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Generalized multivariate transmuted Bessel distribution belongs to the family of 

probability distributions with a symmetric heavy tail. It is considered a mixed continuous 

probability distribution. It is the result of mixing the multivariate Gaussian mixture 

distribution with the generalized inverse normal distribution. On this basis, the paper will 

study a multiple compact regression model when the random error follows a generalized 

multivariate transmuted Bessel distribution. 

 Assuming that the shape parameters are known, the parameters of the multiple compact 

regression model will be estimated using the maximum likelihood method and Bayesian 

approach depending on non-informative prior information. In addition, the Bayes factor 

was used as a criterion to test the hypotheses. A Gaussian distribution rule selects the 

bandwidth parameter and the kernel function based on the Gauss kernel function and 

quartic kernel function. It estimates the model parameters are under quadratic loss 

function. The researchers concluded that the posterior probability distribution of   is a 

multivariate t distribution. Applying the findings to real data related to the jaundice 

percentage in the blood component as a response variable, red blood cell volume and red 

blood cell sedimentation as parametric influencing variables, and white and red cells as 

nonparametric influencing variables, the researchers concluded that when the shape 

parameters increase, the values of the mean square error criteria of   And the variance 

parameter decreases. 
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1. Introduction: 

The parameters of a multiple general 

linear regression model are often estimated 

when the error term is the multivariate normal 

distribution. Still, there are a number of cases 

where the observations of the error term are 

uncorrelated or may belong to probability 

distributions with symmetric heavy tails, i.e. 

heavier than the normal situation. In such a 

case, mixed distributions are more appropriate. 

One of these distributions is the generalized 

multivariate transmuted Bessel distribution, 

which is considered more general than models 

that include both distributions multivariate 

normal and multivariate T as special cases. 

(Barndorff-Nielsen, (1978)), This distribution 

has practical applications in a variety of areas, 

including the presentation of financial stock 

market data, quality control and filtering data, 

and random signal analysis. 
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  (Thabane and Haq, 2003) Studied the 

properties of the generalized multivariate 

transmuted Bessel distribution with its 

exceptional cases and confirmed that mixed 

distributions such as the mixed multivariate 

normal distribution and the multivariate T 

distribution are special cases of it and that it is 

a symmetric mixed distribution resulting from 

the multivariate normal distribution with the 

generalized inverse Gaussian distribution as 

well as its applications in Bayesian analyses of 

the general normal linear regression model 

assuming the generalized inverse Gaussian 

distribution as a prior distribution for the scale 

parameter. In the same year, (Thabane & 

Drekic) tested simple linear hypotheses about 

the population mean where the random error 

follows a multivariate generalized transmuted 

Bessel distribution in addition to a test for two 

groups with the same means and confirmed 

that this distribution is more general than the 

multivariate T distribution, the multivariate 

normal distribution. They also derived the 

probability distribution of (Hotelling-T2) and 

(Scheffe-T2) for the two tests mentioned 

above. Tested (Choi et al., 2009) a Bayesian 

statistical hypothesis for a compact multiple 

normal regression model and assumed that the 

parametric part of the model is a 

multidimensional linear function while the 

nonparametric part is an infinite series of 

trigonometric functions. They concluded that 

when the sample size increases, the Bayes 

factor under the null hypothesis of the linear 

function is consistent, i.e. it approaches 

infinity. In contrast, it approaches zero under 

the alternative hypothesis of the compact linear 

function. 

The first section of the research 

included a general introduction, the second 

section described the multiple generalized 

transmuted Bessel compact regression model 

and the third section mentioned the smoothing 

parameter and kernel functions used in the 

research. In the fourth section, the model 

parameters were estimated using the maximum 

likelihood method and the Bayes method when 

the initial information was not available in the 

fifth section. The sixth section included the use 

of the Bayes factor as a criterion for testing 

hypotheses, and the seventh section applied 

real data related to the number of people 

infected with jaundice and its percentage in the 

blood component for the year 2021. The last 

section mentioned the most important 

theoretical and applied conclusions. 

 

2. Multiple Generalized Transmuted Bessel 

Compact Regression Model: 

Multiple Compact linear regression 

model is one of the multiple semi-parametric 

regression models, symbolized by the symbol 

(MCLM). It is a special case of the ensemble 

models. It is one of the models that depends on 

linear, parametric variables and other 

nonlinear, nonparametric variables. Usually, 

the variables of the compact model are 

continuous, and these linear and nonlinear 

variables affect the dependent variable. 

(You et al.,2013( ) Przystalski, 2014) 
   The following formula can represent multiple 

compact linear regression models: 

     
    (  )           

                                                                   ( ) 
 

Where   
    It is considered the parametric 

part of the model,  (  ) It is considered the 

nonparametric part and an unknown smoothing 

function. The model in Equation (1) can be 

rewritten in matrix form as follows: 

 

       

                                                     ( ) 
 

Where   Represents the vector of observations 

of the dependent variable of degree (N×1), and 

N represents the number of observations. X 

represents the matrix of observations of the 

explanatory variables of degree (N×P), and P 

represents the number of explanatory variables. 

  Represents the vector parameters of the 

parametric part of degree (P×1). ℵ is a full-

rank matrix indicating the weights of the 

kernel function of degree (N×K), and K 
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represents the number of nonparametric 

explanatory variables.   represents the vector 

parameters of the nonparametric part of degree 

(K×1) and   Represents the vector random 

errors of degree (N×1). The model can be 

rewritten in Equation (2) in the following 

form: (Al Mouel et al., 2017) (Salih & Aboudi 

(2021)) 

                                                                                                                  ( ) 
                  [       ]

                 *       +
 

 
         (   (    ))  
             ( )  

 

 
    (

 

 
)   

 

   ( ): Kernel functions are defined as 

positive, continuous, and symmetrical, and 

their integral is equal to the integer. 

(Langrene & Warin (2019)) 

h: The smoothing parameter is positive and 

more important than the kernel function and 

can be selected according to the researcher's 

experience. 

(Langrene & Warin (2019)) 

 

Assuming that the ( ) follows a generalized 

multivariate transmuted Bessel distribution, 

the probability density function can be 

found using the concept of Bayes' theorem 

by combining the mixed multivariate normal 

distribution and the generalized inverse 

Gauss distribution as follows: 

 |   (         )           (     ) 
Probability density function of the random 

error vector conditional on the variable Z 

takes the following form: 

 ( | )

 
 

(       )
 
     

  
  

 
     

  ( )
 
( )

                                                          ( ) 

Equation (4) represents the mixed 

multivariate normal distribution; the 

probability density function of the (Z) is as 

follows: (Salih & Aboudi (2022)) 

(Silva & Lopes (2006)) 

 ( )  
(
 
 )

 
 

    (√  )
         * 

 

 
 ((

 

 
*    )+                               ( ) 

Where: 
    : Scale parameters. 
 : Shape parameter. 

  ( ): Third-order Bessel function of order 

υ is defined as: (Silva & Lopes (2006)) 

  ( )     ∫     
 

 

   (      (     ))                                        ( ) 
According to the concept of mixed 

distributions, the probability distribution of 

the unconditional random error vector is as 

follows: 

 ( )  ∫  ( | )  ( )      
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(√  (  

     
   *) 

(     )
 
        (√  ) 

   (  
     

   
)

    
 

           ( )  

 

Whereas (     ) represent shape parameters. 
Equation (7) represents the generalized 

multivariate transmuted Bessel distribution 

of the random error vector, which is 

described as follows: 

      (             )  
Since the vector observations of the 

dependent variable   Equation (3) is a linear 

combination in terms of the vector random 

errors that follows a generalized 

multivariate transmuted Bessel distribution, 

the probability distribution of   Follows a 

generalized multivariate transmuted Bessel 

distribution as follows: 

 ( | )  
 

(       )
 
     

  
  

 
     

  (    )
 
(    )

                                           ( ) 

    

Based on the concept of mixed distributions, 

the unconditional probability distribution of 

  is as follows: (Thabane & Drekic (2003)) 

(Saieed & Salih (2013)) (Saieed & Salih 

(2014))

 

 ( )  

(
 
 )

 
 
           

 
(√  (  

 (    )
 
(    )

   ))

(      )
 
        (√  ) 

         

  (  
 (    )

 
(    )

   
+

    
 

                                                     ( ) 

This distribution can be expressed 

descriptively as follows: 

      (                    )   
 
3. Smoothing Parameter and Kernel 

Functions: 

Kernel functions are used to 

estimate both regression functions spectral 

and probability density functions. That the 

method of selecting the smoothing 

parameter (h) is an essential part of 

estimating the nonparametric regression 

curve, and that choosing the smoothing 

parameter is more important than choosing 

the kernel function, and its properties are a 

non-random, symmetrical and positive 

boundary parameter. Table (1) shows the 

kernel functions used in the paper, as well as 

the selection of the smoothing parameter 

based on the thumb rule method. (Langrene 

& Warin (2019)) 
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Table 1:  Some Kernel Functions and Method of Selecting the Smoothing Parameter. 

   ̂   ( )    
 
  

K(x) Kernel 

  ( )        (| |   ) (    ⁄ )(    )  Quartic 

  ( )        (| |   ) (  )        (    )⁄  Gauss 

 

4. Maximum Likelihood Estimators for 

Parameters of the Multiple Generalized 

Transmuted Bessel Compact Regression 

Model: 

If there are n observations of the 

response variable   Explanatory variables 

for the parametric and nonparametric parts, 

then the probability function of the vector 

observations of the response variable 

conditional on Z, has a multivariate normal 

distribution and is described in Equation (8). 

As for the probability function of the 

unconditional random vector Y, using the 

concept of mixed distributions, it is written 

as follows.(Saieed & Salih (2013)) 

 (    )

 ∫  
 

 

( |      )  ( )             (  ) 
    Due to the difficulty of finding the 

maximum likelihood estimator of   From 

Equation (10), the concept of mixed 

distributions was used as follows: 

 

 (    | )  (      )  
 
     ( 

(    )
׳
(    )

    
 )                  (  ) 

By taking the natural logarithm of both sides 

of Equation (11) and taking the first partial 

derivative relative to the vector , we obtain:  

 

      (    | )

  
 

(  ׳   ׳ )

   
                                                                (  ) 

      (    )

  
 

(  √)     (  ׳   ׳ )

     (√  ) (
 
 )

  
 
 

                                            (  )  

When Equation (13) is equated to a zero vector, we get the following: 

 ̂ ( ׳ ) 
  

 (  )                                                                                        ׳ 
To estimate the parameter  , we take the 

natural logarithm of both sides of Equation 

(11) and take the first partial derivative 

relative to   . We get: 
      (    | )

   
  

  

    
 

(    )
׳
(    )

 (  )  
                                  (  ) 

When equation (15) is equated to a zero vector, we get the following  

 ̂  
(    ̂)

׳
(    ̂)   (

 
 )

 
 
      (√  ) 

      (√  )
                                  (  ) 
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5. Bayes Estimator for Parameters of the 

Multiple Generalized Transmuted Bessel 

Compact Regression Model: 

Under this type of information, the 

initial probability is non-standard in most 

cases, but in 1961, Jeffreys found a standard 

formula for the initial probability with little 

information. Under the compact regression 

model previously defined in Equation (3), 

the initial distribution of   and    is 

proportional to the square root of the 

determinant of the information matrix. It is 

defined as follows: (Jefferys,(1961)). 

 ( )      (
      (  | )

      
)          (  ) 

        (      )
  

 
The information matrix is square, 

symmetrical and positive, and on the basis 

of this information, the parameters of the 

model defined in (3) will be estimated. 

We take the natural logarithm of both sides 

of the probability density function.   

Conditional on the random variable Z, 

which was previously defined in Equation 

(11), and take the second partial derivative 

relative to   and   , which is equal to a zero 

vector. Then, the joint initial distribution of 

  and    is as follows:  

 (    )

  (  ) (
   
 

  )                                                                                  (  ) 
By combining the joint initial distribution of 

   and    defined by equation (18) with the 

probability function of   Conditional on the 

random variable Z, we obtain the kernel of 

the joint posterior distribution of the vector 

   and    conditional on the variable Z 

according to Bayes' theorem as follows: 

 (    |     )

  (    )  ( |      )                                                       (  ) 

  After substituting the components of 

Equation (19) and performing algebraic 

operations, we obtain the joint posterior 

distribution of      conditional on the 

random variable Z as follows: 

 (    |     )  

(
(    ̂)

׳
(    ̂)

  )

 
 

| ׳ | 

 
 

 (
 
 )  (     )

   
 

    (  ) (
 
 
  ) 

 
 

 
    

((   ̂)
׳
+(̂   ) ׳ 

    
 

 
    

((    ̂)
׳
(    ̂)+

  (  ) 
 

  

Equation (20) represents the product of the 

multivariate normal distribution with 

parameters ( ̂     (  ׳ )
  

) and the 

multivariate inverse gamma distribution 

with parameters (
 

 
  

(    ̂)
׳
(    ̂)

  
). 

 The joint posterior distribution of the 

parameter vector   and    unconditional on 

Z is: 
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 (    |   )  ∫  (    |     )  ( )   

 

 

                                                   (  )  

 (    |  )  

(
(    ̂)

׳
(    ̂)
 )

 
 

| ׳ |

 
 
 (

 
 )

     
 

 

 (
 
 )  (    )

   
     (√  )

 

 *  
(    ̂)

׳
(    ̂)  (   ̂)

׳
(̂   ) ׳ 

   
+

     (   )
 

 

        (   )
 

(√   (  
(    ̂)

׳
(    ̂)  (   ̂)

׳
(̂   ) ׳ 

   
 ), (  ) 

   Marginal posterior distribution of the parameter vector   It is found as follows 

 ( |  )  ∫ ∫  (    |     ) 
 

 

 

 

  ( )         

 ( |  )  ∫
 (

  (   )
| ׳ | * 

 
 

 (
 
 ) (    )

   
 

 

 

 
(
(  (   ))  

  *

 
 
  

(
(  (   ))   (   ̂)

׳
(̂   ) ׳ 

  )

  (   )
 

 

     ( )                  (  ) 

 ( |  )  
 (

  (   )
| ׳ | * 

 
 

 (
 
 ) ((  (   ))    )

   
 

 *  
(   ̂)

׳
(̂   ) ׳ 

(  (   ))  
+

 
  (   )

 

 (  ) 

 

Equation (24) represents a multivariate t-

distribution with dimension (   )and 

parameters ( ̂    ( ׳ )
  

 (  (  

 ))  * 

Where 

(  (   ))  

 (    ̂)
׳
( 

   ̂)         (  ) 

Bayes estimator of the parameter vector   

Under the quadratic loss function is: 

 ̂   ̂                                 (  ) 
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It is the same as the maximum likelihood 

estimator of the vector   Defined in 

Equation (14). 

The marginal posterior distribution of the 

parameter    is found as follows: 

 (  |  )  ∫ ∫  (    |     ) 
 

  

 

 

  ( )        

 ∫
(
(  (   ))  

  *

 
 

 (
 
 )

(  ) (
 
 
  )    ( 

(  (   ))  

     
)

 

 

  ( )    (  ) 

 (  |  )  
(
(  (   ))  

 *

 
 
(
 
 )

 
 

 (
 
 )   (√  ) (  )

 
 
  

 *  
(  (   ))  

   
+

    
 

  

                           
 

(√   (  
(  (   ))  

   
 ))                                      (  ) 

 

Since the marginal posterior distribution of 

the parameter    is not a common 

probability distribution; it is a proper 

distribution. Therefore, the Bayesian 

estimator of    will be found using the 

properties of mathematical expectation as 

follows: 

 ̂ 
       (  |    )  

√
 

 
      (√  ) (  (   ))     

(   )    (√  )  
          (  )  

 

6. Bayesian Hypotheses Testing: 

 Bayes factor is one of the criteria 

used in testing Bayesian hypotheses. It is 

defined as the probability between two 

statistical hypotheses that results from 

dividing the posterior probabilities to the 

initial ones for the null hypothesis H0 
divided by the result of dividing the 

posterior probabilities to the initial ones for 

the alternative hypothesis H1. This factor is 

expressed mathematically as follows: 

(Saieed & Salih (2014)) 

   
 ( |  )

 ( |  )
                            (  ) 

 Jeffery's (1961) presented a table showing 

whether or not H0 is preferred in different 

cases. (Jeffery's, (1961)). 

 
Table 2: Shows BF values for H0 preference. 

BF<1             Negative 

1≤ BF<3 Barely worth mentioning 

3≤ BF<12 Positive 

12≤ BF<150 Strong 

       BF>150  Very strong 

Thus, the Bayes factor (BF) can be 

considered a statistical indicator of 

accepting or rejecting H0 and represents the 

statistical laboratory in the Bayesian 

approach. Therefore, it is necessary to find 

the value of the Bayes factor for the 

hypothesis to be tested and compare that 

value with the values set by Jeffery's shown 

in the Table above, which determine 



 

Ons E. Musa and Noor S. Mohammed Ali/Iraqi Statisticians Journal / Vol. 2, no. 1, 2025: 124-137 

132 

 

whether the preference is to accept or reject 

H0.     
  In order to test a simple hypothesis about 

the parameters vector   Of compact 

regression against a compound hypothesis, 

those two hypotheses are defined as follows: 

  

              
   

                
                    (  ) 

Under the above statistical hypothesis and 

using Equation (30), the Bayes factor 

becomes as follows: 

   
∫ ∫  ( |     

    )  ( )  (  )       
 

 

 

 

∫ ∫ ∫  ( |        )  ( )  (  )  ( )    
 

  

 

 

 

 
       

           (  ) 

       

The numerator in the Bayes factor formula 

above represents the probability function of 

the random vector.   conditional on the 

variable Z defined in Equation (8) under the 

hypothesis H0 multiplied by the initial 

distribution of    defined below: 

 (  )   
 

  
                                   (  ) 

The generalized inverse Gauss distribution 

defined in Equation (5), after substituting 

the components of the numerator of 

Equation (32) and integrating relative to   , 

we obtain: 

 ( |  )  ∫
 

(    )
 
 

 
 (

 
 )

*
(     )

׳
(     )

  +

 
 

    ( )               
 

 

 (  ) 

 ( |  )  
 (

 
 ) [(     )

׳
(     )]

 
 
 

(  )
 
 (

 
 )

 
 
  

                                           (  ) 

In the same way, the denominator of the Bayes factor under hypothesis H1 was found as 

follows: 

 

 ( |  )  ∫ ∫ ∫ (  )  
 
 (   ) 

 
   

  
(    )

׳
(    )

      
  

 

 

 

 

 

        
 

  
  ( )                                                           (  ) 

 

 ( |  )  ∫ ∫(  )  
 
 (   ) 

 
   

  
(    ̂)

׳
(    ̂)
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 (   )

   
 

| ׳ |  
 
 
 

 

 

 

 

 

  
 

  
   ( )                                                                 (  ) 
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 ( |  )  ∫
| ׳ |  

  
 
 

(    )
  (   )

 

 
 (

  (   )
 *

*
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׳
(    ̂)

   +

  (   )
 

    ( )        
 

 

 

                                                                                                                              (  ) 

 ( |  )  
(  )

   (   )
 

| ׳ |   
  

 
  (

  (   )
 

*

(
(    ̂)

׳
(    ̂)
 )

(
  (   )

 
*
                                            (  ) 

When substituting both equations (35) and (39) into Equation (30), we obtain the Bayes factor 

for testing hypothesis (31) as follows: 

   
 (

 
 ) [(     )

׳
(     )]

 
 
 
[(    ̂)

׳
(    ̂)]

  (   )
 

 

 (
  (   )

 * ( )
   
 

| ׳ |     
  

 
 

      (  ) 

Since  ̂ It was previously defined in Equation (14). 

 

 

7. Application: 

     In this section, what was reached in 

the sixth section was applied to real data 

related to the number of people with 

jaundice and blood components in Kirkuk 

Governorate for the year 2021 and 51 

people. The research data represents people 

with jaundice and its percentage in the blood 

component as a response variable, red blood 

cell volume and red blood cell 

sedimentation as explanatory variables, and 

white cells and red cells as nonparametric 

explanatory variables. The following Figure 

shows the behaviour of people with jaundice 

and its percentage in the blood component, 

in addition to the influential variables, both 

parametric and nonparametric. (Abdel 

Wahed, (2021)) 
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Figure (1): Behavior of patients with jaundice and its percentage in the blood component, in addition to the 

behaviour of the influential parametric and nonparametric variables. 

     
Before the analysis process, it is necessary 

to know whether the data follows the 

generalized multivariate transmuted Bessel 

distribution. The researchers (Salih & 

Aboudi (2021)) suggested a method for 

conducting a goodness of fit test, which is 

based on mixed distributions represented by 

the chi-square test for several random 

samples. Different samples were chosen to 

conduct the matching in the research, as 

shown in the Table below: 

 
Table 3. Chi-Square Test Values for Matching Data. 

Chi2-tab. 

(     ) 

Chi2-calculate Samples  

(     ) 

9.2103 8.2142 (     ) 

9.2103 7.0239 (     ) 

9.2103 7.2248 (       ) 

9.2103 6.9987 (        ) 

     
We note from Table (3) that the calculated 

values of the chi-square test for random 

samples are smaller than the tabular value 

under a significance level of (0.01), which 

indicates the acceptance of the null 

hypothesis, which states that the data follow 

the generalized transmuted Bessel 

distribution. 
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7.1 Bayes Estimators for Parameters of a 

Multiple Generalized Transmuted Bessel 

Compact Regression Model: 

In this section, the Bayesian 

estimators of the parameter vector ( ) and 

the variance parameter (  ) of the multiple 

generalized transmuted Bessel compact 

regression model will be found when the 

previous information is not available, and 

the model estimators will be compared 

based on the mean square error criterion. 

Table (4) shows the values of the mean 

square error criterion for the parameter 

vector   Estimator under different kernel 

functions. 

 

 
Table (4): Values of the mean square error criterion for the   estimator 

Rank Bayes estimator   Suggested 

models 

   Quartic    Gauss Kernel Function 

(     ) 

4 11.5478 11.2364 (     ) First 

3 9.5214 9.0325 (     ) Second 

2 8.4214 8.3278 (       ) Third 

1 7.3021 2589.7 (        ) Forth 

 

      
We note from Table (4) that the best 

Bayesian estimator for   It was for the 

fourth proposed model and the Gauss kernel 

function due to it having the lowest value 

for the criterion. In addition, we note from 

the Table above that the more the values of 

the shape parameters (λ, ψ, v) increased, the 

values of the mean square error criterion 

decreased, and the estimated vector 

parameters ( ) is: 

 ̂  [                                          ] 
 
The following Figure shows the behaviour of real and estimated data. 
 

 
Figure (2): Behavior of real and estimated data 
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We notice from Figure  (2 ) that the 

behaviour of the estimated data is the same 

as the behaviour of the real data, which 

indicates the suitability of the data to the 

estimated model.  

 Table (5) shows the values of the mean 

square error criterion for the variance 

parameter.   . 

 
Table (5): Values of the mean square error criterion for the   estimator 

Rank Bayes estimator    Suggested 

models 

   Quartic    Gauss Kernel Function 

(     ) 

4 855.79 857959 (     ) First 

3 8563.8 8.9911 (     ) Second 

2 959382 951675 (       ) Third 

1 258887 2589.7 (        ) Forth 

      
We note from Table (5) that the best 

Bayesian estimator for    was for the fourth 

proposed model and the Gauss kernel 

function due to it having the lowest value 

for the criterion. In addition, we note from 

the Table above that the more the values of 

the shape parameters (λ, ψ, v) increased, the 

values of the mean square error criterion 

decreased, and the estimated variance 

parameter    was( ̂       ). 

 

7.2 Bayesian Hypotheses Testing of a 

Multiple Generalized Transmuted Bessel 

Compact Regression Model: 

 To test the statistical hypothesis 

defined in Equation (31), the Bayes factor 

criterion, which is described in Equation 

(40), will be calculated, and then the 

computed criterion values will be compared 

with the values shown in Table (2). Table 

(6) shows the values of the Bayes factor 

criterion based on previously unavailable 

information, and the assumed parameter 

vector is: 

   [                                          ] 
 

Table (6): Bayes Factor (BF) criterion values for the proposed models 

Decision on accepting 

the null hypothesis 

BF. Proposed Models 

Quartic Kernel Gauss kernel 

Strong 5.12.15 55.3251 First 

Strong 20102.2 88.0241 Second 

Strong .001.252 95.3368 Third 

Strong .1.1.241 135.214 Forth 
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We note from the result of Table (6) that the 

null hypothesis    will be accepted, which 

means that the sample was drawn from a 

generalized transmuted Bessel population.  

 

  

8. Conclusion:   

 In this section, the most important findings 

of the researchers will be mentioned in the 

theoretical and applied study: 

1. Maximum likelihood estimator of   For a 

multiple generalized transmuted compact, 

the Bessel regression model is the same 

as if the model error were normally 

distributed. 

2. Posterior probability distribution of   is 

a multivariate t-distribution defined in 

Equation (24). 

3. Bayesian estimator of   When prior 

information is very little, it is the same 

as the maximum likelihood estimator. 

4. Posterior probability distribution of    

is an unknown probability distribution 

but one of the proper probability 

distributions. 

5. Through the applied study, we notice 

that the more the values of the shape 

parameters increase, the mean square 

error criterion decreases of the 

parameter vector estimator  , variance 

parameter and for Gauss kernel function. 

6. Based on the Bayes factor criterion, it 

was found that the proposed models 

were drawn from a generalized 

transmuted Bessel population. 
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