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This study aims to estimate the parameters of fuzzy regression for panel data using a 

fixed regression model. To achieve greater accuracy in estimation, an approach is 

proposed that combines two estimation methods, leveraging the advantages of both 

probabilistic and traditional methods. The fixed regression model provides an 

integrated framework for analyzing cross-sectional and temporal data, contributing to 

a comprehensive analysis of panel data. This approach was applied to water pollution 

data of the Euphrates River using the fuzzy fixed regression model. The root mean 

square error (RMSE) criterion was used to compare different estimation methods. The 

results showed that the proposed methods generally outperformed the estimation 

methods, and gave better performance than probabilistic and traditional estimation 

methods. This study presents a new application for panel data using fuzzy regression, 

highlighting the benefit of combining traditional and probabilistic methods to achieve 

better estimations. 
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1. Introduction 

Panel data combines cross-sectional and time 

series data. It can be defined as a set of t time 

series and cross-sectional data sets. In this 

context, observations at the cross-sectional 

level i represent cross-sectional data, while 

observations over a specified period j represent 

time series data. Alternatively, panel data can 

be defined as data obtained from m repeated 

observations of a phenomenon across N cross-

sections during a specified time series. This 

allows the phenomenon under study to vary at 

two levels: horizontally across time and 

vertically across different cross-sections. It 

should be noted that most researchers use the 

terms “longitudinal data” and “panel data” 

interchangeably to refer to the same concept, 

without any difference in definition, meaning, 

or content. However, a few researchers 

distinguish between two types of panel data: 

“panel data,” which refers to data with a large 

number of cross-sections and a short time 

period, and “cross-section-time series data,” 

which includes a relatively smaller number of 

cross-sections and a reasonable length of time 

period. 

 There are many phenomena whose data are 

ambiguous, meaning that their value cannot be 

determined by a single value, and this data is 

represented by estimating a model that 

describes them and estimating their parameters, 

especially when the inputs are not ambiguous 

and the outputs and parameters are fuzzy, 

including panel data whose data contain 

ambiguity and fuzziness, and therefore the idea 

of this research resulted in estimating panel 
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data when the data of the dependent variable 

and parameters are fuzzy and the independent 

variable is accurate. Recently, fuzzy regression 

has not been sufficiently studied in the context 

of longitudinal data, although both topics are of 

great importance in different research fields. 

Fuzzy regression is an effective tool for 

handling uncertain or imprecise data, 

contributing to the development of more 

flexible models for data processing. panel data 

is a type of data that collects observations more 

different time periods for the same bodies, 

which provides deep insights into the 

development of variables over time. This study 

will review in-depth literature reviews on both 

fuzzy regression and panel data separately, 

with the aim of determine the theoretical 

foundations of each, and stressing potential 

overlaps. This contains reviewing the different 

applications of fuzzy regression and how it is 

used to address uncertainty in data, in addition 

to reviewing the approaches used with panel 

data and the importance of their integrated with 

more inclusiveanalytical models such as fuzzy 

regression. 

[1] shows a fuzzy linear regression model with 

least absolute value based on two estimators 

with least absolute deviation (LAD). The 

model is determined to have crisp inputs, fuzzy 

outputs, and fuzzy parameters, processing the 

main challenges in fuzzy regression analysis. A 

new distance measure for triangular fuzzy 

numbers is proposed, which enhances the 

evaluation of differences between fuzzy 

variables. In addition, the study uses a 

similarity measure for triangular fuzzy 

numbers to evaluate the fit between observed 

and estimated values. Through three examples, 

the proposed model shows superior 

performance compared to existing fuzzy 

regression models based on the least squares 

(LS) method. The robustness of the model is 

evaluated, highlighting its ability to handle 

outliers effectively, and its application to 

datasets with missing values illustrates its 

reliability and adaptability in real world. 

[2] in his study introduced a new approach to 

solve the fuzzy linear regression problem using 

crisp input and fuzzy output data, focusing on 

overcome some drawbacks of probabilistic 

methods and classic least squares methods. 

Probabilistic methods focus on the embedding 

feature, while least squares methods focusing 

on the central tendency. Therefore, Wang 

suggests a new fuzzy linear regression method 

based on approximate Bayesian computation 

(ABC), which is an alternative to classical 

methods in optimization the fuzzy regression 

model. The method uses the likelihood-free 

inference algorithm ABC to generate samples 

of unknown model parameters from the 

Bayesian posterior distribution, which can 

solution to overcome the harder of determining 

the likelihood function in the fuzzy 

environment.  

In a study conducted by [3], the pollution of the 

Tigris River water in Baghdad was studied due 

to the presence of organic and inorganic 

materials that spoil the water quality, which 

negatively affects human health. The data 

represent the number of people infected with 

amoeba disease in both sides of Karkh and 

Rusafa as a dependent variable (Y) over the 

year 2018 at a monthly rate (12 months). The 

study relied on seven concentrations of 

pollutants as explanatory variables (Xi), which 

represent cross-sectional data for ten stations 

located on the banks of the Tigris River. Due to 

the use of temporal and cross-sectional data, 

longitudinal data models (Panel Data) were 

applied using parametric and non-parametric 

longitudinal models, with non-parametric 

estimators including the weighted and 

unweighted Nadaria-Watson estimator. The 

goal was to determine which of the estimators 

is the most efficient and gives the best model 

for predicting the number of recorded 

infections.  

In [4] introduced dissertation, he discussed 

address the issue of selecting the most 

appropriate panel data model for studying and 

analyzing the value of industrial production 

and some of the influencing factors. The 

selection of the model involved determining 

the nature of the panel data used, relying on the 

Lagrange Multiplier Test, the Hausman Test, 

and comparisons between the estimated 

nonparametric models using the Nadaraya-

Watson method, the Profile Least Squares 

method, and the Speckman method. 



 

 

Ahmed mutlag abdulateef, Emad Hazim Aboudi
 
/ Iraqi Statisticians Journal / Vol. 2, no.1, 2025: 163-176 

165 

 

In the study of [5], fuzzy panel data analysis 

(FPDA) was show as a method to overcome 

some limitations of classical panel data 

analysis (PDA). Classical panel data requires 

statistical assumptions such as homogeneity, 

autocorrelation, and stationarity, which are 

often difficult to satisfy in practical 

applications. FPDA suggests to estimate the 

regression parameters of panel  data using 

triangular fuzzy numbers, which helps to 

address these restrictions. To evaluation the 

efficiency of FPDA, it was apply with PDA to 

GDP data of five-country groups for the period 

2005-2013. The best of the two models was 

compared using the criteria of mean absolute 

error (MAPE), root mean square error (RMSE), 

and (VAF). The results shown that FPDA is an 

effective and practical method especially in 

cases where the required statistical assumptions 

are not met. 

In the study of [6], the problem of 

multicollinearity in fuzzy models that makes 

the fuzzy least squares estimator (FLSE) 

unsuitable for estimating a fuzzy regression 

model is addressed. The study relied on the 

fuzzy bridge regression (FBRE) method using 

triangular fuzzy numbers to overcome this 

problem, with the use of the (VIF) to detection 

multicollinearity when the crisp inputs and 

outputs and parameters are fuzzy. The results 

shown the better of the fuzzy bridge regression 

model in reduce the (MSE) through simulation 

experiments, indicate the efficiency of this 

model in provide accurate estimates under 

multicollinearity. 

2. Methodology  

2.1 Panel Data Models:  

When Panel Data (panel data) combines the 

spatial or cross-sectional dimension and the 

temporal dimension, it combines the positive 

and negative aspects of these two dimensions. 

In addition to the problems that panel data can 

suffer from, such as the problem of 

heterogeneity of variance, the problem of error 

correlation, data instability, and 

characterization problems, there are resulting 

difficulties. The combination of these two 

dimensions consists of describing and 

clarifying the coefficients of the cross-sectional 

dimension, that is, whether the components of 

these coefficients have fixed or random effects. 

On this basis, these models were divided into 

three types to allow the analysis of this type of 

data into three sections.[7] [8] 

2.2 Pooled Regression Model (PRM) 

It is considered one of the simplest types of 

panel data models in which the regression 

coefficients are constant for all cross-sectional 

units over time, the aggregate panel data model 

differs from the multiple regression model 

because it neglects the effect of time, and is 

written according to the following formula: 

           ∑              

 

   

         

It represents: 

    : the value of the depended variable in the 

unit of section (i) at the time interval (t). 

      : the explanatory variables of the section 

(i) at the time interval (t). 

    : represent The intercept parameter. 

    : The vector represents the unknown 

regression coefficients. 

    : represents the random error vector in the 

unit of section (i) at the time interval (t) with a 

mean of zero and variance    
  Uit∼N(0,σ2). 

2.3 Fixed Effects Regression Model ( 

FEM)  

It is also known as the Covariance Analysis 

Model and assumes that the effects model (   ) 

vary among fixed cross-sectional units. The 

intercept parameter remains constant across 

time periods, meaning that the value of the 

segment parameter does not change over time 

while the slope coefficients (   ) constant. This 

model assumes homogeneity in error variance 

for all cross-sections (observations) and 

assumes no autocorrelation within a specific 

time period between cross-sectional units. It is 

expressed by the following formula:[7] 

            ∑              

 

   

        

B0i is a fixed effect specific to each cross-

sectional unit i, and it is estimated using 

dummy variables or within-group 

transformations. 

2.4 Random Effected Model (REM) 
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In the random effects model, the intercept 

parameter (  ) changes randomly, and it is 

assumed either non-homogeneity of the error 

variance between the cross-sectional 

observations or the existence of an 

autocorrelation over time between the cross-

sectional observations in a specific period of 

time. It is called the error components model or 

the composite error model because it contains 

two error components (Error)           
, 

assumed that each a cross-sectional unit within 

the temporal effect is a condition that differs 

from the rest of the cross-sectional units, so the 

error components are combined, that is, 

between the difference within each cross-

sectional unit across time periods in addition to 

the difference between the cross-sectional units 

, which can be formulated as follows: [9] 

           ∑              
 
            

Where            
 represents the 

compound error. 

2.5 Estimate Fixed Effects Regression Model 

( FERM)  

            ∑              

 

   

         

(i=1,2 … , N) (t=1,2 … , T) (k=1,2 … , K). 

(               ) represents the constant 

term for the cross section (i), (  ) the average 

constant term, and (  ) represents the effect 

resulting from deleting the time-invariant 

cross-section variables. In other words, (  ) 

represents a component that is constant over 

time and variable from one cross section to 

another (spatial effect). 

Therefore, the model ( 4 ) It can be expressed 

as follows: 

               ∑               

 

   

         

 under the assumption that (   ) are fixed 

parameters to be estimated with regression 

parameters (  ) and (   
     

 ) and that 

(   ) are independent random variables 

distributed by         and   
    . This 

model is known as It is a deaf variable model 

and can be written as follows: [10] 

       ∑      

 

   

  ∑               

 

   

         

Where is (   ) represents the dummy variables 

and takes values equal to zero or one, noting 

that: 

    (
               
              

 

The general form of the model is written as 

follows: [11] [10] 

[

  

  

 
  

]  [

        

        

     
        

]

[
 
 
 
 
   

   

   

  ]
 
 
 
 

 [

  

  

 
  

] 

More briefly, the above model can be rewritten 

after using the direct multiplication method As 

follows (Kronecker product): [10] 

    [         ] [
   

  
]            

Where         . 

 Since: 

      : The matrix of dummy variables of 

the order (NT*N). 

   : represents the unit matrix of the order 

(N*N). 

 (         ) represents the matrix of 

independent variables excluding the constant 

term, and it is of the order NT*(N+K) and it is 

called the information matrix.  

Under these assumptions, the ordinary least 

squares estimators with denominator variables 

(fixed effects model) will take the following 

form: [12] 

       

  [              ]
                 

  [∑           

 

   

]

  

 ∑          

 

   

         

As       refers to the estimator of the 

regression coefficients for the deaf variable 

model, or it is directed to the estimates of the 

parameters of the fixed effects regression 

model, while the estimates of the parameters of 

the fixed terms (bar) are calculated from the 

formula: 

         ̅    ̅             
   i= 1,2,…,N 
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The above estimates have the property of the 

best linear unbiased estimate(BLUE) with a 

variance and covariance matrix: 

               

   
 [

              

                
]
  

          

Hence, the unbiased estimator of the variance 

  
  is calculated as follows: 

  
  

   

        
 

Where: 

      [         ] [
   

  
]

  [      ] 
 [      ]             

2.6 Fuzzy Numbers 

  The fuzzy number   ̃ is characterized as a 

fuzzy set on the real number line R , subject to 

the following conditions:: [13]  

(i)   ̃ is a normal and convex fuzzy set, 

(ii) Its membership function   ̃is upper 

semicontinuous, 

(iii) The α-level set   ̃ is bounded for each α 
∈[0; 1]. 

2.7 LR-type fuzzy number and cross-

sectional notation 

 One of the most commonly used fuzzy 

numbers in the literature is the LR-type fuzzy 

numbers proposed by Dubois and Prade 

(1980). In fuzzy numbers of type LR, L(x) and 

R(x) are characteristic functions that show the 

left and right parts of the fuzzy number, 

respectively ([14]). The membership function 

for a fuzzy number of LR type denoted by A, 

              ̃    
 {

 (
   

 
)     

 (
   

 
)        

          

  ̃    
 the membership function of the fuzzy 

number A, which represents the degree of 

membership. The fuzzy set is flat between the 

outputs of the function, where   (left) and   

(right) represent two forms of a function, either 

Triangular or Trapezoidal, as described by 

([15]). 

2.8 Triangular fuzzy number 

 Triangular fuzzy numbers are usually 

expressed as A= ( a, b, c). An example 

representation of triangular fuzzy numbers, 

which is one of the most commonly used fuzzy 

numbers.[16] 

The Triangular function can be represented in 

the following formula: 

   ̃    

 

{
 
 

 
 

 

     

     
                                                                                

        
     

     
                                                                           

 

Here,   is defined as the peak (center) of the 

triangular fuzzy number, a and c, respectively, 

as the lower and upper boundary values. In 

order for the triangular fuzzy number to be 

symmetrical, the left and right spreads must be 

of equal magnitude, that is, the values a and c 

must be equidistant from the center value. 

 

Figure 1. Triangular membership function 

2.9 Fuzzy Linear Regression (FLR) 

    The inception of the concept of Fuzzy sets is 

attributed to L.A. Zadeh in 1965 to manipulate 

the probabilistic and uncertainty of data and 

information  

The linear fuzzy regression model estimates the 

significant relationship between the response 

variable and the independent variables in a 

fuzzy with a linear function. [17]. 

Uncertainty in fuzzy regression, if the 

relationship between the independent variables 

and the dependent variable is fuzzy or if the 

data themselves are fuzzy, leads to the 

following types of fuzzy regression. [18] [19] 

1- Crisp input and fuzzy output with fuzzy 

coefficients.(CIFO) 
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 ̃   (   ̃)    ̃     ̃       ̃       

 ̃      ̃                   

 2- Fuzzy input and fuzzy output with crisp 

coefficients. (FIFO) 

 ̃   ( ̃  ̃)           ̃        ̃    

   ̃    ̃                    

3- Fuzzy input and fuzzy output with fuzzy 

coefficients. (FIFO) 

 ̃   ( ̃  ̃)    ̃     ̃  ̃     ̃   ̃    

 ̃  ̃    ̃                    

This research will adopt Fuzzy Model 1, where 

the inputs are crisp, and the outputs and 

parameters are fuzzy (CIFO). This model was 

chosen due to the nature of water pollution 

data, where outputs are often vague language 

expressions describing water quality or 

pollution levels, while inputs such as pH, and 

other physical and chemical factors are precise, 

measurable values. 

 ̃   (   ̃)    ̃     ̃       ̃       

 ̃       ̃                            

 ̃: Fuzzy parameters model. 

   ̃: Fuzzy dependent variable,            : 

Crisp independent variables.             

 ̃                       
The most widely known and used methods for 

estimate parameter fuzzy regression are: 

1. Possibilistic regression. 

2. Fuzzy Least Squares Method. 

2.10 Fuzzy Fixed Effect  Panel Data Model  
we introduce and develop a statistical 

regression model We will develop Fuzzy Fixed 

Effect Panel Data (FFEPD) Model Based on a 

above section Fixed Effect Linear Regression 

(FELR), according to the following:  

 ̃       ̃    ∑  ̃           ̃  

 

   

          

Where   as the fuzzy addition operator, Then 

(FFELR) model can be rewritten as: 

 ̂̃  ∑   

 

   

 ̃  ∑  ̃    

 

   

          

 ̂̃ :A vector with rank (T*1) of observations of 

the fuzzy dependent variable for the cross 

section (i). 

    :matrix of dummy variables with order 

(N*T)*N representing fixed effects. 

 ̃  :represents fuzzy intercepts specific to each 

cross-sectional unit. the constant term 

parameter of the fuzzy regression model for 

cross section (i).  

    : ordered matrix (T*k) of observations of 

explanatory variables for cross-section (i). 

 ̃ : a vector rank (k*1) of fuzzy regression 

parameters for the cross section (i). 

 It is possible to write the above equation in 

using matrices as follows: 

 ̂̃    ̃   ̃            
Given that: 

 ̃  (     ):fuzzy constant parameter. 

 ̃         :  fuzzy slope coefficients. 

 ̃         : fuzzy prediction value. 

2.11 Tanaka Fuzzy Fixed Effect Panel Data 

Model 

The Fuzzy Fixed Effect Linear Regression 

(FFELR) model introduced in this research 

constitutes an adaptation of the fuzzy linear 

regression model originally proposed by 

Tanaka et al. (1982,1987,1989) to Fuzzy Fixed 

Effect Linear Regression (FFELR) model. In 

this case (FFELR) objective function and the 

constraints desired are as follows:[5] 

          (∑     

 

   

)    ∑|   | 

   

   

   ∑|   | 

   

   

  

   ∑|   | 

   

   

         

Here, the J denotes the total uncertainty, 

representing the total fuzziness encompassed 

within the model. The constraints are as 

follows: 

Constraint 1:∑      
 
                  

              ((∑      
 
   )  

  |   |    |   |      |   |)      

                             

Constraint 2:∑      
 
                  

              ((∑      
 
   )  

  |   |    |   |      |   |)      
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Constraint 3: 

                 

                 

Here, if Constraint 3 equals or exceeds Spread 

0, representing a distance measure, it implies 

that Constraint 1 and Constraint 2 must 

encompass all     values within the lower and 

upper limits of the fuzzy predictions. As 

elucidated, the aforementioned minimization 

problem entails several constraints. Following 

the algorithm's determination of fuzzy 

parameters, the lower limit, upper limit, and 

midpoint of the fuzzy value are computed as 

follows: 

          ̂    

 ∑     

 

   

              

         

 ((∑     

 

   

)    |   |

   |   |   

   |   |)          

The mid-point of the fuzzy prediction: 

             ̂  ∑      
 
           

                          

The upper limit of the fuzzy prediction: 

          ̂    

 ∑     

 

   

              

         

 ((∑     

 

   

)    |   |

   |   |   

   |   |)         

The h in the constraints is referred to as the 

fuzziness level, with a value ranging between 0 

and 1. This value is designated by the user at 

the outset of the algorithm and signifies the 

degree of reliance on the dataset. 

 

2.12 Quadratic Programming Fuzzy Fixed 

Effect Panel Data Model 

In this method, we develop Fuzzy Fixed Effect 

Panel Data (FFEPD) Model using the 

Quadratic Programming (QP) approach. In the 

fundamental formulation of QP, we employ the 

sum of squared spreads of the estimated 

outputs as the objective function. Additionally, 

we consider minimizing the sum of squared 

spreads of the estimated outputs, denoted as: 

          (     )    (∑|  | |  |
  

   

   

)    

                         
Where: 

                     
                ,                   

under the constraint (subject to); 

Constraint 1: 

∑     

 

   

                             ((∑     

 

   

)    |   |    |   |      |   |)

                            
Constraint 2: 
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∑     

 

   

                       

      ((∑     

 

   

)    |   |    |   |      |   |)

                                  

Constraint 3: 

                 

                 

 

2.13 Fuzzy Fixed Effect Least Absolute 

Estimation Method (FFELAE) 

   we apply the least absolute deviation 

estimators to construct the fuzzy least absolute 

linear regression model with crisp inputs, fuzzy 

output and fuzzy parameters, introduce a 

distance between triangular fuzzy numbers,[1]. 

we interduce developed Fuzzy Fixed Effect 

Least Absolute Linear Regression Model, and 

use the similarity measure of triangular fuzzy 

numbers to evaluate the fitting of the observed 

and estimated values. Through to minimize the 

least absolute distance between observed fuzzy 

outputs and estimated ones, we have the 

objective function as follows: 

     ∑ | ̃  ∑    

 

   

 ̃ 

 

   

 ∑  ̃    

 

   
|                

by minimizing the Absolute distances between 

observed and predicted fuzzy output data as 

follows: 

        ∑   
 

   
| ̃   ̂̃ |                  

The resulting estimators Fuzzy Fixed Effect 

Least Absolute estimate denoted by: 

  ̃  (
 ̃  

 ̃  
) 

 | ̃   ̂̃ |   |  
   ̂̃ 

 
|  |*   

    
   ( ̃̂ 

 
  ̂̃ 

 
)+|   |*   

    
   ( ̃̂ 

 
  ̂̃ 

 
)+|                                                                                                                                  

 ̃     
    

    
                ̂̃  (  ̂̃ 

 
  ̂̃ 

 
  ̂̃ 

 
) 

 ̂̃                                                    
2.14 Fuzzy Linear Regression for Panel Data 

Using Approximate Bayesian Computation 

 In this study, we interduce a novel fuzzy linear 

regression approach tailored for panel data 

analysis, to advantage the Approximate 

Bayesian Computation (ABC) framework. The 

method integrates the central tendency 

characteristics of least squares estimation with 

the inclusion properties inherent in possibilistic 

approaches, creating a hybrid model suitable 

for analyzing fuzzy data. A Bayesian model is 

formulated to address the complexities of 

fuzziness in panel data regression. Given the 

inherent challenges in defining a precise 

likelihood function under conditions of 

fuzziness, we adopt a likelihood-free algorithm 

based on the rejection-ABC methodology. 

Finally, the convergence and performance of 

the proposed algorithm are evaluated using a 

panel dataset, providing evidence of its 

effectiveness and robustness in handling fuzzy 

regression for temporal and individual-specific 

variations. 

In the first stage, the fuzzy outputs are 

transformed into crisp values by applying any 

deblurring method and based on these crisp 

outputs, the centers of the fuzzy coefficients α 

are estimated using classical least squares 

estimation. 

 In the second stage, the spreed of the fuzzy 

coefficients e are estimated by applying 

elements of Bayesian statistics. We consider e 

to be fuzzy random variables and assume that 
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the joint prior distribution of           is 

denoted by π(e) . Based on Bayes' equation, the 

posterior distribution     |  ̃  given the 

observed data  ̃ = [ ̃1,  ̃2, . . . ,  ̃n] can be 

calculated by: 

     ̃       ̃                      
To our knowledge, there is no generally 

accepted definition of the probability function 

     ̃  for a model with fuzzy coefficients, 

Therefore, classical Bayesian MCMC sampling 

algorithms, e.g., Metropolis and Gibbs, are not 

applicable to solving Eq. (25). The probability-

free rejection sampling algorithm and its 

version called the approximate Bayesian 

rejection (ABC) algorithm provide us with a 

solution to overcome the problem of not having 

a well-defined probability function. Let e be a 

sample from its prior distribution π(e) and α0 

be the least-squares estimate of the centers of 

the fuzzy coefficients, then the symmetric 

triangular fuzzy coefficients can be denoted by 

(α0, e)
T
. 

According to the concept of sampling rejection, 

samples from the prior distribution can be 

transformed into samples from the posterior 

distribution by retaining each sampled value 

with a probability proportional to the 

probability. Therefore, with probability L(e,  ) 

equal to probability Pr( e =  ), samples from 

the posterior distribution π(e  ) in Eq. (25) can 

be obtained sequentially by first sampling the 

prior π(e) and then retaining the samples 

obtained if the computed output   e equals the 

observed data  .  

The algorithm Rejection Sampling used to 

generate independent samples from the 

posterior distribution is discussed, but it is 

noted that its use may be impractical due to the 

very low acceptance rate and high 

computational cost. This means that the 

observational errors in the observed data make 

it difficult to generate fuzzy results that exactly 

match the observed results using random 

samples from the      distribution. In other 

words, the probability          is 

approximately zero. Therefore, obtaining valid 

samples at an acceptance rate close to zero 

requires huge computational resources. To 

make the process easier, the acceptance 

condition      can be relaxed to a more 

flexible condition of           where     

is a threshold, and          is a distance 

function that measures the difference or 

divergence between the two data sets. Different 

measures of distance or similarity can be used 

to construct this function.  

This leads to the development of a new 

algorithm called Algorithm 1 that relies on 

rejecting non-matching samples using the 

Approximate Bayesian Computation - ABC 

method. This algorithm does not produce 

samples from the exact posterior distribution 

    | ̃ , but rather produces samples from the 

approximate distribution: 

 

      |                                 
Where this distribution can be thought of as an 

approximate posterior distribution conditional 

on the event          . 

Second method to estimate Fuzzy coefficients 

centers and spreads We use the Bayesian 

method to estimate the parameter We assume 

that α and e are two random variables, each 

with a prior probability distribution,  1( ) ,π2 
(e), We will have the sales distribution of the 

observations We find Bayes' equation, the 

posterior distribution       |  ̃  given the 

observed data  ̃ = [ ̃1,  ̃2, . . . ,  ̃  ] can be 

calculated by: 

 

       ̃         ̃                        
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2.15 Algorithm ABC: Fuzzy Regression 

Parameter Estimation Using approximate 

Bayesian computation 

To estimate the parameters of a fuzzy 

regression using approximate Bayesian 

arithmetic, with uncertainty in both the data 

and the fuzzy parameters, we present two 

estimation algorithms as follows: 

 

 

 𝑗          𝑁   𝑖        𝑛𝑡 

Algorithm 1: Rejection approximate 

Bayesian computation  

1. for 𝑞     to NT  

2. repeat 

3. Generate from the prior distribution 

. 

4. Compute: 𝒀̃𝒆  [𝑌̃  𝑌̃    𝑌̃𝑛]
𝑇    

Where: 

            𝒀̃𝒆  (𝛼𝑗𝐷𝑗  𝑐𝑗𝐷𝑗)   𝑏𝑘𝑥𝑖 𝑑𝑘|𝑥𝑖|  

5. until  or 

 I = MaxIt, terminate the loop. 

6. .     𝒆 𝑞 ← 𝒆 

7. end  

 

𝑗          𝑁   𝑖        𝑛𝑡 

Algorithm 2: Fuzzy regression panel 

data model based on approximate 

Bayesian computation (ABC1) 
1. for 𝑞     to NT  

2. repeat 

3. Estimate  by OLS. 

4. Estimate  by TL Tanaka 

method or QP Quadratic method. 

5. Generate from the prior distribution 

𝜋 𝒆 : 𝑒𝑥𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑒𝑝  𝑟𝑎𝑡𝑒  
 

𝑘1⋅𝑒𝑝
  

6. Compute: 𝒀̃𝒆  [𝑌̃  𝑌̃    𝑌̃𝑛]
𝑇    

Where: 

            

𝒀̃𝒆  (𝛼𝑗𝐷𝑗  𝑐𝑗𝐷𝑗)   𝑏𝑘𝑥𝑖 𝑑𝑘|𝑥𝑖|  

7. until 𝑑 𝑌̃𝑒 𝑦̃    𝑆  𝑌̃𝑒 𝑦̃   

or I = MaxIt, terminate the loop. 

8. .     𝒆 𝑞 ← 𝒆 

9. end  
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2.16 Description of Study Area and 

Sampling Collection 

The case study is situated in the water quality 

of the Euphrates River, all sites along the 

Euphrates River from north to south were 

selected, bringing their number to 11 sites. 

Samples were collected monthly for 12 months 

during 2023, and these samples were obtained 

from the Iraqi Ministry of Environment. 

The research methodology is grounded in the 

standard specification for the River and Public 

Water Pollution Control System No. 417 of 

2009. This framework guides the examination 

and interpretation of various water quality 

parameters, including pH, NO3, PO4, TDS, 

and SO4. The study provides insights into the 

current state of water quality in Iraq and 

highlights the challenges and potential 

solutions for maintaining and improving these 

vital resources. 
Table 1: Iraqi Standard Specifications No. 417 for 

the Year 2009 - Second Update 

To provide a comprehensive and summarized 

evaluation of the tests, a standardized score 

ranging from 0 to 100 is utilized through the 

Water Quality Index (WQI). The resulting 

value of this index reflects the level of water 

quality; a lower score indicates poor water 

quality, while a higher score suggests good 

water quality. 
Table 2: Classification of Water Quality Based on 

Water Quality Index (WQI) Values 

Table 3: RMSE criterion results of real data  

OLS + TL 

Method RMSE 

Fuzzy Tanaka 22.0451 

Fuzzy Quadratic 21.5526 

PFLAS 6.2105 

ABC1TL 6.0016 

ABC2TL 7.6193 

𝛴       𝑘 𝑎𝑝0
 𝑘 𝑎𝑝1

   𝑘𝑚𝑎𝑝𝑚  

Algorithm 3: Fuzzy regression panel 

data model based on approximate 

Bayesian computation (ABC2) 

1. for 𝑞     to NT  

2. repeat 

3. Estimate  by OLS. 

4. Estimate 𝑒𝑝   𝑐𝑗  𝑑𝑘  by TL Tanaka 

method or QP Quadratic method. 

5. Generate from the prior distribution 

:   

6. Generate from the prior distribution 

: 𝑁 𝑎𝑝  𝛴  Where: 

7. Compute: 𝒀̃𝒆  [𝑌̃  𝑌̃    𝑌̃𝑛]
𝑇    

Where: 

           

𝒀̃𝒆   𝛼𝑗𝐷𝑗  𝑐𝑗𝐷𝑗   𝑏𝑘𝑥𝑖 𝑑𝑘|𝑥𝑖|  𝑗  

        𝑁   𝑖        𝑛𝑡 

8. until 𝑑 𝑌̃𝑒 𝑦̃    𝑆  𝑌̃𝑒 𝑦̃   

or I = MaxIt, terminate the loop. 

9. .   𝒂 𝒒 ← 𝒂  ,𝒆 𝑞 ← 𝒆 

10. end  

Parameters pH TDS NO3 PO4 DO 

Acceptable 

Limits 

6.5 – 

8.5 

< 1000 

mg/l 

< 50 

mg/l 

Not 

specified 

Not 

specified 

 

(Water Quality Index)                  

No. 
River Water 
Condition 

                

What dose each score mean 
                  

Color 
       

Range 
      

1 (     Excellent) 
Mostly healthy and thriving 

                
 95-100 

2 (     Good) 
Impact by pollution but still resilient 

                           
 80-94 

3 (        Fair) 
Significantly impacted by pollution 
                                           

 65-79 

4       ( Bad) 
Severely impacted by pollution 
                                       45-64 

5 (      Very Bad) threat to human health and native species 
                                    

 0-44 
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Figure 2 : Tanaka Fuzzy Fixed Effect Panel Data 

Model 

 
Figure 3 : Quadratic Fuzzy Fixed Effect Panel Data 

Model 

 
Figure 4 : Fuzzy Fixed Effect Least Absolute 

Estimation Method 

 

 
Figure 5 : ABC1TL 

 

 
Figure 6: ABC2TL 

 

Table 4: RMSE criterion results of real data 

OLS + QP 

Method RMSE 

Fuzzy Tanaka 22.0451 

Fuzzy Quadratic 21.5526 

PFLAS 6.2105 

ABC1QP 5.9986 

ABC2QP 6.0603 
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Figure 7 : Tanaka Fuzzy Fixed Effect Panel Data 

Model 

 

 

Figure 8 : Quadratic Fuzzy Fixed Effect Panel Data 

Model 

 

Figure 9 : Fuzzy Fixed Effect Least Absolute 

Estimation Method  

 
Figure 10 : ABC1QP 

 

Figure 11 : ABC1QP 

3. Conclusions 

1. Classical methods (Fuzzy Tanaka and Fuzzy 

Quadratic) performed poorly with very high 

RMSE values, indicating that they are less 

accurate in prediction. 

2. The improved methods (PFLAS and ABC) 

fared significantly better in accuracy, 

recording very low RMSE values. 

3. Among the improved methods, ABC1 

(either TL or QP) was the best performer, 

with a slight additional improvement when 

using Quadratic Programming (QP). 

4. Using Quadratic Programming showed a 

slight improvement over Tanaka Linear in 

some ways, enhancing the effectiveness of 

this model with advanced methods. 

5. Traditional methods such as Fuzzy Tanaka 

and Fuzzy Quadratic give less accurate 
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results (high RMSE), reflecting the 

difficulty of these methods in dealing with 

real data effectively. 

6. More advanced methods such as PFLAS and 

ABC (either TL or QP) achieve much better 

performance (lower RMSE). 

7. Between ABC1 and ABC2, we observe that 

ABC1 with either TL or QP gives more 

accurate results. 

8. When using from TL to QP slightly 

improves performance, especially for 

ABC1, suggesting that using Quadratic 

Programming (QP) gives an additional 

advantage. 
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