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Image denoising is one of the fundamental aspects of removing noise from an image 

and enhancing its features containing visual information. Based on this, Convolutional 

Neural Networks (CNNs) have been a latest topic of study, with a wide range of 

applications in fields as diverse as diagnostic image denoising and low-light image 

denoising. In this paper, an image denoising method is proposed based on converting 

the noisy image to YUV colon space, extracting the noisy Y channel, and obtaining an 

appropriate smoothing parameter for the noisy Y channel using the cross-validation 

smoothing techniques that are used to estimate the Y density function, then using an 

appropriate noise reduction method (total variation denoising) on the estimated density 

function to extract the denoised Y channel by removing the Gaussian noise. The 

results showed that the new proposed method effectively removed noise from the 

image, which is attributed to the approach adopted in this proposed filter. 
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1. Introduction 

Space telescopes have given us 

unprecedented views of distant stars, galaxies, 

and cosmic phenomena, expanding our 

understanding of the universe. However, one of 

the significant challenges faced in capturing 

these images is the presence of noise, 

particularly Gaussian noise, which distorts the 

clarity and detail of the images. This type of 

noise, characterized by random variations in 

pixel intensity, can obscure critical features, 

making it difficult for astronomers to extract 

accurate information from the images. 

Addressing this problem is crucial, as the 

quality of space telescope images directly 

impacts the precision of scientific discoveries 

and observations. 

To combat Gaussian noise, modern 

advancements in deep learning, particularly 

Convolutional Neural Networks (CNNs), have 

opened up new avenues for enhancing image-

denoising performance. 

 

In this article, we explore the integration of 

a Convolutional Neural Network (CNN) with a 

proposed filter specifically designed to reduce 

Gaussian noise in space telescope images. 

CNNs have gained widespread use in image 

processing due to their ability to learn complex 

patterns and features in data, making them 

particularly effective for tasks such as 
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denoising. By training a CNN to identify and 

suppress noise while preserving essential image 

details, we aim to significantly improve the 

clarity of space telescope images compared to 

traditional filtering techniques alone. 

 

The proposed approach combines the 

learning capabilities of CNNs with a refined 

filter that adapts to different noise levels and 

image features. The CNN is trained to 

distinguish between noise and actual image 

content, applying the filter intelligently across 

the image to achieve better noise reduction 

without compromising detail. This hybrid 

method seeks to outperform classical 

techniques like spline and exponential spline 

filters by leveraging deep learning's ability to 

learn context-aware noise patterns while 

maintaining computational efficiency. 

 

Through a comprehensive comparative 

analysis, we will assess the performance of this 

CNN-based method alongside the spline filter 

and exponential spline filter. The evaluation 

will focus not only on the visual quality of the 

denoised images but also on the accuracy of 

extracted features critical to scientific research. 

The ultimate goal of this study is to enhance 

the quality of space telescope imagery, 

allowing scientists to analyze celestial objects 

with greater precision and clarity. By 

improving image processing methods through 

the integration of CNNs and innovative 

filtering techniques, we aim to push the 

boundaries of space exploration and contribute 

to the ongoing pursuit of new astronomical 

discoveries. 

 

In recent years, some researchers have 

addressed the use of these filters to reduce 

noise, including the study by Tian et al. (2018) 

[23] introduced a novel method called 

enhanced convolutional neural denoising 

network (ECNDNet), which uses residual 

learning and batch normalization techniques to 

overcome training difficulties and accelerate 

convergence. The network also uses dilated 

convolutions to increase context information 

and reduce computational costs. 

 

Bora and Chaudhary (2021) [2] proposed a 

method to eliminate Gaussian noise from grey 

images by enhancing bilateral filters and The 

ECNDNet method achieved improved PSNR 

values up to 34.73 when combined with 

bilateral filters and deep 

Thayammal et al. (2021) [21] studied the 

performance of a CNN-based denoising 

method for low-light images, presenting a 

model called DnCNNs, which implicitly 

removes image noise, providing better 

reference for application developers. 

Zhang et al. (2022) [29] proposed a robust 

deformed denoising CNN (RDDCNN) to 

address the issue of convolutional operations 

altering noise distributions in corrupted images. 

The method includes three blocks: a 

deformable block, an enhanced block, and a 

residual block. Experimental results show the 

model outperforms popular methods in 

qualitative and quantitative analysis. 

Zheng et al. (2022) [30] developed a hybrid 

denoising CNN (HDCNN) to address the issue 

of poor performance on complex screens. The 

HDCNN consists of a dilated block, 

a RepVGG block, a feature refinement block, 

and a single convolution, resulting in good 

performance in image denoising. The 

experiment demonstrated its effectiveness in 

public data sets. 

The study by Xie et al. (2023) [25] 

introduced a multi-level information fusion 

CNN (MLIFCNN) for image denoising, which 

includes a fine information extraction block, a 

multi-level information interaction block, a 

coarse information refinement block, and a 

reconstruction block. The method is compared 

to other excellent methods in terms of both 

quantitative and qualitative performance. 

2. Convolutional Neural Network (CNN): 

Neural network-based denoising 

strategies are drawing in acceptable 

considerations for their efficient performance 

in image rebuilding. They first train the 

network, and then the network accepts input as 
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noisy patches, and the noiseless clear patches 

are estimated from the noise patches [9]. Each 

network contains a set of non-linear activations 

and convolution operations. It distinguishes the 

hidden prior of the image from the training set 

for image recovery [28]. Deep learning 

approaches have the best learning capacity and 

adaptable network design, which improve the 

efficiency of denoising. CNN is a deep learning 

approach, which has pulled in more 

consideration in denoising noisy images. 

Rectifier Linear Unit (ReLU), residual 

learning, and batch normalization (BN) are 

utilized in CNN to quicken the training of the 

network and improve the efficiency of 

denoising [14]. A convolutional network is an 

alternating sequence of linear filtering and 

nonlinear transformation operations. The input 

and output layers include one or more images, 

while intermediate layers contain “hidden" 

units with images called feature maps that are 

the internal computations of the algorithm [7].  

For good denoising tasks using (CNN), Several 

factors are of central importance in this 

progress:  

(i) the efficient training 

implementation. 

(ii) the Rectified Linear Unit (ReLU) 

which makes convergence much 

faster while still presenting good 

quality. 

(iii) the easy access to an abundance of 

data for training larger models. 

 

Patch extraction and representation operation 

extracts (overlapping) patches from the low-

resolution image (Y) and represents each patch 

as a high-dimensional vector [22]. These 

vectors comprise a set of feature maps, of 

which the number equals the dimensionality of 

the vectors. patch extraction and representation 

are a popular strategy in image restoration to 

densely extract patches and then represent them 

by a set of pre-trained bases such as PCA, 

DCT, Haar, etc. This is equivalent to 

convolving the image by a set of filters, each of 

which is a basis. Formally, our first layer is 

expressed as an operation [9]:  

                             (1) 

 

Where {W1 and B1} represent the filters and 

biases respectively, { } denotes the 

convolution operation. Here, {W1} corresponds 

to {n1} filters of support {c×f1×f1), where {c} 

is the number of channels in the input image, 

{f1} is the spatial size of {a} filter.  

Non-linear mapping operation nonlinearly 

maps each high-dimensional vector onto 

another high-dimensional vector. Each mapped 

vector is conceptually the representation of a 

high-resolution patch. These vectors comprise 

another set of feature maps [13]. The first layer 

extracts an {n1-dimensional feature} for each 

patch. In the second operation, we map each of 

these {n1-dimensional vectors} into an {n2-

dimensional one}. This is equivalent to 

applying {n2} filters which have a trivial 

spatial support {1×1}. This interpretation is 

only valid for {1×1} filters. But it is easy to 

generalize to larger filters like {3×3} or {5×5}. 

In that case, the non-linear mapping is not on a 

patch of the input image; instead, it is on a 

{3×3} or {5×5} “patch” of the feature map. 

The operation of the second layer is [5]:  

                                      (2) 

 

Here {W2} contains {n2} filters of size 

{n1×f2×f2}, and {B2} is {n2-dimensional}. Each 

of the output {n2-dimensional vectors} is 

conceptually a representation of a high-

resolution patch that will be used for 

reconstruction. 

Reconstruction operation aggregates the above 

high-resolution patch-wise representations to 

generate the final high-resolution image. This 

image is expected to be similar to the ground 

truth (X) [4]. In traditional methods, the 

predicted overlapping high-resolution patches 

are often averaged to produce the final full 

image. The averaging can be considered as a 

pre-defined filter on a set of feature maps 

(where each position is the “flattened” vector 

form of a high-resolution patch) [14]. 

Motivated by this, we define a convolutional 

layer to produce the final high-resolution 

image:  
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                        (3) 

 

Here {W3} corresponds to c filters of a size {n2 

× f3 × f3}, and {B3} is a {c-dimensional 

vector}.  

 

3. Proposed Filter: 
The proposed filter converts the image from 

RGB to YUV color space as step one, where 

the (Y, U, V) color space is a color 

representation used in digital image and video 

processing. It separates the luminance 

(brightness) information from the chrominance 

(color) information in an image [17]. then in 

step two, we split the image channels to extract 

the noisy (Y) channel and apply a bandwidth 

selection method on this (Y) channel, where 

the bandwidth selection, or smoothing 

parameter (h) is a crucial step in nonparametric 

estimation techniques, particularly kernel 

density estimation and kernel regression [8]. It 

involves determining an appropriate bandwidth 

parameter (h) that controls the smoothing or 

blurring effect of the kernel function [18].  

Nonparametric estimation aims to estimate an 

underlying probability density function or 

regression function from a given set of data 

points. The kernel function is a smooth, 

symmetric function cantered at each data point, 

and the bandwidth determines the width of this 

kernel function [19]. The choice of bandwidth 

significantly influences the quality and 

accuracy of the estimated function. If the 

bandwidth is too large, the estimate may 

become overly smooth and fail to capture 

important features or structures in the image. 

On the other hand, if the bandwidth is too 

small, the estimate may exhibit excessive noise 

and reflect the specific characteristics of 

individual data points rather than the 

underlying pattern. 

Cross-validation (CV) is a method that offers a 

criterion for optimality that works as an 

empirical analog of the (MISE) and so it allows 

us to estimate (h). There are three types of 

(CV), Least Squares Cross-Validation (LSCV), 

also called unbiased (UCV), involves the (ISE) 

[6]. 

     ∫   ̂             
 

  
  (4) 

Where (    ) and ( ̂    ) is the density and 

density estimator, which leads to [32]. 

 ̂                     (5) 

Biased Cross-Validation (BCV), where it 

attempts to directly minimize the (AMISE). 

This requires an estimation of the unknown 

     , which requires selecting another 

bandwidth [11].  

      
 

  
 

  
        

  
  (6) 

By replacing the unknown values in the 

{      } term with the estimate { ̃     }, we 

obtain the {    } estimator [10]: 

     
 

  
 

  
 

  
( ( ̂ 

  )  
      

   ) (7) 

  ̂                  (8) 

Maximum Likelihood Cross Validation 

(MLCV). The rationale behind this method is 

to estimate the log-likelihood of the density at 

observation (xi) based on all observations 

except (xi). Averaging this log-likelihood over 

all observations results in the following 

(MLCV) score [20]. 

 ̂                   (9) 

MLCV seeks to test the hypothesis: 

    ̂    
    ̂    

}    (10) 

The next step, bandwidth parameters (h) for the 

(Y) channel that we get by (CV), use it for 

density estimation, where the Kernel density 

estimation (KDE) is a non-parametric method 

used to estimate the probability density 

function (PDF) of a random variable based on a 

set of observed data points [1]. KDE works by 

placing a kernel (a smooth, symmetric, and 

non-negative function) on each data point and 

summing up these kernels to obtain the 

estimated PDF [26]. The estimated density at 

any point x is formulated as [3]. 

 ̂     
 

 
∑   

   (
      

 
)   (11) 

where      is a neighboring point to (x), (n) is 

the number of neighbors, K (·) is the kernel 
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function, and (h) is the bandwidth. The kernel 

function can be considered a weighting factor 

that gives a larger value when x(i) is close to 

(x) [10]. This density estimation will 

reconstruct the (Y) channel then in the next 

step, we apply the denoising method to get the 

denoised (Y) channel which we use to rebuild 

the new denoised image in the final step.  

There are several denoising methods or filters 

for the denoising task.  

Total Variation (TV) is used for image 

denoising and restoration. TV method 

effectively reduces noise while preserving 

edges and important image structures by 

minimizing the total variation of an image, 

which is a measure of the total amount of 

variation or changes between neighboring 

pixels [27]. For the image denoising task, TV 

assumes that the noisy image y(n) is of the 

form 

                         (12) 

where x(n) is a (approximately) piecewise 

constant signal and w(n) is white Gaussian 

noise. (TV) estimates the image x(n) by solving 

the optimization problem [33]. 

        {   
 

 
∑ |     |

    
    

 ∑ |         |
   
   }    (13) 

 

The regularization parameter λ > 0 controls the 

degree of smoothing. Increasing λ gives more 

weight to the second term which measures the 

fluctuation of the signal x(n) [31]. the TV 

denoising in equation (2) can be written 

compactly as: 

        {   
 

 
‖   ‖ 

   ‖  ‖ }     

(14) 

 

The N-point signal x is represented by the 

vector: 

  [            ]
   (15) 

 

Classical ℓ1 TV computed independently on 

each color component [12]. 

‖ ‖  ∑‖  ‖                 (16) 

 

ℓ2 TV computes the Euclidean norm of the 

vector 

‖ ‖  (∑   
 

 )
 

           (17) 

 

Squared ℓ2 TV computes the squared 

Euclidean norm of the vector [22]. 

‖ ‖  (∑   
 

 )          (18) 

 

The matrix D is defined as [13] 

  [
     

   
     

]  (19) 

 

The first-order difference of an N-point image 

x is given by Dx where D is of size        
 . Note, for later, that DD

T
 is a tridiagonal 

matrix of the form: 

  

[
 
 
 
 
 
  

  
   

  

   

  
   
  

  
 ]

 
 
 
 

        

(20) 

 

The total variation of the N-point image x(n) is 

given by 

      ‖  ‖  ∑ |         |
   
             

(21) 

 

The main advantage of the TV formulation is 

the ability to preserve edges in the image due to 

the piecewise smooth regularization property of 

the TV norm [16].  

Finally, after we get the new denoised Y 

channel, we can reconstruct the denoised image 

by merging the new Y channel with the U and 

V channels replace the denoised Y channel 

with the noise Y channel in the image.  

4. Results and discussion 

To compare the results of the filters used, we 

relied on two quality measurement criteria, The 

Peak Signal Noise Ratio (PSNR) which is the 

ratio of the maximum image values to the 

magnitude of noise affecting the image 

                  

(         
 )

     
          (22) 

 

Where the original image (X) and the resulting 

image (Y) are compared using the Max 
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brightness value (255) and the mean square 

error (MSE) between the two images. 

 

And the SSIM index measures structural 

similarity between two images, with perfect 

quality indicating the quality of the other image 

being compared. 

          
(        )(       )

(  
    

    )(  
    

    )
                (23) 

 

The experiment was carried out by adding 

AWGN with zero mean and 0.01 variance to 

the approved image as shown in Figure 1, 

which is a dumbbell nebula, Considering the 

significance of these images, we should work 

to eliminate any noise that may have been 

introduced during the transmission and 

acquisition process. So, in this experiment, we 

added different percentages of Gaussian noise 

to the adopted image and then applied the 

adopted filters, the code of these filters is 

written using MATLAB. 

 

 
Figure 1: (A) Uranus Clean Image, (B) Uranus Noisy 

Image. 

 
Table 1: PSNR and SSIM Values for The Restored 

Images for Each Filter. 

Filters 

Image Quality 

Measurements 

PSNR SSIM 

Proposed 42.20 0.98 

CNN 38.64 0.93 

 

The results indicate that the proposed filter 

performs best in terms of both PSNR and SSIM 

when there is a noise density of 0.01 where it is 

given the value 42.20 PSNR, and 0.98 SSIM 

respectively, while the CNN filter ranks second 

with 38.64 PSNR and 0.93 SSIM. Figure 2 

displays the images that have been restored. 

When we implement the filters in different 

noise Ratio (50%, 75%), to denoise the 

(Uranus) image, we get the following results: 

 
Table 2: PSNR and SSIM Values of The Restored 

Images Calculated for Different Noise Ratio. 

Filters 

Image Quality Measurements 

in Different Noise Ratios 

50% 75% 

PSNR SSIM PSNR SSIM 

Proposed 40.30 0.97 38.69 0.96 

CNN 36.98 0.92 34.52 0.90 

 

 

 

 

  A 
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FIGURE 4. Showing Restored Image by (A) Proposed 

Filter in 10% noise ratio, (B) Proposed Filter in 50% 

noise ratio, (C) Proposed Filter in 75% noise ratio, (D) 

CNN in 10% noise ratio, (E) CNN in 50% noise ratio, 

(F) CNN in 75% noise ratio. 

 

We can observe from the results in Table 2 that 

the order of filters about the restored image 

quality and the presence of various noise levels 

did not change. The first filter is the proposed 

one, which has 40.30 PSNR and 0.97 SSIM in 

50% and 38.69 PSNR and 0.96 SSIM in 75% 

noise density, respectively. Whereas the CNN 

filter recorded 36.98 PSNR, 0.92 SSIM in 50% 

noise density, 34.52 PSNR, and 0.90 SSIM in 

75% noise density. 

The mechanism used by the proposed method 

to analyze the image, which was represented by 

a series of stages, is what accounts for its 

superiority. First, an appropriate bandwidth 

parameter was extracted using a plug-in 

method designed to minimize errors. The 

Gaussian density function was then estimated 

using this parameter by calculating the mean 

and variance of the noise contained in the 

image. Finally, a useful denoising method is to 

divide the image using thresholding. 

5. Conclusions 

This paper presents a new implementation 

approach for denoising Gaussian noise in 

satellite images, combining a convolutional 

neural network (CNN) with a novel filtering 

technique. The method converts noisy images 

to YUV color space, isolates the noisy Y 

channel, and uses cross-validation to estimate 

the density function of the Y channel. This 

method significantly enhances image quality by 

removing noise while preserving essential 

details. The method offers a robust framework 

for handling noise characteristics, 

demonstrating improvements in visual 

appearance and performance metrics. 
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