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Survival models play a key role in analyzing time-to-event data. Accelerated time 

models are useful when the effect of the covariates on the survival time is proportional 

throughout the follow-up period. The well-known Weibull accelerated failure-time 

model (AFT), as an accelerated time model, is widely employed in survival analyses. 

The high-dimensional variables picked, considering most of the low-dimensional AFT 

model-based variable selectors, assume that the covariate effects are constant 

throughout the period. However, the Weibull AFT model includes time 

transformations enabling constant, increasing, or decreasing impacts during the entire 

study, and thus, it is a more flexible approach. Lemurs‟ optimization algorithm (LOA), 

a new powerful algorithm, is employed in the covariate selection. It is important to 

select appropriate significant covariates for AFT models in practice. However, like all 

other high-dimensional data, the lemur faces the curse of dimensionality problem in 

Weibull AFT model-based variable selection. Thus, it is necessary to have a 

purposeful variable selection algorithm for Weibull AFT models that considers the 

increasing, constant, or decreasing effects of covariates. 
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1. Introduction  

Information sets that quantify the time 

for an event to occur is called the survival data. 

Other variables of interest include the 

employment duration of heart transplant 

recipients and their survival rate. Some factors 

must be taken into account when doing any 

analysis involving such data [1, 2]. 

The survivor time variable becomes an 

event time variable indicating how long it will 

take for a particular event to occur, along with 

some set of such hypothesised independent 

variables involving survival data. The 

concurrent variables, also called independent 

variables, also may be continuous, for example 

age or temperature, or discrete such as sex or 

race. In most medical data, the system of the 

event of interest can be biological or physical, 

which is what are the engineering data [3, 4]. 

The two main objectives in survival analysis 

include modelling the underlying distribution 

of the failure time variable and determining 

how it depends on the independent variables. 

In both cases the only rate of failure 

that is clearly seen to be related to a given 

censored observation is the lower boundary. 

But it proposed that such observation is right 

censored. The study is extended with an 

additional variable to detect which failure times 

are censored and which are observed event 

timings. The failure time may be outside a 

given interval (interval censored) or smaller 

than a specified value (left censored) more 

broadly; that is, the time failure only is known 

to be between a certain interval even if not 

https://isj.edu.iq/index.php/rjes
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within a given interval. Several types of 

potential censorship strategies arise in survival 

analysis. Some comparable censoring 

circumstances are reviewed in [5] and several 

filtering systems are discussed in [6]. Data 

containing censored observations cannot be 

analysed, ignoring the censored observations, 

as censored observations are often from longer 

lived persons, and thus right censored, among 

other reasons. We must analyse with censoring 

in mind and correctly use the censored and 

uncensored observations. AFT survival models 

can be applied on the Acute liver failure 

patients in India, if a correct survival time 

distribution is selected [2]. 

AFT is a completely parametric model 

and as such is permitted to reach conclusions 

that would be intractable in a non, or semi-

parametric framework, such as estimating tail 

probabilities. AFT models are linear mixed 

models with the survival data log transformed, 

with censoring and correlation accounted for in 

the survival data. In the compromise, one must 

accept a specific distribution of survival times, 

that could be revised. The AFT model specifies 

that the effect of a covariate will speed up or 

slow down a disease‟s course by some fixed 

amount. In AFT models, the covariate affects 

the distribution of the response variable and of 

the time scale in full. Furthermore in the 

Proportional Hazard (PH) models the effect of 

covariate is multiplicative in terms of hazard 

rates [7]. It is well known that parametric 

survival models do not rely on restrictive 

assumption of PH. Interpretability, managing 

censored data, and versatility in mediation 

analysis with survival outcomes make 

accelerated failure time (AFT) models 

preferred to proportional hazards (PH) models. 

Recognizing these distinctions is 

important, and researchers should select a 

suitable model for their mediation analysis [4, 

7]. Specific assumptions are made as a basis for 

these basic conditional models of Cox type and 

AFT models and the connexion between the 

survival and coincidence of the variables. If 

you assume that you meet another common, 

and rather flexible model of Cox, which 

assumes that of the proportionality of hazards, 

you have another common model. In the case 

of the Cox model, the PH assumption requires 

all independent variables to remain 

independent of time in the final model and, in 

particular, the risk ratio of the event need not 

change over a specific period. This premise 

allows us to extend further investigation of the 

output classification process which will be 

more tractable than the parametric model 

interpretation [8]. Distribution of survival times 

can be analysed with AFT models, and these 

are particularly helpful if the proportional 

hazards assumption does not hold [9]. 

Furthermore, Parametric survival models 

provide several utilities for parameter 

estimation based on survival instead of survival 

hazard, and use of the complete likelihood for 

parameter estimation [2]. Considering that AFT 

models are used [10] as the suggested 

analytical tool to examine latency to the 

platform in Multi-Walled Carbon Nanotubes on 

research Morris water maze, AFT, logistic 

regression model and analysis of variance 

(ANOVA) is compared. 

One of the most obvious [11] 

probabilistic distributions capable of studying 

survival data is the Weibull distribution, which 

has its application started within the industrial 

field in order to perform reliability testing. Just 

as linear modelling‟s normal distribution is 

crucial to the parametric analysis of survival 

data this distribution is just as necessary. 

Although the AFT can be used to compare 

survival times, the assumption of the PH is 

used to compare hazards [12]. 

Feature selection has been widely 

applied in various research fields. With its 

application in more and more areas, researchers 

have proposed algorithms to improve the 

accuracy of feature selection and find the 

globally optimal feature combination. 

However, most of the proposed methods 

mainly focus on categorizing the data and 

solving different patterns. Experimental results 

have shown that the existing methods are time-

consuming, and the accuracy of feature 

selection is far from the global optimal 

solution. They are often trapped in a locally 

optimal situation, with a greater probability of 

falling into a local maximum and greater 

computational errors. Therefore, it is essential 
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to construct a new, high-precision feature 

selection method. 

Feature selection, also known as 

variable selection, is an important part of 

constructing an effective model in machine 

learning. It removes unimportant or redundant 

features and keeps the features that are 

important and helpful for training the model. 

Having fewer features can reduce the 

computation burden of model training and 

improve the classification accuracy. 

 To solve the problems mentioned 

above, this paper proposes an improved 

Lemurs optimization algorithm to strengthen 

the search for the best features. The 

improvements of the new algorithm are two-

fold: Firstly, Lévy Flight (It is a mathematical 

model used to describe movement in living 

organisms characterized by long jumps or short 

steps to balance exploration and exploitation) is 

introduced into the search process to escape 

from local minima, thus enabling a more global 

exploration for the best features. Secondly, a 

so-called chaotic Map is used to speed up the 

algorithm and achieve better solutions faster. 

 

2. Regression Models for Survival Data 

We require other forms of regression 

models because linear regression model is not a 

feasible solution given the kind of data under 

analysis. In case of dichotomous dependent 

variables that are nominal or ordinal by nature, 

logistic regression models are used. Since the 

baseline risks or survivor functions are not 

stated, PH and AFM are truly semiparametric 

models of regression analysis. But if the 

maintaining probability distributions are given, 

the accelerated models may also be parametric 

in nature [13]. 

Regression models for survival data are 

employed when conducting statistical analysis 

of data that has an observational measure made 

up of the time until an event of interest occurs. 

In survival analysis, the method can be used to 

several supplementary situations, but typical 

ones are failure, relapse, or death. For survival 

data, the Cox Proportional, Hazards model is 

accompanied by parametric survival models as 

the main types of regression models. 

Proportional hazard rate (PH) model is defined 

as follows: 

                      

                

Where       define as baseline hazard, 

            are coefficient regression of 

independent variable             . 

A parametric model is similar to the 

semi-parametric model with only one 

difference: the distribution of the survival time 

is known in the parametric model, but in the 

semi-parametric analysis, emphasis is laid on 

covariates rather than risk factors. Furthermore, 

the specification of the parametric model is in 

contrast with the other models including the 

non-parametric, and the semi-parametric since 

the former is capable of determining the 

distribution of existence by utilizing the full 

maximum likelihood in estimating the 

parameters, the use of residuals to measures the 

variation between the observed and the 

estimated survivor‟s time, as well as, generate 

clinically useful estimations from the 

recognized parameters [14, 15]. The failure 

time model with an accelerated rate is: 

                            
            

Where   is scale parameter,   is error 

term follow a specific distribution.    represent 

the failure time logarithm, it is composed of 

                  [13, 16, 17]. 

 

3. Weibull AFT 

The Weibull accelerated survival model is 

known to include an exponential base 

distribution, which is the age period hazard rate 

(APH) model. The Weibull accelerated 

survival model is used to describe the 

conditional distribution of age at death, given 

the age at which the individual becomes 

deceased. Furthermore, the Weibull accelerated 

survival model assumes a scaled Weibull 

density as the baseline hazard function, with 

hazard rate λ0(t) when the age at death equals 

failure time τ conditional on surviving beyond 

age t [18]. In particular Weibull AFT model is 

useful in performing relationship analysis 

between the variables of interest and the time 

until the event occurrence of interest utilizing 
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the Weibull distribution [17]. Due to its 

versatility in accommodating different forms of 

failure time data, and capability to provide 

various hazard functions, exponential decay 

Weibull distribution is one of the survival 

analysis functions. 

Sets the shape parameter and the scale 

parameter continue to demonstrate the 

relationship at this Weibull AFT. The one 

which is in front of it is the shape parameter 

which is assuming the constant attribute. The 

AFT model which is defined as a 

transformation of the response variable from 

logarithmic or monotone, the time of failure. 

This model is a type of real linear regression 

model  [91 ,02] . 

  The probability density function 

(P.D.F.) of Weibull with two parameters is 

defined as follows [21, 22]: 

         
(
 
 ) (

 
 )
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where               

Where and   are the scale and shape 

parameter respectively. the cumulative 

distribution function (CDF) will be [23]: 
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For the Weibull distribution, the 

survival function is provided by [24, 25]: 
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The hazard function depends on the 

value of  [18]: 

     
    

    
     (

 

 
)
   

 

But for different   we get different 

hazards for   as follows [26]: 

       Hazard is decreasing  1 t  

       Hazard is increasing t  

      Hazard is increasing 
pt  

The instantaneous failure rate, or hazard 

function, increases with time when 1  . This 

kind of things are typical for so called bathtub 

curve where failure rates are low initially and 

then they gradually increase and stabilize 

again. When, 1  , then the hazard function 

reduces over time, thus implying a declining 

failure rate. The distribution becomes the 

exponential distribution when α=1 the hazard 

function remains constant over time [27]. The 

scale parameter   whose function is to 

influence the spread or scale of such a 

distribution is another factor. The greater 

values of   mean more shrinkage in the 

horizontal direction, so obtaining shorter times. 

After analyzing the above hypothetical data 

sets, we observe that the values of   closer to 

1 stretch the distribution and hence the longer 

durations. 

Now suppose that: 

            

 Here   follow standard Gumbel distribution 

with mean=0 and variance=1. let       , 

then Eq. (3), (4), (5) and (6), will be 

respectively [17]: 
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The Weibull AFT model‟s right part of 

the equation is the linear predictor that ties the 

scale parameter        to the variables. 

The coefficients relate the variables to 

the logarithm of the survival time and, 

therefore, to the scale parameter of the Weibull 

distribution             . It may thus 

determine how each covariate affects the scale 

parameter and, therefore, scale survival time in 

exponentiating the coefficients. Weibull AFT 

models are also used often in survival analysis 

when the distribution of survival times is 

expected to follow a Weibull distribution, and 

factors that contribute to the time of an event 

are of interest. These models are useful because 
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they demonstrate how the various components 

connect as well as the rate at which an occasion 

progresses [28]. 

 

4. Lemur’s Optimization Algorithm 

Gorrok Lemurs Optimization Algorithm 

(Lemurs) is a population-based evolutionary 

strategy that was introduced by Bianchi et al. in 

2017. The main advantage of the Lemurs 

algorithm is that it can be easily adapted to 

solve complex and structured optimization 

problems, due to the functions that allow the 

exchanges and transfers of genetic information 

among the metaheuristic components 

incorporated in the Lemurs. In addition to its 

scalability and flexibility, Lemurs also 

implements a stochastic batch semantics-based 

selection method. This section conservatively 

reviews the key components of the original 

Lemurs optimization algorithm. More 

background of these components will be 

presented in the following sections regarding 

the component's composition [29]. 

Lemurs are placed among the 

prosimians and all members of this group are 

primates (Kappeler and van Schaik 2002). 

These are rodents of many types and are found 

in some countries like Madagascar and some 

parts of the country of Comoros. They are 

inhabitants of mountains, swampy, forest, rain, 

thorn and deciduous regions and forests. 

Lemurs are of kinds; the largest kind is the 

Andri. It weight can go up to 15kg. Customers 

range in weight from 7 to 10kg and length from 

60 to 90cm. The least one is the Murid of 

Madame Berthe that has a weight of 3g and 

size of 9-11 cm in length [30]. 

Lemurs are social animals that are 

predominantly gregarious and group animals 

that mostly assemble in troops where common 

sexuality is dominant. Female is also larger 

than the ring-tail lemur and their population 

totals from 6 to 30 species. Lemurs sleep a 

considerable part of each day then spend most 

of their waking time in trees. Based on the 

research, since communication in animal 

species is basically passing of information, 

there are two distinct ways the Lemurs utilize 

in their communication. They also employ 

sound by vocalizing, and by emitting chemical 

substances in form of odors. 

For the LO algorithm, we used two 

main lemur behaviors as inspiration: jump and 

dance-hup. The lemurs also leap upwards and 

sit on a branch and grabbing the trunk with 

both the limbs of the hand and the feet. It is 

possible for them to jump as far as between 10 

meters from one tree trunk to another in few 

moments. The dance-hup is performed when 

distances between trees are large; the lemurs 

travel over distances greater than one hundred 

meters two-legs and by leaping sideway with 

their arms extended, and their limbs sway from 

chest to head high, it is believed to aid balance 

[31]. 

 

5. Models and Methods 

The search process is divided into two 

phases in the population-based algorithm, as 

described in the previous section: and so, it was 

that some published essays on exploration 

versus exploitation. The dance-hup behaviour 

is used in the exploration phase of this 

framework. In contrast, the leap-up behaviour 

is favourable to LO in the sense that, through it, 

the search space is broadened. This view means 

that every solution is a lemur while every 

vector must be one of the coordinates of the 

lemur in question. We also propose the best 

position to each solution that has a relationship 

with the fitness function value of the solution. 

Thus the lemurs either update their place 

vectors and dance hup to local best neatest or 

leap up to the location of no other lemur is 

better than the global best lemur. This part 

provides provisions of LO algorithm formulas 

in Mathematics, the flowchart and steps of the 

algorithm. LO is considered one of the 

powerful population-based algorithms so, the 

lemurs set is represented in matrix form In the 

following equation itself the matrix of input 

population for the LO algorithm is defined. 
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where n denotes the matrix of the algorithm set, 

of size n×d; n represents the candidate solution 

and d the decision variable. To use the LO for 

solving an optimization problem like Feature 

selection (FS), the function of the LO 

algorithm runs into many steps: 

Step (1): Describe the following Lemurs 

parameters: N Population – the number of 

individuals in the data set.         means the 

number of iterations. d reflects the natural 

proportionality between the dimensionality of 

the space being searched and the sizes of the 

data sets. Moreover, UB is the upper-bound 

while LB is the lower bound. 

Step 2: Generate   decision variable in ith  

solution based on Eq (2): 

  
 
 (   (       ))    

where r refers to the uniform random number 

 [   ]. 
Step 3: Compute Free Risk Rate (FRR): 

          (                 ) 

Where: 

 : iteration number. 

       : iteration size. 

   : high risk rate  

   : low risk rate 

Step 4: compute the fitness value for each   
 
, 

as expressed in the following equation: 

   (  
 
)                    

where    (  
 
) is the fitness value, s denoted 

to the total of selected features, S is the 

maximum selected feature and Acc is the 

accuracy of each subset (when each subset is 

evaluated in every iteration, it is the accuracy 

score of each subset which is determined by the 

KNN classification function). 

Step 5: In order to increase the value of the 

fitness of the lemurs, we sort into two different 

procedures. Firstly, we apply the best near 

lemurs (bnl) approach which in other words 

corresponds to the identification of the 

solutions with minimal fitness value. 

According to the adopted FS objectives, bnl 

will be endowed with the best features for the 

current development iteration. Second, we 

choose the global best lemur, abbreviated as 

gbl, from all the lemurs within the population, 

which depicts the global best solution. 

Step 6: Define r1 which is a random number 

 0,1  and comparing it with FRR. Then, 

update the position for each lemur 

       

       

1

1

1

1

, , , 0.5 2

, , , 0.5 2

j

i

x i j x i j x bnl j r

r FRR
x

x i j x i j x gbl j r

r FRR

     



 

    
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 The current    lemur of    population 

is       , being the candidate solution in the     

decision variable wherein bnl represent the 

best near lemurs, the present solution in this 

iteration of the entire algorithm and       is 

the global best lemurs for the whole population 

across all iterations is described. Then it 

attempts to approach the two or more lemurs 

with less favourable fitness values in the round 

through the dance hup, as a more favourable 

fitness value. The optimization procedure is 

begin randomly to form the set of lemurs which 

influences. The FRR value is set just below the 

LRR, which means that the lemur begins 

moving and moves towards acquiring the best 

nearest one using the action „dance hup‟. Now, 

the function of LO performs this dance hup 

action in order to reduce the FRR to HRR 

value. Then it uses the leap up action to move 

the lemur closer to the global optimum solution 

Then, it uses the leap up action. This action is 

done to the last stopping condition is met, in 

other words until the last signal is detected. 

Some of the movement behaviours of lemurs 

have been illustrated as follows; Leap up and 

Dance hup shown in Fig.1. 

6. The Proposed approach 

Nonlinear chaotic maps in chaotic 

systems are important in engineering, biology, 

and economics due to such properties as 

ergodicity, mixing property, and sensitivity to 

initial conditions. In this paper, to perform the 

feature selection, we utilize Support Vector 

machines based on Statistical analysis 

technique known as LO. 

An optimisation problem with a search 

on the interval [0,1]: With regards to improving 

the LO performance, chaotic maps are 

considered in the paper. It is postulated that 
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chaotic maps perform LO to liberate solutions 

from local traps in getting a steep convergence 

of the selection of variables in the Weibull 

model. 

Next, ten chaotic maps are used to 

manipulate the random parameter values of LO 

in this paper. 

Since the initial values can affect the 

fluctuation pattern, we have normalized the 

initial point for all the chaotic maps to point 

0.7. As for the other parameters we have left 

them unchanged. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Lemurs' 

behaviour movement. 

 Any of 

the features 

could be 

declared as binary decision variables that 

denote the extent of the particular feature in the 

concept of the model [32]. It is well understood 

that for the sake of the present consideration let 

the vector that has D elements denote the entire 

feature set, The vector model is where any 

element of the vector represents the feature, 

and if this feature is selected, the number „1„ is 

assigned; if the feature is not selected, „0„ is 

assigned. Hence, the LO approach will fit into 

the continuous space which defines the feature 

selection as an optimization problem rather 

than the discrete space. Knowing this we have 

to assume that S is discrete. Therefore, the 

configuration 

of our 

suggested 

method is as follows: 

Step (1): Determine the following: Number of 

Lemur      , the randomization parameter 

      and the upper limit of iteration     . 

Step (2): The Lemur positions in the original 

LO are produced follow a continuous uniform 

distribution on interval [0,1]. The proposed 

chaotic maps utilise the maps outlined in Table 

1. 

Step (3): The fitness function is formally 

defined as: 

           *
 

 
 ∑      ̂  

  
    + …(17) 

Step (4): update of the position of Lemur 

Coordinates depends on Eq (16). 
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Step (5): Steps 3 and 4 are iterated until a 
maxt  

is reached. 

 In order to compare how accurate the 

predictions of the models using the AFT 

approach are, we adopted several of 

regularization techniques through simulation 

studies which include LO, Elastic net, Lasso, 

L1/2 and MCP [33]. The AFT model 

simulation schemes used were modelled after 

Bender‟s work. The following is how our 

simulation data were produced [34]: 

 

 

Table 1: The Description of Chaotic Maps 

Name Definition Range 

Chebyshev         (
 

 
         )  (-1,1) 

Circle         (       
   

  
           ) (0,1) 

Guass/mouse      {

     
 

         
         

 (0,1) 

Iterative         (
      

  
) (-1,1) 

Logistic                (0,1) 

Piecewise      

{
 
 
 

 
 
 
  

   
                     

      

   
               

      

   
               

    

   
                 

 (0,1) 

Sine               (0,1) 

Singer 
                              

                                   
(0,1) 

Sinusoidal                    (0,1) 
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Tent      {

  

   
                          

  

 
                    

 (0,1) 

1. Determine the correlation coefficient   and 

build an array                   ,   

          are independent following 

standard normal distribution, and set: 

       √       √  
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Start

Setup the LO parameters

Generate Lemurs Population Using Eq(2-34)

Current Iteration =number

 of iteration

Evaluate the Objective Function For All Lemurs

Calculate Free Risk rate using Eq(2-44)

Update the best nearest Lemur (gbl)

Each decision 

variable j in Lemur i?

Update the best nearest Lemur (bnl)

Each decision 

variable j in Lemur i?

Set random [0,1] to rand

Rand<Jumping

 rate?

Use Eq(2-46) case one to 

update variable j

Use Eq(2-46) case one to 

update variable i

Tr
ue

Ye
s

False

Return the Global best Lemur 

End
 

Figure 2: Lemur Flow Chart 
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2. The dependent Survival time: 

      (∑      

 

   

) 

3. Suppose that   
  follow a random 

distribution where             and   is 

the number of the censored sample. The 

number of censored data is determined by 

the censoring rate. 

4. Let             
  , Therefore, the values 

of   ,    (where    is the survival function 

of the Kaplan-Meier estimator), and    are 

considered as the observed data and are 

utilized in the AFT model. 

5. Since our simulation rely on Leukaemia 

cancer data, we define the size or scale of 

the predictor genes with        and 

there are eight non-zero of the remaining 

coefficients       ,       ,    

    ,       ,       ,         , 

        and         while the other 

992 genes are equal to zero. It is also good 

to note that   ,   ,   ,   ,   ,    ,     and 

    are significant variables in this 

analysis. The right censored (C) value is 

fixed at 10%, 20% and 40%, training 

sample size is dependent on three values as 

                the correlation 

coefficient is      . As technique of to 

optimize fidelity, a model for 

regularization regulation can be examined 

on to the 50 data sets for a training set and 

to get a prediction on the 50 data set for the 

testing set. For example, each of those 

outcomes was obtained by dividing the 200 

out-turn as the fruit of opening 200 doors. 

They are, the total number of features and 

correct number of features skewed by each 

of the explored regularization methods. 

These 200 are the results reached at the 

end of two hundred consecutive 

experiments done successively. To be 

clearer, primary outcomes mean average of 

total features and total selected features as 

well as the number of correct features are 

given in the Table (2) for the candidates of 

a beach regularization approach 

accompanied by 200 repeat tests. However, 

when the training sample size is extremely 

limited (n=50), all of the techniques were 

seen to be very laborious in the precision 

of the features that define the right genes. 

The probability of recognizing accurate 

non-zero features increases as „n‟ value 

increases. A reflective account of the 

outcomes accomplished by the LO maps is 

conducted. Moreover, the performance 

measure of the proposed system is 

compared with the current LO with all its 

parameters. In this case an assessment of 

the quality of the performance done by 

using mean-squared error (MSE) in both 

the training and testing databases coupled 

with the number of chosen variables. The 

detail on the identified themes is presented 

in the following tables 3, 4 and 5 below: 
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Table 2: A simple example 

1x  
2x  

3x   1px 
 

px  

1 0 1  1 0 

 

 

Table 3: The performance of the used methods for the train data when 100n   

Method 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

10%C   20%C   40%C   

LO 26 4.200 26 5.501 26 7.106 

Chebyshev 22 3.923 22 5.153 22 6.853 

Circle 19 3.666 19 4.766 19 6.666 

Guass 21 4.093 21 5.363 21 7.143 

Iterative 24 3.923 24 5.173 24 6.873 

Logistic 25 4.253 25 5.553 25 7.354 

Piecewise 18 3.406 18 4.536 18 6.236 

Tent 16 3.188 16 4.488 16 6.188 

Singer 12 2.984 12 3.684 12 5.384 

Sinusoidal 13 3.122 13 4.167 13 5.867 

Sine 10 2.666 10 3.866 10 5.566 

 

Table 4: Implementing the methods used to train data when 300n   

Method 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

10%C   20%C   40%C   

LO 26 3.210 26 4.183 26 2.746 

Chebyshev 22 2.973 22 3.873 22 2.509 

Circle 19 2.666 19 3.766 19 2.202 

Guass 21 2.793 21 3.693 21 2.329 
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Iterative 24 2.883 24 3.783 24 2.419 

Logistic 25 3.243 25 4.265 25 2.779 

Piecewise 18 2.476 18 3.346 18 2.012 

Tent 16 2.088 16 2.988 16 1.624 

Singer 12 1.994 12 2.894 12 1.53 

Sinusoidal 13 2.14 13 2.951 13 1.676 

Sine 10 1.776 10 2.676 10 1.312 

 

Table 5: Implementing the methods used to train data when 500n   

Method 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

No. of 

selected 

variable 

MSE 

10%C   20%C   40%C   

LO 26 2.211 26 2.911 26 3.824 

Chebyshev 22 1.974 22 2.874 22 3.09 

Circle 19 1.767 19 2.467 19 2.883 

Guass 21 1.894 21 2.994 21 3.01 

Iterative 24 1.984 24 2.684 24 3.1 

Logistic 25 2.264 25 2.964 25 3.48 

Piecewise 18 1.477 18 2.177 18 3.883 

Tent 16 1.089 16 1.789 16 2.205 

Singer 12 0.995 12 1.795 12 2.111 

Sinusoidal 13 1.191 13 1.891 13 2.267 

Sine 10 0.777 10 1.477 10 1.893 

 

Furthermore, the Sine map achieves the 

lowest Mean Squared Error (MSE) compared 

to the other chaotic maps utilized.  Compared 

to the LO, the Sine map exhibited a decrease of 

approximately 36.667%- 21.67%, 44.672%-

52.221% and 64.857%-50.496% from tables 3, 

4 and 5 respectively. 

 

7. Real Application 

For performance analysis of the 

proposed strategy, the recommendation is made 

to run the experiment on the gene‟s dataset of a 

real-world case. The content, datasets, and 

justification for this study are summarized in 

table 5. The first of them is the selection of the 

Disseminated Large B-cell Lymphoma dataset 
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(DLBCL) [35] as the source of material. In 

total, the study involves 240 samples from 

patients with lymphoma. For each patient, we 

have 7399 gene expression values and the 

corresponding survival time, which could be 

censored. The second dataset is the Dutch 

breast cancer dataset, also known by the 

abbreviation DBC, which has information on 

79 patients and thirty independent variables. 

This is a data set of the 295 treatments given to 

the breast cancer patients. The raw 

measurement for every patient consists of 4919 

gene expression values. They also obtained 

RNA-Seq signatures of the tumors of the 

patient [36]. The third class is cancer in the 

lung, abbreviated as LC. The data comprises of 

86 patients diagnosed with lung cancer. The 

expression level data of that particular gene is 

7129 and it also contain survival time for 

example alive or censored [37]. 

Akaaki's criterion (AIC)  and Bayes' 

criterion (BIC) [38] will be used as methods for 

selecting variables according to formulas [39]: 

               

                     

Where   equal to the number of explanatory 

variables. 

In the following, we will demonstrate the 

efficiency of the proposed model comparing 

Table 6: The specifics of the three utilized authentic microarray datasets 

Dataset Sample Gene Censored 

DLBCL 240 7399 102 

DBC 295 4919 207 

LC 86 7129 62 

it to AIC and BIC. The step to execute this is to 

randomly split the expressions of genes in each 

dataset into a training and an unseen dataset 

with 70% data allocated to the training dataset 

and the rest 30% allocated to the testing 

dataset. Here we use the time-dependent 

receiver-operator characteristics curves for the 

censored data in evaluating our algorithm for 

the prediction of the results in Table 6 

highlighting the fact that world application is 

the main result in real-life results. 

Table 6 shows the average of the three 

realistic datasets used and the approaches 

employed to realize them. This evidence is 

enough to infer that, given that AIC selects 

many more genes than the BIC and the LO, 

there already exist huge differences between 

the three approaches. Out of the 3 applications, 

the LO then selected the minimum number of 

genes in the ultimo subset. This is useful for 

the model performance evaluation where the 

mean AUC of both types of data is given to 

make clear distinction and to show the 
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correlation between both the training and 

testing sets. Tables 3 and 4 below show how 

they meet the objective which I defined as a 

standpoint for interval measurements and a 

perceived distance. The shown results proved 

that Sine map with accuracy levels of 97.2% 

for DLBCL, 97.6% for DRBC, and 98.1% for 

LC datasets was  

recognized as the highest precision as 

compared to map Singer with the percentage of 

95.2% for DLBCL, 97.9% for DRBC and 

98.2% for LC, Finally, the tool to quantify the 

performance, Therefore, it could be safely 

concluded that the supremacy of the multilayer 

perceptron is due to the fact that the AIC and 

BIC computed on, almost in the same manner 

as across, the datasets did not make different 

performances. If so, it should be evidenced that 

LO‟s “contribution” will be better than AIC‟s. 

 

Table 7: The AUC results for the training dataset 

 DLBCL DBC LC 

AIC 0.863 0.868 0.870 

BIC 0.871 0.884 0.951 
LO 0.910 0.912 0.930 

Logistic 0.917 0.917 0.941 

Iterative 0.901 0.911 0.942 

Chebyshev 0.907 0.928 0.947 

Guass 0.916 0.936 0.956 

Circle 0.918 0.941 0.957 

Piecewise 0.934 0.940 0.961 

Tent 0.926 0.960 0.969 

Sinusoidal 0.933 0.958 0.966 

Singer 0.948 0.971 0.978 

Sine 0.972 0.976 0.981 

 

Table 8: The AUC results for the testing dataset 

 DLBCL DBC LC 

AIC 0.725 0.774 0.780 

BIC 0.748 0.799 0.861 
LO 0.771 0.818 0.849 

Logistic 0.773 0.821 0.857 

Iterative 0.779 0.827 0.858 

Chebyshev 0.782 0.848 0.867 

Guass 0.798 0.845 0.866 

Circle 0.800 0.847 0.870 

Piecewise 0.808 0.856 0.872 

Tent 0.817 0.867 0.876 

Sinusoidal 0.869 0.871 0.897 

Singer 0.888 0.874 0.931 

Sine 0.921 0.951 0.978 
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 This was an indication that other maps; 

Sine, Singer, Sinusoidal, Tent, Piecewise, 

Circle, Gauss, Chebyshev, Iterative and 

Logistic maps were respectively accurate in 

identifying close ends with probability greater 

than 0.95 who actually had a chance of having 

cancer. 

7. Conclusion 

Censoring influences the selection 

variables of the quality biases in the Weibull 

AFT compliance models. They applied a 

Lemur optimization of algorithms with ten 

architectural styles, which could be an 

algorithm for feature selection. The results of 

simulations and real data illustrate the 

effectiveness of identical respective algorithms 

out of a swarm of LO in MSE training data. 

Furthermore, it showed an importance in this 

case that is greater than all the other factors in 

this regard. 
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