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During the past few years, the number of classification techniques has increased with 

the rapid growth of technology, which depends on machine learning. Recently, 

medical experts and doctors have widely utilized machine learning, a branch of 

artificial intelligence, to aid in predicting and diagnosing various diseases. Regarding 

health research, machine learning techniques are used extensively for data processing. 

In this study, we applied three different machine learning algorithms to a medical 

diagnosis problem and analyzed their efficiency in predicting the results. The study 

focuses on the diagnosis and factors influencing renal failure disease, using a serum 

test for both presence and absence patients. The dataset used for the study consists of 

165 cases and 13 attributes of RFD patients. The goal of this study is to find out how 

well k-nearest neighbors (KNN), decision tree (DT), and random forest (RF) 

classifiers work by looking at things like accuracy, geometric mean, kappa coefficient 

and area under the curve for RFD prediction. The experimental results show that the 

RF classifier performs better than the other classifiers. Additionally, based on the 

final fitted models, it was found that urea, albumin, and magnesium are the most 

significant factors that clearly impact patients with renal failure disease. 
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1. Introduction  

In recent years, the rising incidence of renal 

failure demanded a focused investigation of the 

illness and its influencing variables via the use 

of artificial intelligence methods, which have 

garnered significant attention recently. 

Renal failure disease (RFD), also known as 

chronic renal disease, refers to the progressive 

deterioration of kidney function. The kidneys 

filter waste and surplus fluids from the 

circulation, which are subsequently expelled as 

urine. In severe stages of chronic renal disease, 

perilous accumulations of fluid, electrolytes, 

and waste products may occur in the body[1]. 

Between 1999 and 2010, the national health 

and nutrition examination survey indicated a 

prevalence of RFD affecting 28 million 

individuals out of an estimated 200 million in 

the United States. Of these, 65.3% were 

diagnosed with RFD, with individuals suffering 

from diabetes and hypertension exhibiting 

significantly higher prevalence rates of 37% 

and 26%, respectively, in contrast to 

approximately 11% among those without these 

conditions [2]. 

 

Machine learning is a domain of computer 

sciences focused on the autonomous 

acquisition of knowledge from inputs. 

Classification is the primary issue of 

supervised machine learning. Classification 

models forecast classified labels for various 

objects [3]. The performance assessment of 

classification models often relies on the 

outcomes of training and testing datasets. A 
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training set comprises data used for developing 

a classifier, while a testing set is employed to 

evaluate the classifier's efficacy[4]. Chen et al. 

[5] used three-dimensional power Doppler 

imaging to compare logistic regression, support 

vector machines, and artificial neural networks 

for telling the difference between solid breast 

cancers that are benign and those that are 

malignant. The diagnostic performances of the 

three models (LRA, SVM, and NN) are 

indistinguishable, as shown by ROC curve 

analysis. In 2012, Koh and Jyoti [6] 

demonstrated cardiac disease prediction with 

three data mining techniques: neural networks, 

decision trees, and naive bayes. They found 

that neural networks with 15 characteristics 

outperformed two other methods, leading to 

their designation as the prediction model. Abid 

Sarwar et al. [7] evaluated the accuracy of the 

Naïve Bayes, artificial neural network, and 

KNN algorithms for type II diabetes. Type II 

diabetes is a disorder characterized by the 

pancreas's inability to create sufficient insulin 

or the cells' incapacity to use the produced 

insulin, resulting in abnormal blood glucose 

levels. The findings indicated that the neural 

network, with a prediction accuracy of 96%, 

outperformed Naïve Bayes at 95% and KNN at 

91%. George et al. [8] introduced a diagnostic 

method for breast cancer using several machine 

learning techniques, including support vector 

machines and neural networks, reporting 

accuracy rates between 76% and 94% on a 

dataset of 92 pictures. 

The primary objective of this study is to use 

three supervised machine learning algorithms 

to classify and diagnose renal failure illness 

among two patient groups (presence and 

absence) in order to determine the most 

effective classifier based on various 

performance assessment criteria. The research 

also investigated the main variables influencing 

renal failure disease. 

2. Methodology  

2.1 K-Nearest Neighbors (KNN) Classifier 

    The k-Nearest Neighbor (k-NN) algorithm 

operates based on the principle of similarity 

between a new data point and a set of stored 

data points, referred to as training points. The 

primary objective of this algorithm is to 

classify the new test point into the class that is 

most similar among the available classes. 

      The k-NN algorithm is non-parametric, 

which means it does not make any 

assumptions about the underlying data 

distribution. It is often referred to as a "lazy 

learning" algorithm because it does not 

undergo a traditional training process; instead, 

it retains the training dataset in its entirety for 

future use [9]. 

When it comes to classifying a new dataset 

(test data), the k-NN algorithm evaluates the 

distance between the new point and the stored 

training points. The parameter 𝑘denotes the 

number of nearest neighbors to consider in the 

classification process. The Euclidean distance 

is typically employed to quantify the distance 

between the new point and each of the training 

points[10]. 

Once the distances are calculated, the 

algorithm identifies the k nearest neighbors of 

the new point. The classification of the new 

point is then determined by the class that has 

the highest frequency among these neighbors. 

This process leverages the Euclidean distance 

function Di to effectively locate the closest 

neighbors within the feature vector space. 

    √(      )  (       )        (1) 

where x1, x2, y1, and y2 are variables for input 

data [9]. 

2.2 Decision Tree (DT) Classifier 

Decision trees are a popular machine 

learning algorithm used for both classification 

and regression tasks. They mimic human 

decision-making by creating a model of 

decisions and their possible consequences, 

including chance event outcomes, resource 

costs, and utility. In the context of machine 

learning, decision trees learn from data, 

building a model that can make predictions 

about new data [11].    
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2.2.1 How Decision Trees Work 

A decision tree is a tree-like model of 

decisions and their possible consequences, 

including chance event outcomes, resource 

costs, and utility. Each node in the tree 

represents a test on an attribute (e.g., Is age > 

25?), and each branch represents the outcome 

of the test (e.g., yes or no). The leaf nodes of 

the tree represent the class labels (in 

classification) or the predicted value (in 

regression)[11].    

2.2.2 The process of building a decision tree 

typically involves[12]: 

1. Selecting the root node: This is the first 

attribute that is tested. 

2. Splitting the data: The data is split into 

subsets based on the outcome of the test 

at the current node. 

3. Creating child nodes: A child node is 

created for each branch of the tree. 

4. Repeating steps 2 and 3: The process is 

repeated for each child node until a 

stopping criterion is met, such as a 

maximum depth of the tree or a 

minimum number of samples in a leaf 

node. 

2.2.3 Key Concepts 

 Information Gain: This measures the 

decrease in entropy (uncertainty) after a 

dataset is split on an attribute. It’s 

commonly used to select the best 

attribute for splitting at each node. 

 Gini Impurity: Another measure of 

impurity used in decision tree 

algorithms. It calculates the probability 

of incorrectly classifying a randomly 

chosen element if it were randomly 

[12]. labeled according to the 

distribution of the class labels in the 

subset.    

 Pruning: This process removes 

branches from a tree in order to reduce 

overfitting [14]. 

2.2.4 Mathematical Formulation 

While decision trees are often visualized as 

trees, the underlying mathematical formulation 

involves concepts from information theory and 

probability. The core idea is to find the best 

split at each node that maximizes information 

gain or minimizes impurity[14]. 

2.2.4.1Information Gain[13]: 

Information Gain (S, A) = Entropy(S) - ∑ 

|SV| / |S| * Entropy (SV)                            (2) 

where: 

 S is the set of examples 

 A is an attribute 

 SV is the subset of S for which attribute 

A has value v 

 Entropy(S) is the entropy of the set S 

2.2.4.2 Gini Impurity: 

Gini(S) = ∑p(i)(1-p(i)) 

where p(i) is the probability of class i in the 

dataset S [11] . 

2.3 Random Forest (RF) 

Random Forests (RF) exemplify the power 

of ensemble learning, a statistical technique 

that combines multiple models to improve 

predictive performance. In the context of RF, 

numerous decision trees are aggregated to form 

a robust and accurate predictive model [13]. 

Mathematically, the prediction of an RF 

model, denoted as RF(x), for a given input x 

can be expressed as: 

RF(x) = (1/B) * Σ (Tb (x; Θb))             (3)  

from b=1 to B 

 RF(x): The predicted output of the RF 

model for input x. 
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 Tb (x; Θb): The prediction of the bth 

decision tree for input x, where Θb 

represents the random parameters 

associated with that tree. 

 B: The total number of trees in the 

forest. 

The random nature of Θb ensures diversity 

among the trees, preventing overfitting and 

improving generalization. This concept aligns 

with the Law of Large Numbers, a fundamental 

statistical principle stating that the average of a 

large number of independent and identically 

distributed random variables converges to the 

expected value. In the case of RF, as the 

number of trees increases, the average 

prediction tends to become more accurate and 

stable [14].    

By leveraging the collective wisdom of 

multiple decision trees, RF models offer 

several advantages [10]: 

1.Reduced Overfitting: The ensemble nature of 

RF mitigates the risk of overfitting, a common 

issue in machine learning models. 

2. Improved Accuracy: By combining multiple 

models, RF often achieves higher predictive 

accuracy compared to individual decision trees. 

3.Robustness to Noise: RF is relatively 

insensitive to noisy data, as the ensemble 

nature helps to average out the impact of 

outliers. 

4.Feature Importance: RF can provide insights 

into the relative importance of different 

features in the data. 

2.4 Performance Evaluation 

This section of the manuscript presents a 

discussion on various methods for assessing the 

performance of KNN, DT, and RF. 

1. Accuracy 

Accuracy quantifies the efficacy of our model. 

The expectation is that it will approximate 1, if 

our model is functioning well. 

 

Accuracy =    (TP+TN)/N                      (5) 

Whereas: - TN: The quantity of samples 

identified as negative (lacking the 

characteristic) is indeed negative.  

TP: The quantity of samples identified as 

positive (exhibiting the feature) is indeed 

positive.  

N: Aggregate quantity of samples. [15]  

2.Geometric Mean 

The joint performance was evaluated by 

utilizing the Geometric Mean of sensitivity and 

specificity [16]. 

       √Sensitivity   Specificity     

3.Cohen's Kappa Coefficient 

Cohen's Kappa, sometimes referred to as 

Kappa, serves as a metric for assessing the 

agreement between two persons when they use 

two binary variables to evaluate the same 

phenomenon. Kappa quantifies the proportion 

of data values located in the principal diagonal 

of the table and then calibrates these values for 

the level of concordance that might be 

anticipated only by chance.  

To calculate Kappa, one must first determine 

the observed degree of agreement. 

   
     

 
                                                    (6) 

This value needs to be compared to the value 

that you would expect if the two raters were 

totally independent: 

   (
(     )

 
 
(     )

 
)  (

(     )

 
 

(     )

 
)                                                             (7) 

Then, the value of Kappa is defined as: 

  
     

    
                                                      (8) 

The highest value for kappa is achieved when 

the observed level of agreement is 1, resulting 

in the numerator being equal to the 

denominator. As the observed probability of 

agreement declines, the numerator declines. 

Kappa can indeed be negative, although such 

occurrences are relatively rare.  

The following explanations demonstrate 

Kappa's values along with the corresponding 

estimates for each explanation:  

  Poor agreement = Less than 0.20 

 Fair agreement = 0.20 to 0.40 
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 Moderate agreement = 0.40 to 0.60 

 Good agreement = 0.60 to 0.80 

 Very good agreement = 0.80 to 1.00 

[17][18]. 

4.   The Area under curve (ROC curve) 

AUC is defined as an indicator of the 

classifier's overall performance over all 

potential threshold levels.  

When the probability distributions for both 

detection and mistaken alarms are established, 

one may generate a ROC curve by graphing the 

cumulative distribution. The area under the 

probability curve from (-∞ to +∞), often 

represented as the area under the ROC curve, 

serves as a metric for assessing the quality of 

probability classification. The area under the 

curve using the following formula: [19][20].  

     ∫
  

 
 
  

 
 

 

  
∫        
 

 

 

 
        (9)                                                                

3. Results and discussion 

The dataset comprises 165 individuals and 

includes 14 variables, of which 13 are 

independent variables and one is a dependent 

variable indicating the presence (1) or absence 

(0) of renal failure disease (RFD) based on 

serum blood tests. The real data was obtained 

from the center of artificial kidney at Abn-Sina 

Teaching Hospital in Mosul city. There are no 

missing values in this dataset.  

The analyzed samples include 75 people 

without RFD and 90 patients with RFD, with 

ages ranging from 15 to 85 years. 

 Table 1 presents a description of the data 

analyzed in this study. 

 
Table (1): Description of the study variables 

No. Variables( Name , and Type) 

1. Class(y) 1 presence of    RFD. 

0 absence of RFD. Categorical 

2. Sex(x1) 1 male. , 2 female. categorical 

3. Age(x2) numerical. 

4. Smoking(x3) 1 smoked, 2 non smoked. 

Categorical 

5. Urea(x4) numerical. 

6. Protein(x5) numerical. 

7. Albumin(x6) numerical. 

8. Clubin(x7) numerical. 

9. Sodium NA(x8) numerical. 

10. Potassium K(x9) numerical. 

11. Calcium CA(x10) numerical. 

12.  Zinc ZN(x11) numerical. 

No. Variables( Name , and Type) 

13. Cupper CU(x12) numerical. 

14. Magnesium MG(x13) numerical. 

 

The dataset is divided into two groups: the 

training dataset, comprising 70% (116 patients) 

of the samples, and the testing dataset, 

consisting of the remaining 30% (49 patients). 

To compare adjusters and mitigate the impact 

of data fragmentation, all employed 

classification methods are assessed based on 

their classification performance metrics 

through 10-fold cross-validation, averaged over 

10 partitions. All implementations of the study 

on real data applications are conducted using 

R. 

3.1 Performance Evaluation of Models Applied 

and Comparison 

 

     After partitioning the data into two 

categories (training and testing), we 

implemented the first model, which is the KNN 

model. 

       Table (2) presents the assessment criteria 

for the K-nearest neighbors model applied to 

the training and testing datasets. 
 Table (2): Performance of KNN Model 

Criteria Training 

Dataset  

Testing 

Dataset 

Accuracy  96.4% 95.9% 

G-mean 95.1% 94.86% 

Kappa 

Coefficient 

93% 91.68% 

    Table 2 indicates that the KNN model 

exhibits an accuracy of 96.4% on the training 

dataset; however, this value declines to 95.9% 

on the testing dataset. Additionally, the G-

mean values exceed 90%, recorded at 95.1% 

and 94.86% for the training and testing 

datasets, respectively, concerning RFD 

patients. Additionally, the model's coherence is 

commendable, as evidenced by the Kappa 

coefficient, which shows values of 93% and 

91.68%, respectively. 

The Receiver Operator Characteristic (ROC) is 

an additional tool utilized for measuring model 

performance. The model's accuracy is assessed 

through the area under the curve metric. The 

value of the Area Under the Curve (AUC) for 

the Receiver Operating Characteristic (ROC) 
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of the testing dataset for the KNN model is 

0.971, as illustrated in Figure 1. 

 
Figure (1) (ROC) curve of Testing dataset for KNN 

 

The ROC curve is presented with sensitivity on 

the y-axis and specificity on the x-axis.Figure 1 

indicates that the area under the curve value is 

97.1%. The ROC is a statistic used to assess 

the efficacy of classifiers. 

Table (3) presents the assessment criteria for 

the decision tree model applied to the training 

and testing datasets. 
  

Table (3): Performance of DT Model 

Criteria Training 

Dataset  

Testing 

Dataset 

Accuracy  96.5% 93.88% 

G-mean 95.97% 93.48% 

Kappa 

Coefficient 

93.03% 87.68% 

 

Table 3 demonstrates that the DT model 

achieves an accuracy of 96.5% on the training 

dataset, although this figure decreases to 

93.88% on the testing dataset. The G-mean 

values surpass 90%, measured at 95.97% for 

the training dataset and 93.48% for the testing 

dataset, pertaining to RFD patients. The 

model's coherence is notable, shown by the 

Kappa coefficient values of 93.03% and 

87.68%, respectively. 

The area under the curve (AUC) for the ROC 

of the testing dataset is 0.9411, as illustrated in 

Figure 2.  

 
Figure (2) (ROC) curve of Testing dataset for DT 

Figure (2) illustrates the ROC curve, with an 

area under the curve of 94%. 

Table (4) delineates the evaluation criteria for 

the random forest model used on the training 

and testing datasets.  
Table (4): Performance of RF Model 

Criteria Training 

Dataset  

Testing 

Dataset 

Accuracy  100% 97% 

G-mean 100% 94.91% 

Kappa 

Coefficient 

100% 91.8% 

Table 4 highlights that the random forest model 

successfully classified all 116 cases without 

any mistakes. The model exhibits an Accuracy 

of 100%, indicating that all other metrics, 

including G-mean and kappa coefficient, will 

also equal 100%. The prior findings indicate 

that the RF models have attained exceptional 

performance on the training dataset. 

Conversely, we observed that all metrics 

(Accuracy, G-mean, and kappa coefficient) 

have declined in the testing dataset compared 

to the training dataset, with values of 97%, 

94.91%, and 91.8%, respectively. The Area 

under the Curve (AUC) of the ROC for the 

testing dataset is 1, as seen in Figure 3.  

 
Figure (3) (ROC) curve of Testing dataset for RF 
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Figure (3) illustrates the ROC curve, with an 

area under the curve of 100%. 

Finally, we examined the comparison of three 

classification models (KNN, DT, and RF) 

based on the metrics of model accuracy, G-

mean, Kappa coefficient, and area under the 

ROC curve.  

Table 5 presents a comparison just for the 

testing dataset. The optimal classifier is 

determined by the testing dataset. 

 
Table (5): Performance Evaluation Criteria between 

Models 

Model K-nearest 

neighbors 

Decisions 

tree 

Random 

forest 

Accuracy  95.9% 93.88% 97% 

  G-mean 94.86% 93.48% 94.91% 

   Kappa 

Coefficient 
91.68% 87.68% 91.8% 

(AUC)ROC 97.1% 94.1% 100% 

Table 5 highlights that the accuracy of KNN 

was 95.9%. The performance of the approach 

decreased while using the DT model, which 

achieved an accuracy of 93.88%, whereas the 

RF method attained an accuracy of 97%. This 

suggests a preference for RF due to its 

precision; the more precise the approach, the 

more superior it is considered. The G-mean 

criteria for KNN was 94.86 percent. The DT 

model yielded a value of 93.48, but the 

geometric mean criteria for the RF approach 

was 94.91%. This promotes the RF based on 

the G-mean criteria. Furthermore, the Kappa 

coefficient for the RF approach was the 

highest, at 91.8%, indicating a superior level of 

agreement compared to other methods.On the 

other hand,The area under the curve (ROC) for 

the KNN was 97.1%. The model's performance 

decreased to 94.1% when utilizing the decision 

tree (DT), whereas the area under the curve 

(ROC) for random forest (RF) models reached 

100%. A higher value of the area under the 

curve (ROC) indicates superior performance.  

3.SIGNIFICANT VARIABLES   

INFLUENCING RFD PATIENTS 

Upon assessing and identifying the ideal 

solution using the RF model, it was essential to 

ascertain the most significant variables 

influencing RFD patients in our research. 

Utilizing the VarImp function inside the caret 

package to assess variable significance for the 

ROC curve in the machine learning models. 

Table 6 illustrates the relevance of the 

independent variables in the KNN model. 
Table (6): Variables Importance for KNN 

ROC curve variable importance 
                      

          Importance 
urea      100.0000 
albumin    83.5859 
mg         74.6533 
k          72.7507 
protein    58.3360 
ca         32.6024 
na         30.4418 
age        24.8952 
zn         15.9303 
cu         13.8987 
smoking     1.6769 
clubin      0.4837 
sex         0.0000 
 

Table 6 indicates that the factors of urea, 

albumin, and magnesium had the most 

significant impact on the KNN model, with 

respective influences of 100%, 83.5%, and 

75%, compared to other independent variables. 

Figure 4 shows the importance of variables for 

KNN Model. 

Figure (4) Importance Variables of KNN model 

Conversely, using Garson's technique to assess 

relative variable relevance revealed significant 

variables for the Decision Tree and Random 

Forest models, as shown in Tables 7 and 8. 
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Table (7): Variables Importance for DT 

Overall  

albumin 36.63052 

k          19.94836 

mg       30.61771 

protein 14.50000 

urea    49.88510 

sex        0.00000 

age        0.00000 

smoking  0.00000 

clubin   0.00000 

na         0.00000 

ca         0.00000 

zn         0.00000 

cu         0.00000 

 

Table (8): Variables Importance for RF 

         Overall      

sex            0.6749094   

age            7.9085772   

smoking   0.5321570   

urea       27.9977939  

protein      5.7392805   

albumin 12.2887285  

clubin       3.5358083   

na             7.0830485   

k             11.1262586  

ca             3.6614641   

zn             0.7278021   

cu            2.9394394   

mg         11.2872162  

 

 

Tables 7 and 8 indicate that urea, albumin, and 

magnesium are the variables with the highest 

importance and contribution in patients with 

chronic renal failure. 

Figures 5 and 6 illustrate the importance of the 

above variables. 

 

Figure (5) Importance Variables of DT model 

 

Figure (6) Importance Variables of RF model 

4. Conclusions  

      Renal failure disease holds significant 

importance due to its potential to cause 

mortality and health crises in the community. 

In addition, since RFD is one of the illnesses 

that has been on the rise in prevalence over the 

last several years, this research was successful 

in establishing that the RF method is the most 

effective approach for classifying and 

diagnosing RFD patients. Utilizing the three 

approaches (KNN, DT, and RF), we came to 

the conclusion that urea, albumin, and 

magnesium are the most effective and 

significant variables. This was our conclusion 

after finding that the factors had the greatest 

impact on chronic renal failure data. 
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