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Here, we propose a new convex linear combination estimator, called the New Mixed 

Estimator (NME), for multiple linear regression models with stochastic linear 

constraints on unknown parameters and multicollinearity between explanatory 

variables. The Ordinary Mixed Estimator (OME) and the Biased Stochastic Restricted 

Liu-type Estimator (SRLIT), two well-known estimators, are integrated to create the 

NME. Using Mean Square Error (MSE) as the main performance parameter, we 

examine the statistical characteristics of the NME and theoretically compare it to both 

OME and SRLIT to show its superiority. According to our research, the NME 

routinely performs better than the OME and SRLIT in terms of overall efficacy and 

statistical characteristics. Additionally, we provide a numerical example to clearly 

support these findings. 
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1. Introduction  
The sample correlation matrix in multiple 

linear regression frequently deviates 

significantly from the identity matrix due to a 

lack of orthogonality caused by linked 

explanatory factors. These variations can lead 

to unstable ordinary least squares estimations 

(OLSE) of regression coefficients, which are 

often manifested by inflated standard errors 

and unreasonably high absolute values for a 

large number of estimated coefficients. 

Considerable research have been done on the 

difficulties multicollinearity presents and its 

statistical ramifications in linear regression 

models. There have been several solutions put 

forth to address these problems, the main one 

being the employment of biased estimators in 

place of the OLS estimator. Under conditions 

of multicollinearity, it has been demonstrated 

that these biased estimators improve the 

accuracy of parameter estimation. 

Principal component regression estimators [9], 

ordinary ridge regression estimators (ORE) 

[1], r-k estimators [2], Liu estimators (LE) [3], 

r-d estimators [4], and Liu-type estimators 

[5,6] are among the various forms of biased 

estimators that have been presented. While 

Akdeniz and Kakaryanlar [7] presented the 

approximately unbiased generalized Liu 

estimator (AUGLE), Singh et al. offered the 

approximately unbiased generalized ridge 

estimator (AUGRE) using a steepening 

approach. Akdeniz and Erol[8] investigated 

the approximately unbiased ridge estimator 

and the approximately unbiased LE estimator 

as bias-corrected substitutes for ORE and LE, 

https://isj.edu.iq/index.php/rjes
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respectively, after looking more closely at 

specific cases of AUGRE and AUGLE. 

   Convex linear combination estimators are an 

effective statistical technique for combining 

several estimators, improving accuracy, 

robustness, and efficiency in a range of 

applications such as covariance matrix 

estimation, density estimation, and regression. 

These estimators, which provide advantages 

including increased accuracy, resilience, and 

optimality, are essential to statistical 

modeling. They also exhibit flexibility and 

computational efficiency, which makes them 

appropriate for a range of applications. 

Convex linear combination estimators are 

more dependable and efficient in real-world 

situations since they also offer assurances 

regarding small sample sizes and control over 

false discovery rates. These approaches 

provide estimators that reproduce the behavior 

of individual estimators while attaining better 

overall performance by optimizing the weights 

of the combinations. 

The need for techniques that improve 

regression models' performance has grown in 

recent years. The recently suggested Convex 

Combination Estimator is one of these 

approaches that shows promise. By combining 

multiple conventional estimators into a convex 

mixture, this estimator capitalizes on the 

benefits of each estimator. A better balance 

between bias and variance can be achieved by 

weighting each estimator based on how well it 

performs in various scenarios. This study 

presents a new convex estimator that combines 

a biased SRLTE with an unbiased  OME. The 

MSE was used to evaluate this novel 

estimator's performance. The paper's structure 

is set out as follows: The model specifications 

and details of the proposed estimator are 

described in Section 2;the efficacy of the new 

estimator is evaluated in Section 3; and a 

Monte Carlo simulation study and numerical 

example are presented in Sections 4 ,5 and 6 to 

demonstrate the behavior of the estimator. 

 

2. Model Specification and the 

Proposed Estimator 
We consider a multiple linear regression 

model expressed as follows: 

                                                 (1) 

where   is an  n × 1 vector representing the 

response variable,  ,   is an n× p known 

design matrix of rank  p ,   is a p × 1 vector of 

unknown parameters and   is an n × 1 vector 

of disturbances. It is assumed that the expected 

value of the disturbances satisfies E(ϵ) = 0 , 

and the variance-covariance matrix is given by 

             . where  Iₙ  is the  n × n  

identity matrix. The OLS for model (1)is 

given by: 

 ̂                                            (2) 

where      . The OLSE may become 

unreliable in the presence of multicollinearity, 

which can result in inaccuracies in parameter 

estimates. According to Netter [10], 

multicollinearity occurs when one independent 

variable is approximately a linear combination 

of other independent variables. This condition 

can significantly compromise the accuracy of 

parameter estimates and lead to substantial 

challenges in the analysis. 

The covariance matrix for any estimator    for 

  is defined as follows: 

    ( ̂)                    
In the context of biased estimation, the MSE 

matrix serves as the most effective criterion 

for evaluating an estimator's performance. 

This is due to its ability to provide a holistic 

assessment by integrating both the variance-

covariance matrix and the bias vector into a 

single formulation. 

   ( ̂)      (  ̂ )       ( ̂ )      ( ̂ )
 
 

 In the context of model (1), the analysis is 

based exclusively on sample data. However, if 

there exists prior knowledge regarding the 

parameters, a set of     independent stochastic 

linear limitations is introduced. 

                                            (3) 

where r is a j × 1 stochastic known vector 

with          , R is a j × p random vector of 

disturbances with            and         
       ,and W is assumed to be a known and 

positive definite (pd). Further, it is assumed 

that ϵ is stochastically independent of  . 

The models presented in (1) and (3) serve as 

an alternative approach to addressing 

multicollinearity. Thiel and Goldberger 

[14,15] proposed a mixed estimation 
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methodology that integrates sample data with 

prior information into a cohesive model. 

Within this framework, they introduced the 

OME, which demonstrates superior variance 

characteristics compared to the OLSE variance 

and exhibits enhanced statistical properties. 

 

 ̂                                                                                                               (4) 

The Expectancy, Variance and MSE Matrix of the OME can be derived as follows: 

 ( ̂   )                                                                                                                                      (5) 

    ( ̂   )     ( ̂   )                                                                                      (6) 

 Alheety (2020) [16] introduced a novel estimator known as the Stochastic Restricted Liu-Type 

Estimator SRLTE. 

 ̂                        ̂                                                                              (7) 

The Expectancy, Variance and MSE Matrix of estimator the SRLTE can be derived as follows: 

 (  ̂ )                                                                                               (8) 

    ( ̂ )                                                                                      (9) 

   ( ̂ )                                                                 (10) 

   ( ̂ )                                                     

                                                  ]                      
                              ]                                                                                                          (11) 

The OME and STRLE estimators are convexly 

combined to generate the NME estimator. 

When both estimators work well in specific 

situations, it may be useful to use a convex 

combination of two estimators. In order to 

integrate the OME and STRLE estimators, we 

investigate a linear convex combination 

estimator. Equations (4) and (7) give the linear 

convex combination for the NME estimator's 

mathematical representation: 

 ̂       ̂           ̂     ,             (12) 

where the eq(12) is a convex matrix estimator 

model and  A is Square matrix    . 

 

2.1 The properties of the proposed estimator. 

 

We can find the MSE of the new estimator by 

finding the variance and bias of the estimator 

           ( ̂   )     ( ̂   )    ( ̂   )   

                             =   ( ̂   )  

  ( ̂   )   ]                                      (13) 

The expectation of the new estimator is found 

by expecting OME in Equation (5) and 

expecting SRLITE in Equation (8). 

 ( ̂   )        ̂           ̂ ]                                                                                   (14) 

                                     ( ̂   )        ( ̂ )  

                                                                        

                                                                            

                                                                                                                                  (15) 

where                                          

As for bias, we find it using the following law: 

  ( ̂   )   ]                  ]                                                                           (16) 

We find the variance of the NME estimator from the variance of OME in Equation (6) and the 

variance of SRLTE in Equation (10) 

 

   ( ̂   )       ( ̂   )             ̂                                                                (17) 

                                                                                         

                                                                                                            (18) 

where                                             . 
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By replacing equation (18) and equation (16) 

with equation (13), we find the mean square 

error of the new estimator. 

 

   ( ̂   )                                             ]            (19) 

 

By deriving mean square error in equation (19) with respect to A, we find the value of parameter A. 

 
     

  
                                         ]                         (20) 

     

  
    

 

                                         ]                  

                                                           

                   (          
 )                   

                                                 
                    

                  
      

                                                                                     (21) 
When  and    are not known, we use   

   ̂      ̂
     The ordinary least squares 

estimator 

 

3.  Evaluation of Estimator  

Performance 
This section compares  NME to both the 

performance of the SRLTE and the OME 

using the MSE  criteria .We introduce some 

basic concepts and terms that are useful in our 

current research.[17] 

Lemma1. For a positive definite matrix   

(denoted by    ) and a vector  , the 

inequality         holds if and only if 

       .  

Lemma 2. For two competing linear 

estimators  ̂              if the 

difference between the covariance matrices of 

these estimators, represented by    ( ̂ )  

          then the condition    ( ̂ )  

     ̂     is satisfied if and only if the 

inequality   
          

       holds, 

where    ( ̂ )      represent the mean 

squared error matrix and bias vector of  ̂ , 

respectively. 

Lemma 3. For n x n matrices   
                               holds if 

and only if the largest eigenvalue of the matrix 

    , denoted by           . 

Lemma 4. For any two n x n matrices 

                            
                                    
   holds if and only if the eigenvalues of the 

matrix   
      . 

Lemma 5. (Hu Yang et al. 2009). Supposed 

that M is a real symmetric matrix and P is a 

matrix then                each 

eigenvalues of M is non negative. 

Definition. defines that for two competing 

estimators  ̂     ̂                 ̂  is 

considered superior to  ̂ according to the 

Mean Squared Error (MSE) criterion if and 

only if    ( ̂ )       ̂    . 

 
3.1: Comparison between NME and OME 

using the MSE performance of the estimators. 

 

We will make a more detailed Using Equation 

(6) and Equation (19) we find 

      ( ̂   )       ̂                                                                                                      (22) 

                                                     ]    

                                                     ]         
        ]   
              

                                                                                                                           (23) 

where                  ]        
                           

Theorem 1.The NME under the namely 

stochastic linear regression model, the 
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superiority of the NME  over the OME in 

terms of the MSE matrix  is determined      

if and only if   
    

          . 

Proof: The MSE difference between the NME 

and OME is given in eq.(23) is 

           
   . To apply lemma1 to 

eq.(23) we need to prove that    is a positive 

definite matrix (pd) 

Not that               
                  

                                  
                          ]  

   For                   is a positive 

definite (pd) (namely     )  . There exists an 

orthogonal matrix P such that           

and                     
                    ]   
              There for    is (p.d) if and 

only if                  

             
         

       
        

          
      

          
 

          (    
  

              
          

      

          
 )   

Therefore,                      
           means    is (p.d) if and only if  

               
          

      

          
   

This implies that   , is clearly a positive 

definite matrix. Hence according to lemma 1, 

the NME is superior to OME if and only if 

  
    

          This completes the proof. 

 

3.2: Comparison between NME and SRLTE 

using the  MSE performance of the estimators. 

 

We will make a more detailed Using Equation 

(11) and Equation (19) we find 

      ( ̂ )     ( ̂   )                                                                                                     (24) 

                     ]           ]                              
                ]   

                     ]            ]                                
              ]                   ] 

                                               
      

    

            
      

   
                                                                                                                 (25) 

 

where           ]                  
                                                                                                                               
Theorem 2. When the maximum Eigen value 
of                      
                  then the NME is 
superior to the SRLTE in the MSE  if and 
only if    

                  
Proof: The MSE difference between the 
NME and SRLTE given in eq.(25) is 
           

      
   

                            
To show that      , lemma 2 can be used. 
A requirement to apply lemma 2 is that    
to be positive definite matrix. It is clear 
that                          
                      
According to lemma 3 ,             
                  if and only if    
   Where   is the maximum eigen value of  

                     
               
There fore    is a positive definite matrix. 
Then according to lemma 2 ,   is a non 
negative definite matrix  if and only if   
  

                  .This completes the 
proof .  

4. Simulation Study 
The purpose of this section is to compare the 

many biased estimators in order to determine 

which one is the best. Thus, we use the 

MATLAB application to perform a simulation 

investigation. This simulation is based on 

variables that influence the estimator's duo 

characteristics and the degree of collinearity 

between multiple explanatory variables. The 

explanatory variables were generated using the 

equation in accordance with Kibria (2003). 
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           , 

                                       (26) 

where the     independent standard normal 

pseudo-random numbers and   represents the 

correlation between any two variables. These 

variables are standardized so that     is being 

in correlation form. The response variable y is 

considered by: 

                            
                                            (27) 

 

where    is i.i.d.          Therefore, zero 

intercept for (27) will be assumed. Also the 

number of explanatory variables    , while 

the values of   are choose as (.1, 1, 5). The 

correlation   will choose as (0.85, 0.95,0.99) 

and sample size n as (50, 100, 150,).The 

coefficients β1, β2, …, βp  are selected as  the 

eigenvectors corresponding to the largest 

eigenvalue of the matrix     subject to 

constraint        . Thus, for all 

              and   , sets of    are created. 

The experiment was replicated 5000 times by 

creating new error terms. Estimated mean 

square error (EMSE) is calculated as follows: 

 

         
 

     
∑                  

   , 

 

where    would be any estimator 

(OME,SRLTE or NME). 

 

5. The Simulation Results 

From Tables 1, 2 and 3 when the    
             for all standard division , the 

SRLTE estimator is better than of the NME 

estimator because the SRLTE has minimum 

mean square error. While, when              

and            the SRLTE estimator is 

better than of the NME, while, when       

the performance of the NME estimator is 

better than of  SRLTE and OME. In Table 3, 

when                      the NME has 

lowest mean square error. that mean , when   

increasing the MNE  is better than of any 

estimator in this case.  
Tables 3, 5, and 6 show that the SRLTE 

estimator performs better than the NME and 

OME estimators when (n=100) and (γ=0.85, 

0.95,σ=0.1,1) because it has good qualities in 

this instance and has a minimum mean square 

error. Since the NME has the lowest mean 

square error when compared to the SRLTE 

and OME estimators, it performs better than 

the SRLTE estimator when (σ=5). The NME 

estimator performs better than the SRLTE and 

OME estimators in Table 3 (γ=0.99 σ=0.1, 1, 

5).  

Tables 7 through 9 show that the SRLTE 

estimator outperforms the NME and OME 

estimators when (n=150) (γ=0.85,0.95,σ=0.1) 

due to its good characteristics and minimum 

mean square error. However, the MNE 

outperforms all estimators when σ increases 

and becomes (σ=1,5). The NME estimator 

performs better than the SRLTE and OME 

estimators in Table 3 (γ=0.99 σ=0.1,1,5).  

The simulation's conclusion. It can be 

observed that the suggested estimator 

performs better than the other estimators the 

larger the sample size and the higher the 

correlation coefficient. 

 
Table 1: Estimated Mean Square Error with                

                                                                                                                                            
                                              

2.4081 0.2332 .9174 .10 2.0116 0.3340 1.4365 .10 0.6230 0.3937 0.4921 

2.4081 0.2345 2.1410 .30 2.0116 0.3349 2.8400 .30 0.6230 0.3948 0.4935 

2.4081 0.2357 1.4407 .50 2.0116 0.3358 1.9130 .50 0.6230 0.3958 0.4944 

2.4081 0.2369 1.1489 .75 2.0116 0.3368 1.4723 .75 0.6230 0.3969 0.4952 

2.4081 0.2375 1.0615 .80 2.0116 0.3372 1.3332 .80 0.6230 0.3975 0.4955 

2.4081 0.2382 0.9954 .85 2.0116 0.3377 1.2259 .85 0.6230 0.3980 0.4958 

2.4081 0.2388 0.9439 .88 2.0116 0.3381 1.1410 .88 0.6230 0.3986 0.4960 

2.4081 0.2515 0.6727 .90 2.0116 0.3476 0.6784 .90 0.6230 0.4100 0.4984 

2.4081 0.2647 0.6263 .95 2.0116 0.3574 0.5907 .95 0.6230 0.4222 0.4986 

2.4081 0.2928 0.5968 .99 2.0116 0.3784 0.5047 .99 0.6230 0.4489 0.4965 

 

Table 2: Estimated Mean Square Error with                



 

 

Dounia J. Al-Obaidi  and Mustafa I. Alheety/ Iraqi Statisticians Journal / Vol. 2, no.1, 2025: 177-187 

183 

 

                                                                                                                                            
                                              

1.5651 0.3382 0.8979 .10 1.6841 0.3164 0.8399 .10 3.956095 1.416983 0.385184 

1.5651 0.3395 0.6492 .30 1.6841 0.3184 0.7503 .30 3.956095 1.41585 0.431775 

1.5651 0.3407 0.5927 .50 1.6841 0.3207 0.6518 .50 3.956095 1.414894 0.521684 

1.5651 0.3420 0.5686 .75 1.6841 0.3231 0.5646 .75 3.956095 1.414113 0.669478 

1.5651 0.3426 0.5610 .80 1.6841 0.3245 0.5310 .80 3.956095 1.413789 0.757036 

1.5651 0.3433 0.5549 .85 1.6841 0.3259 0.5051 .85 3.956095 1.413509 0.839193 

1.5651 0.3439 0.5500 .88 1.6841 0.3273 0.4870 .88 3.956095 1.413273 0.90208 

1.5651 0.3569 0.5154 .90 1.6841 0.3684 0.6892 .90 3.956095 1.417791 0.493303 

1.5651 0.3702 0.5301 .95 1.6841 0.4325 0.7766 .95 3.956095 1.439914 0.422773 

1.5651 0.3980 0.6727 .99 1.6841 0.6303 0.8187 .99 3.956095 1.536971 0.395247 

 

Table 3: Estimated Mean Square Error with                
                                                                                                                                            

                                              

1.6719 0.4264 0.4932 .10 1.9208 0.4843 0.7165 .10 5.5593 2.9540 0.5802 

1.6719 0.4277 0.4839 .30 1.9208 0.4872 0.4551 .30 5.5593 2.9435 0.4579 

1.6719 0.4290 0.4876 .50 1.9208 0.4908 0.3322 .50 5.5593 2.9330 0.4876 

1.6719 0.4304 0.5177 .75 1.9208 0.4951 0.5137 .75 5.5593 2.9227 0.5832 

1.6719 0.4311 0.5459 .80 1.9208 0.4976 0.6242 .80 5.5593 2.9175 0.6448 

1.6719 0.4317 0.5843 .85 1.9208 0.5002 0.7274 .85 5.5593 2.9123 0.7111 

1.6719 0.4324 0.6337 .88 1.9208 0.5031 0.8195 .88 5.5593 2.9072 0.7797 

1.6719 0.4462 2.8066 .90 1.9208 0.5984 1.4454 .90 5.5593 2.8081 1.6019 

1.6719 0.4605 3.0930 .95 1.9208 0.7679 1.5543 .95 5.5593 2.7155 1.7465 

1.6719 0.4905 2.2239 .99 1.9208 1.3293 1.6199 .99 5.5593 2.5501 1.7510 

 

Table 4: Estimated Mean Square Error with                 
                                                                                                                                            

                                              

1.9769 0.2944 0.9963 .10 1.3152 0.2573 0.8026 .10 4.1534 2.8732 0.5023 

1.9769 0.3072 0.5888 .30 1.3152 0.2711 0.5249 .30 4.1534 2.8720 0.5008 

1.9769 0.2913 1.6277 .50 1.3152 0.2540 1.3091 .50 4.1534 2.8740 0.5045 

1.9769 0.3203 0.4976 .75 1.3152 0.2855 0.4706 .75 4.1534 2.8739 0.5030 

1.9769 0.3339 0.4391 .80 1.3152 0.3004 0.4343 .80 4.1534 2.8791 0.5080 

1.9769 0.3409 0.4144 .85 1.3152 0.3081 0.4178 .85 4.1534 2.8829 0.5116 

1.9769 0.3444 0.4027 .88 1.3152 0.3119 0.4098 .88 4.1534 2.8851 0.5137 

1.9769 0.3480 0.3916 .90 1.3152 0.3159 0.4020 .90 4.1534 2.8874 0.5160 

1.9769 0.3515 0.3808 .95 1.3152 0.3198 0.3943 .95 4.1534 2.8900 0.5185 

1.9769 0.3544 0.3726 .99 1.3152 0.3230 0.3882 .99 4.1534 2.8922 0.5207 

 

Table 5: Estimated Mean Square Error with                 
                                                                                                                                            
                                              

1.6328 0.3478 0.5227 .10 1.209878 1.243662 0.941944 .10 2.342715 0.679662 0.306241 

1.6328 0.3589 0.4014 .30 1.209878 1.156086 0.919943 .30 2.342715 0.634382 0.314621 

1.6328 0.3451 0.6233 .50 1.209878 1.176757 0.929837 .50 2.342715 0.679726 0.306236 

1.6328 0.3702 0.3105 .75 1.209878 1.151407 0.917122 .75 2.342715 0.715338 0.380152 

1.6328 0.3818 0.2413 .80 1.209878 1.333343 0.942293 .80 2.342715 0.613471 0.334392 

1.6328 0.3878 0.2190 .85 1.209878 1.074725 0.878287 .85 2.342715 0.635226 0.340796 

1.6328 0.3907 0.2114 .88 1.209878 1.041954 0.867982 .88 2.342715 0.68536 0.305833 

1.6328 0.3937 0.2064 .90 1.209878 1.055692 0.869392 .90 2.342715 1.141849 0.761083 

1.6328 0.3967 0.2038 .95 1.209878 1.015017 0.913187 .95 2.342715 1.129965 0.781093 

1.6328 0.3992 0.2036 .99 1.209878 1.02578 0.88024 .99 2.342715 1.143662 0.758309 

 

Table 6: Estimated Mean Square Error with                
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1.6216 0.4135 0.4857 .10 2.0365 0.6269 0.4790 .10 1.9819 0.6221 0.2161 

1.6216 0.4145 0.4570 .30 2.0365 0.6289 0.4364 .30 1.9819 0.6212 0.2817 

1.6216 0.4155 0.4240 .50 2.0365 0.6310 0.4329 .50 1.9819 0.6213 0.1258 

1.6216 0.4166 0.3905 .75 2.0365 0.6331 0.5383 .75 1.9819 0.6225 0.1749 

1.6216 0.4171 0.3746 .80 2.0365 0.6342 0.6235 .80 1.9819 0.6234 0.2233 

1.6216 0.4176 0.3597 .85 2.0365 0.6352 0.6489 .85 1.9819 0.6246 0.2741 

1.6216 0.4181 0.3461 .88 2.0365 0.6363 0.4231 .88 1.9819 0.6261 0.3235 

1.6216 0.4285 0.4455 .90 2.0365 0.6609 0.6289 .90 1.9819 0.7094 0.8284 

1.6216 0.4390 0.6928 .95 2.0365 0.6905 0.6131 .95 1.9819 0.8951 1.0498 

1.6216 0.4609 0.7305 .99 2.0365 0.7646 0.6101 .99 1.9819 1.5742 1.4277 

 

Table 7: Estimated Mean Square Error with                 
                                                                                                                                            

                                              

1.8000 0.3096 0.2317 .10 1.4835 0.2127 0.6760 .10 4.5696 3.2870 0.4943 

1.8000 0.3235 0.7574 .30 1.4835 0.2210 0.5218 .30 4.5696 3.2755 0.4929 

1.8000 0.3062 6.7363 .50 1.4835 0.2107 0.8515 .50 4.5696 3.2900 0.5085 

1.8000 0.3378 0.5867 .75 1.4835 0.2297 0.4740 .75 4.5696 3.2652 0.4976 

1.8000 0.3526 0.5058 .80 1.4835 0.2389 0.4380 .80 4.5696 3.2560 0.5029 

1.8000 0.3601 0.4749 .85 1.4835 0.2437 0.4213 .85 4.5696 3.2518 0.5058 

1.8000 0.3639 0.4607 .88 1.4835 0.2461 0.4131 .88 4.5696 3.2498 0.5074 

1.8000 0.3678 0.4473 .90 1.4835 0.2486 0.4050 .90 4.5696 3.2479 0.5090 

1.8000 0.3716 0.4345 .95 1.4835 0.2510 0.3970 .95 4.5696 3.2460 0.5106 

1.8000 0.3747 0.4246 .99 1.4835 0.2531 0.3906 .99 4.5696 3.2446 0.5119 

 

Table 8: Estimated Mean Square Error with               

                                                                                                                                            
                                              

1.4742 0.3780 0.5877 .10 4.0300 1.8499 0.5100 .10 4.9948 3.5653 0.4934 

1.4742 0.3896 0.4637 .30 4.0300 1.8630 0.4694 .30 4.9948 3.5741 0.4952 

1.4742 0.3752 0.7929 .50 4.0300 1.8470 0.5655 .50 4.9948 3.5640 0.4980 

1.4742 0.4017 0.3892 .75 4.0300 1.8782 0.4589 .75 4.9948 3.5888 0.5188 

1.4742 0.4143 0.3196 .80 4.0300 1.8956 0.4833 .80 4.9948 3.6095 0.6029 

1.4742 0.4207 0.2884 .85 4.0300 1.9050 0.5153 .85 4.9948 3.6221 0.7112 

1.4742 0.4240 0.2741 .88 4.0300 1.9100 0.5378 .88 4.9948 3.6289 0.8049 

1.4742 0.4273 0.2608 .90 4.0300 1.9150 0.5653 .90 4.9948 3.6361 0.9473 

1.4742 0.4306 0.2487 .95 4.0300 1.9202 0.5984 .95 4.9948 3.6437 1.1743 

1.4742 0.4333 0.2399 .99 4.0300 1.9245 0.6293 .99 4.9948 3.6501 1.4643 

 

Table 9: Estimated Mean Square Error  with                 
                                                                                                                                            

                                              

1.6216 0.4135 0.0164 .10 1.4194 0.7185 0.5276 .10 1.8816 1.4173 0.7963 

1.6216 0.4145 0.0626 .30 1.4194 0.7275 43.6884 .30 1.8816 1.4250 0.6760 

1.6216 0.4155 0.0609 .50 1.4194 0.7169 0.4858 .50 1.8816 1.4175 0.5767 

1.6216 0.4166 0.1041 .75 1.4194 0.7410 0.2699 .75 1.8816 1.4459 0.6202 

1.6216 0.4171 0.1554 .80 1.4194 0.7590 0.4932 .80 1.8816 1.4801 0.6007 

1.6216 0.4176 0.1872 .85 1.4194 0.7698 0.4831 .85 1.8816 1.5021 0.5946 

1.6216 0.4181 0.2050 .88 1.4194 0.7756 0.5145 .88 1.8816 1.5144 0.5920 

1.6216 0.4285 0.2242 .90 1.4194 0.7816 0.5633 .90 1.8816 1.5275 0.5896 

1.6216 0.4390 0.2449 .95 1.4194 0.7880 0.6262 .95 1.8816 1.5414 0.5874 

1.6216 0.4609 0.2625 .99 1.4194 0.7933 0.6852 .99 1.8816 1.5532 0.5858 

 
6.Numerical Example 

A numerical example is provided to show how 

well the NME estimator performs. This paper 

uses the acetylene data set that was employed 

extensively by Bashtain (2011)[18]. The scalar 

mean square error for the OME, SRLTE, and 

NME estimators are compared. Using scalar 

mean square error, Table 10 compares the 
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NME estimator's performance to that of other 

estimators. Using Lemma 5, we obtain 

             which, if and only if every 

eigenvalue of    is nonnegative definite, is 

nonnegative definite. Comparing the scalar 

mean square error (SRMTE, NME, and OME) 

is the aim. Examine the stochastic linear 

constraints that are employed in equation (3): 

           (
              
             

)  

  (
       
      

)                

The     of OME estimator is given by: 

    ( ̂   )    ∑
 

     

 
                                                                                                         (28) 

The     of SRLTE estimator is given as follows: 

    ( ̂ )    ∑
       

     

         
  ∑

                     
       

 

         
 

 
   

 
                                                (29) 

The     of NME estimator is given as follows : 

   ( ̂   )    ∑
  

 

     

 
   +  ∑

      
         

      

         
  ∑     

               

         
      

  
   

 
      

                                                                                                                                                       (30) 

We obtain  ̂  
|     ̂  |

   
          and the three eigen values of     are 2.0647, 0.8936 and 

0.0417 .The      matrix will be as follows : 

    (
                   
                   

                    
) 

The variables in the  ′  matrix struggle to 

have strong relationships with one another, as 

we can see. One benefit of standardizing the   

matrix is that it makes it easier to identify the 

variables that have a high degree of 

correlation. 

The Condition Number        

√
      

       
          which indicates that 

there is a moderate multicollinearity and may 

be corrected. 

comparing with the MURR, RRE and RLS 

estimators. 
 

Table 10 : The scalar mean square error for different estimators and different estimated ridge parameter 

                

0.30 132.4815 522.0347 647.8892 

0.20 132.4815 260.2956 281.1237 

0.10 132.4815 103.8709 98.7015 

0.090 132.4815 94.0207 88.2613 

0.080 132.4815 85.2237 79.0499 

0.070 132.4815 77.4798 71.0305 

0.050 132.4815 65.415 58.4392 

0.040 132.4815 60.5669 53.8131 

0.030 132.4815 57.0356 50.2704 

0.010 132.4815 53.1324 46.3720 

 

Table 10 illustrates how well the NME estimator performs when compared to other estimators for 

every different parameter d. 
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Figure 1: The scalar mean square error for different estimated ridge parameter for OME, SRLTE and NME 

 

 
Figure 2: The scalar mean square error for different estimated ridge parameter for OME, SRLTE and NME 

 
Figure 3: The scalar mean square error for different estimated ridge parameter for OME, SRLTE and NME 

 
7. Conclusion 

For the stochastic restricted linear regression 

model, we introduced a new stochastic 

restricted estimator in this work. We examined 

this estimator's characteristics and showed 

that, according to certain standards, it 

performs better than other biased estimators. 

By combining several estimators into a convex 

mixture framework, the suggested estimator—

known as the NME—addresses current issues 
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and produces a mean square error that is lower 

than that of OME and SRLTE. In addition, we 

conducted a simulation study to assess how 

multicollinearity affects the suggested 

estimator's performance. 
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