and quantitative metrics. It preserves image 

details while reducing artifacts, making it 

suitable for satellite image processing 

applications. 
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