
 

310 

 

Journal of Engineering and Sustainable Development 

Vol. 29, No. 03, May 2025 

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd 

ISSN 2520-0917 

Research Article 

https://doi.org/10.31272/jaesd.2746 

 

Hybrid CNN and RNN Model for Histopathological Sub-

Image Classification in Breast Cancer Analysis Using Self-

Learning 

Alaa Hussein Abdulaal1* , Morteza Valizadeh2 , Riyam Ali Yassin3 , Mehdi Chehel Amirani4 ,  A. F. 

M. Shahen Shah5  , Baraa M. Albaker6 , Ammar Saad Mustaf 7  

1,6 Department of Electrical Engineering, College of Engineering, Al-Iraqi University, Baghdad, Iraq  

2,3,4Department of Electrical Engineering, Urmia University, West Azerbaijan, Iran 
5Department of Electronics and Communication Engineering, Yildiz Technical University, Istanbul, Turkey 
7Department of Missions and Cultural Relations, Al-Iraqi University, Baghdad, Iraq 

 
*Email: Alaa.H.Abdulaal@aliraqia.edu.iq 

 

1. Introduction  

The body gets cancer when aberrant cell proliferation 

accumulates and forms a tumor [1]. This development may be 

categorized as benign or malignant. Malignant tumors, on the 

other hand, are destructive and quickly developing, which may 

result in significant sickness in the body. Benign tumors are 

often less dangerous to human health since they do not spread 

to other body areas. The most severe and complicated genetic 

illness yet is cancer. Pathologists differentiate between benign 

and malignant cells primarily based on morphological 

abnormalities of the nucleus [2]. A global burden of disease 

(GBD) analysis found that there were 2,088,849 new instances 

of breast cancer (BC) in 2018, and it was responsible for 

626,679 fatalities [3]. The fatality rate for women with breast 

cancer has dramatically risen among the 100 various forms of 

cancer. According to predictions, there will be over 27 million 

new instances of BC by 2030 [4]. These numbers demonstrate 

the need for and significance of the automated system in 

reducing the death rate for women. 

Although there are other imaging techniques, pathology images 

were used for this investigation because they are the "gold 

standard" for cancer [5]. This is so that the underlying illness 

and its impact at the tissue level may be seen in greater detail 

using histopathological images. In other words, histopathology 

offers information about the tissue's microarchitecture. The 

illness often begins at the molecular level before progressing to 

the tissue and cellular levels [6]. When the illness first begins 

to harm the tissue, it is imperative to find it. 

Additionally, only the histopathological image may be used to 

determine the specific causes of certain disorders [7]. In clinics, 

specialists often perform the biopsy. This procedure involves 

removing a portion of the patient's tissue and preparing it on a 

glass slide with H & E staining, which improves the cytoplasm's 

visibility (pink) and nuclei's visibility (purple). 
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The pathologists then use a microscope to examine these slides 

to investigate the tumor [8]. Pathologists look at the critical 

regions, the way cells are distributed and arranged within the 

tissue, the form and structure of the cells, how the nuclei are 

managed, and any abnormalities brought on by cancer [9]. 

Nevertheless, this procedure requires a lot of time, money, and 

knowledge in the field. 

In recent years, significant advancements have been made in 

detecting BC through histological images. Many works have 

employed computer-aided diagnosis (CAD) systems to classify 

BC into benign and malignant types using machine-learning 

techniques. 

Hameed et al. [10] utilized four deep learning models—VGG-

16 and VGG-19, fully trained and fine-tuned—to categorize 

carcinoma and non-carcinoma breast tissue images. Their 

ensemble of fine-tuned models achieved an average accuracy 

and F1 score of 95.29%, with a sensitivity of 97.73% for 

carcinoma classification. 

Gupta and Chawla [11] proposed a two-phase approach using 

pre-trained models (VGG-16, VGG-19, ResNet-50, and 

Xception) to extract features from the BreaKHis dataset. They 

used support vector machine and logistic regression for 

classification, achieving 92.5% accuracy with the ResNet-50 

model, which was particularly effective at 100× and 40× 

magnification levels. 

Jiang et al. [12] introduced BHCNet, a neural network with a 

small SE-ResNet module optimized by a Gauss error scheduler 

for fine-tuning SGD learning rates. This model demonstrated 

high accuracy, scoring between 98.87% and 99.34% for binary 

and 90.66% to 93.81% for multi-class classification. Haija and 

Adebanjo [13] explored transfer learning (TL) with a pre-

trained ResNet-50 model on the BreaKHis dataset, achieving a 

notable accuracy of 99% using 75% of the data for training. 

Alom et al. [14] developed an improved inception-residual 

CNN (IRRCNN) by combining ResNet, Inception-V4, and 

recurrent convolutional networks (RNN). This model 

outperformed individual networks with accuracies of 99.05% 

for binary and 98.59% for multi-class classification. 

Srikantamurthy et al. [15] suggested a hybrid CNN-LSTM 

model for classifying BC subtypes, employing transfer learning 

on the BreakHis dataset. Using optimizers like Adam, 

RMSProp, and SGD, the CNN-LSTM model achieved 99% 

accuracy for binary classification and 92.5% for multi-class 

subtype classification. All these related works are presented in 

Table 1. 

Table 1. Summary of the related works 

Ref. Model Dataset Classifier Accuracy 

[10] CNN WSI Binary 95.29% 

[11] CNN-SVM BreakHis Binary 92.5% 
[12] BHCNe (CNN) BreakHis Binary 

Multi-Class 

98.87% 

90.66% 

[13] ResNet-50 BreakHis Binary 99% 
[14] IRRCNN BACH 

BreakHis 

Multi-Class 

Binary 

98.59% 

99.05% 

[15] CNN-LSTM BreakHis Binary 
Multi-Class 

99% 
92.5% 

This work introduces a hybrid CNN-LSTM model for 

classifying benign and malignant BC histology sub-images 

using TL. The model combines features [16]-[21] from a pre-

trained CNN based on ImageNet and an RNN. The CNN layers 

are initially frozen, while the RNN is trained with preprocessed 

data. Features from both networks are then integrated [22], and 

classification is performed using SoftMax [23]. The approach 

leverages spatial data properties for improved accuracy and 

employs LSTM to handle long context windows and prevent 

gradient issues. The model's architecture allows for 

simultaneous fine-tuning of CNN and RNN components, 

enhancing classification outcomes. 

The following section will thoroughly explain the suggested 

hybrid CNN-LSTM model and details regarding the dataset 

utilized to confirm the proposed method of differentiating 

between benign and malignant BC. The findings from the 

recommended strategy will be compared with those from other 

approaches. Then, the benefits of the proposed technique will 

be compared to current methods.  

2. Materials and Methods 

The following section of this paper highlights the main 

breakthroughs and provides an overview of the proposed 

methodology used in sub-image classification in BC based on 

histopathological images. 

 

2.1. BreaKHis Dataset  

The BreaKHis dataset, which was created in the P&D 

Laboratory in Parana, Brazil, is used in this paper. BreaKHis 

was initially mentioned by Spanhol et al. [24]. The dataset 

consists of 7909 microscopic images of breast tumor tissue 

taken during clinical work between January 2014 and 

December 2014. The collection includes 2480 standard and 

5429 malignant tissue samples. These categories were used to 

group the photographs in the dataset after they were taken with 

various magnification factors (40, 100, 200, and 400), as shown 

in Figs.  1 and 2. The 82 patients who provided the samples had 

their data anonymized [25]. Hematoxylin and eosin (HE) 

staining and surgical open biopsy (SOB) were used to create 

samples from breast tissue biopsy slides. Experienced 

pathologists diagnosed each slide after it had been labeled in the 

P&D Laboratory. 

 

 

Figure 1. Sub-classes of benign tumor images [26]. 

 

Figure 2. Sub-classes of malignant tumor images [26]. 
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2.2. Sub-Image Creating 

This paper uses the BreaKHis dataset in Tables 2 and 3 to show 

that images can be split into nine sub-images to make them 

easier to classify. The sub-image approach enables analyzing 

essential sections of an image, like other tissues or cancerous 

cells, instead of viewing the whole image as one. Abdulaal et 

al. [27] used this technique of sub-image classification to 

minimize errors in their work’s accuracy. 

Table 2. Image counts in the BreaKHis dataset 

Class Type 40X 100X 200X 400X 

 

Benign 

A 114 113 111 106 

F 253 260 264 237 

TA 109 121 108 115 

PT 149 150 140 130 

 

Malignant 

 

DC 864 903 896 788 

LC 156 170 163 137 

MC 205 222 196 169 

PC 145 142 135 138 

 Total 1995 2081 2013 1820 

 

Dividing the original image into smaller sub-images, as 

indicated in Fig. 3, made the classification task more directed 

and focused. For instance,  every sub-image can capture local 

features and traits essential to the classification problem. This 

allows a more detailed analysis and improves classification 

accuracy. 

 

Figure 3. Sub-image operation 

 

Table 3. Sub-image counts in the BreaKHis dataset  

Class Type 40X 100X 200X 400X 

 

Benign 

A 1026 1017 999 954 

F 2277 2340 2376 2133 

TA 981 1089 972 1035 

PT 1341 1350 1260 1170 

 

Malignant 

 

DC 7776 8127 8064 7092 

LC 1404 1530 1467 1233 

MC 1845 1998 1764 1521 

PC 1305 1278 1215 1242 

 Total 17955 18729 18117 16380 

 

This method has proved its efficiency in sub-image 

identification within the BreaKHis dataset by exhibiting the 

power of sub-image classification to boost the accuracy and 

sensitivity of breast cancer classifiers [27]. 

2.3. Hierarchical Self-Learning 

A hierarchical self-learning approach based on literature by 

Abdulaal et al. [27] generated labels for new sub-images in the 

first case for this experiment. The idea is to gradually amend 

any wrong labels via a predefined rule incorporating prior 

information about mistakes that could have been made while 

labeling an initial set of sub-images. Employing such self-

learning enabled us to observe consistent enhancements in 

accuracy in four step-wise improvements. 

The first step toward obtaining the most accurate diagnosis is 

acquiring the labels associated with the newly acquired images. 

These labels were used to initiate the subsequent correction 

process.  

Looking at the data hierarchy, the tags are refined through 

multiple iterations. Since the data is labeled, errors can be 

identified and rectified more quickly. Furthermore, these 

amendments were implemented across the whole dataset 

through interrelations and dependencies inherent within sub-

images, enhancing overall precision. 

The increased accuracy rates showed that the self-learning 

process proved highly effective after four rounds of label 

correction, significantly improving overall performance. Refers 

to how incremental changes in image annotation helped reduce 

instances of mislabeling, hence enhancing data set reliability.  

This technique generates new sub-image-level annotated 

datasets, described in Table 4. 

Table 4. New sub-image dataset 

Type Factor Benign Malignant Total 

BreaKHis  

 

40X 

625 1370 1995 

Sub-images 5625 12330 17955 

Self-

Learning 

 

7983 9972 17955 

BreaKHis  

 

100X 

644 1437 2081 

Sub-images 5796 12933 18729 

Self-

Learning 

8137 10592 18729 

BreaKHis  

 

200X 

623 1390 2013 

Sub-images 5607 12510 18117 

Self-

Learning 

 

8065 10052 18117 

BreaKHis  

 

400X 

588 1232 1820 

Sub-images 5292 11088 16380 

Self-

Learning 

7576 8804 16380 
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2.4. Hybrid CNN-RNN Model 

The rapid advancement of biotechnology has paved the way for 

developing CNNs as powerful models for image understanding. 

CNNs employ coordinated neurons that act as local filters 

across the entire input space, allowing for extracting local and 

deep features related to the input image. Another type of Neural 

Network that deals with sequence data is called RNN. 

In this respect, unlike the traditional CNN architecture in which 

nodes and layers are placed in a forward sequence from the 

input layer to the output layer, the latter is inappropriate for 

dealing with sequential data types.  

The training phase begins with pre-training the CNN on the 

ImageNet dataset, followed by BreaKHis data preprocessing 

steps. The TL strategy is used to start a new CNN with 

parameters of the pre-trained network. Subsequently, the RNN 

model is trained after freezing all the CNN layers. Once the 

training process is completed, the CNN layers are unfrozen, and 

the entire Hybrid model is trained. 

Attention processes combine the features extracted by the RNN 

and CNN in a neural network framework. During the testing 

phase, preprocessed testing images are fed into the tuned 

Hybrid architecture, and classification outcomes are obtained 

using a SoftMax layer [23]. The model architecture includes 

multiple components: a CNN layer, an RNN layer, a merge 

layer, and a fully connected layer (FC) with a SoftMax output. 

Fig. 4 illustrates the overall model structure. 

The pre-trained CNN layer employs weights acquired from pre-

training on the ImageNet dataset to initialize the proposed CNN 

architecture. CNNs consist of pooling and convolutional layers. 

The pooling layer performs a similar operation to the 

convolution layer but with a sliding window typically of size 

2x2 and a sliding step of 2. This halves the feature map size 

from the previous layer, significantly reducing the feature map's 

size and the model's complexity. This reduction improves the 

speed of network training and enables the network to adapt to 

changes in image scales. 

In this work, pre-trained models like VGG19 [28]-[31], Google 

Net [32]-[36], and ResNet101 [37]-[38] have been used, and the 

ReLU activation function has been employed. The convolution 

layer is the most significant part of a CNN. It performs 

convolutional operations with various-sized convolution 

windows on the feature maps of the previous layer. Typically, 

size 3x3 or 5x5 filters slide sequentially over the previous 

layer's feature map. The size of the window and the number of 

weight parameters in the convolution layer vary accordingly. 

The feature maps of the last layer are convolved through the 

corresponding filters, and the activation function used in the 

layer determines the outcome. 

The RNN layer, like the CNN layer, consists of input, output, 

and hidden layers. The connections between the hidden layers 

are a significant feature of RNNs. The output of the hidden layer 

is fed back to the hidden layer itself, and there can also be 

connections between adjacent hidden nodes. This dynamic 

nature of the network makes RNNs closer to biological neural 

systems. The LSTM (Long Short-Term Memory) model is 

predominantly used in this work. LSTM is capable of learning 

long-term dependencies in data. The main difference between 

RNN and LSTM is that a structure has been added to determine 

the vital information. Input gate, output gate, and forget gate are 

three in it. The information fed into the LSTM network can be 

modified with these gates. Forget gate discards irrelevant 

information and only retains information that meets the 

algorithm’s parameters. 

The merging layer combines extracted features from CNN and 

RNN through a combinatorial model. A neural network that 

concentrates on only a few inputs or qualities assists in this 

undertaking. 

The merge layer incorporates an attention mechanism to allow 

the model to prioritize important or relevant features during the 

merger. Consequently, more precise processing could be 

possible, finally improving overall performance. 

The merge layer uses element-wise multiplication in 

conjunction with an attentional mechanism to form a composite 

feature representation capable of capturing both spatial and 

temporal information. A combination representation that 

includes the strong points of either model- a joint CNN and 

RNN model can be used in tasks like classification or other 

forms of analysis. In this case, the attentional neural network 

combines features extracted from CNN with those produced by 

RNN into merged features. The fact that this network has 

attention mechanisms allows it to focus on specific inputs or 

features to select the ones that further need processing. The 
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Figure 4. Hybrid model structure 
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number of hidden units or cells in the LSTM layer determines 

the size of the feature vectors. In this setup, an LSTM layer with 

512 hidden units is used. Consequently, the feature vectors 

obtained from the LSTM layer would be 512. 

The FC layer with SoftMax output receives the merged features 

from the RNN and CNN and produces a probability distribution 

over all the classes. Cross-entropy is the loss function that 

measures the difference between the actual and target outputs. 

The Weight values in the CNN branch utilize the parameters 

pre-trained on the ImageNet data set, and the RNN branch 

randomizes parameters. Those weight values are updated 

iteratively through a cross-entropy loss function gradient in the 

training process. The convolutional layer was frozen initially, 

and the training samples were estimated through the Adam 

optimizer, which requires 100 epochs for the training process. 

The training process is terminated following a certain number 

of periods. The model with a minimal verification loss value 

has been selected as an ultimate network. 

In the architecture described, the fusion of features from the 

CNN and the LSTM is achieved using an attentional neural 

network mechanism or other fusion techniques. This fusion 

process combines the feature vectors obtained from the last 

layer of the CNN with the feature vectors from the LSTM. The 

attentional neural network mechanism used at the fusion step 

can assign different importance levels to other elements in the 

feature vectors generated by CNN and LSTM. This way, the 

model can be selective towards more informative features for 

better performance during fusing. Other fusion techniques can 

also combine CNN and LSTM features. Depending on what is 

necessary to accomplish the objective, these techniques include 

aggregation, external addition or multiplication, and others like 

capsule or graph neural networks. Fig. 5 depicts the flowchart 

of the proposed model. 

BreakHis Dataset

Dividing into 9 

Parts

Processed

+

Training 

CNN RNN

Merge

Evaluation 

Evaluation 

Figure 5. Flowchart of the proposed model 

2.5. Resize image  

To assure interoperability with the multiple networks utilized in 

this work, the data in the BreaKHis dataset needed to be size 

normalized. Data cropping and rescaling algorithms match the 

image sizes with the pre-trained deep neural networks. ResNet 

101 utilizes 224 x 224 pixels for operation, VGG19 uses 224 x 

224 pixels, and Google Net uses 224 x 224 pixels—

compatibility with the particular network topologies utilized in 

this investigation by appropriately scaling the input images. 

2.6. Transfer Learning 

Transfer learning indicates the trained system’s parameters’ 

migration to the new model to help train that new architecture. 

In the present work, the pool layer and conv layer of the first 

few pre-trained ImageNet data of the CNN model have been 

utilized as the proposed network’s base, on top of which a 

number of the task-specific fully-connected layers with the 

randomly initialized weight values have been attached [39]-

[43]. To facilitate transmissions of the features, the same 

network layer (i.e., pooling & conv) as the CNN has been 

transferred to the exact location in the proposed architecture. 

Additionally, CNN utilizes an RGB channel as the input, and 

the RNN takes one channel map as the input. All those layers 

have been trained (i.e., tweaked) jointly on the BreaKHis data 

set and utilized at the original learning rate for the FC layer 

training. 

2.7. Experimental Setup 

This work employs a sub-image from BreaKHis dataset-based 

learning approach to train the proposed model. To conduct the 

tests, the BreaKHis dataset is divided into two groups: a testing 

set and a training set. The division was performed randomly, 

without replacement, with 20% of the data allocated for testing, 

while the remaining 80% was used for training. The data was 

trained and tested separately for each magnification level. 

Cross-validation techniques were not utilized in this work. 

A dropout regularization is implemented to mitigate the risk of 

overfitting in the pre-trained neural networks. Dropout was 

applied to each network to prevent excessive reliance on 

specific features during training. Prior works that adopted an 

image-based approach have also utilized the BreaKHis dataset, 

including references [25]-[27] and [39]-[42]. 

The training process involved freezing the CNN layers and only 

training the final classification layer and the RNN network [15]. 

This training was performed using the Adaptive Moment 

Estimation (Adam). Afterward, all network layers were 

unfrozen and fine-tuned using the Adam optimizer [44] with a 

learning rate 0.0001. The cross-entropy loss function was 

utilized and optimized to fit not only the 1-hot distribution but 

also the uniform distribution. 

The hyperparameters, including the decay factor, learning rate, 

and batch size, were configured as follows: the decay factor was 

set to 0.99. In contrast, the learning rate was set to a specific 

value. Additionally, the batch size was set to 128 during the 

training process. 
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3. Results 

This section provides the results of tests on three DNNs trained 

using TL techniques. These networks were then evaluated to 

identify BC using histopathology images. The model was 

trained and tested with sub-image data as specified in Table 4. 

These models were built using 80% of the available data, while 

20% was employed to assess their performance in binary 

classifications. Dividing the data ensures that the models’ 

generalization abilities are adequately assessed and can 

accurately predict and separate breast cancer cases. 

Self-learning is employed on sub-image data; the models will 

only concentrate on specific areas within the images to capture 

more localized features, enhancing classification accuracy.  

These experiments have yielded important information about 

how well DNNs trained on histopathological images perform in 

breast cancer classification. To evaluate the model's 

competence at accurately recognizing and classifying breast 

cancer cases, metrics including accuracy, precision, recall, and 

F1-score are used. Breast cancer detection auto-systems can 

improve their classification accuracy and performance by using 

either sub-image data or applying transfer learning. 

3.1. Evaluation Metrics 

Evaluation metrics are essential for evaluating how well 

categorization algorithms work. In this work, several widely 

recognized metrics are utilized to assess the efficacy of the 

models, including Accuracy, Sensitivity (Recall), Specificity, 

Precision, ROC, and F1 score [45]-[48]. 

3.1.1. Accuracy 

Accuracy, as shown in equation (1), measures the proportion of 

correctly identified samples to all samples. Greater accuracy 

values correspond to better model performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡𝑝 + 𝑡𝑛)/𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  (1) 

3.1.2. Recall (Sensitivity)  

 A model's sensitivity assesses its ability to correctly identify 

positive samples among all true positives. Sensitivity is 

essential when minimizing false negatives, as shown in 

equation (2). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) (2) 

3.1.3. Specificity  

 As shown in equation (3), specificity measures how well the 

model can identify negative samples out of all negative ones. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑝) (3) 

3.1.4. Precision  

Precision measures how well the model predicts the positive 

samples. It is helpful when one wants to minimize false positive 

results, as shown in equation (4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝) (4) 

3.1.5 F1 score 

The F1 score is a balanced statistic combining precision and 

sensitivity. F1 is a measure that combines precision and recall 

in one number, as shown in equation (5). This indicates an 

improved trade-off between accuracy and recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)   (5) 

3.2. Performance Evaluation of Proposed Model 

This work investigates the performance of classifications by 

VGG19, Google Net, and Resnet101 deep neural network 

(DNN) classifiers. The BreaKHis images on which these 

classifiers have been tested had magnification factors of 40x, 

100x, 200x, and 400x. The results are provided in Tables 5 and 

6 and shown in Fig. 6, 7, and 8 to evaluate how these DNNs 

perform relative to each other. Resnet101 was the best 

performer and was accurate in all measures. 

Table 5. Evaluation measures for the DCNN model 

Type Fact. Accu. Sens. Spec. Prec. F1  

V
G

G
 1

9
 

40X 97.91 97.90 97.90 97.88 97.89 

100X 98.21 98.18 98.18 98.18 98.18 

200X 97.65 97.62 97.62 97.63 97.62 

400X 97.04 97.03 97.03 97.02 97.02 
G

o
o

g
le

 N
et

 40X 97.74 97.72 97.72 97.71 97.72 

100X 98.24 98.19 98.19 98.22 98.21 

200X 97.71 97.69 97.69 97.67 97.68 

400X 97.01 96.98 96.98 97 96.99 

R
es

n
et

 1
0

1
 40X 98.41 98.39 98.39 98.40 98.39 

100X 98.58 98.59 98.59 98.53 98.56 

200X 98.48 98.47 98.47 98.46 98.46 

400X 97.47 97.46 97.46 97.44 97.45 

 

Table 6. Evaluation measures for the hybrid model 

Type Fact. Accu. Sens. Spec. Prec. F1  

V
G

G
 1

9
 +

 

L
S

T
M

 

40X 98.55 98.54 98.54 98.53 98.53 

100X 98.99 98.95 98.95 98.98 98.97 

200X 98.37 98.37 98.37 98.34 98.35 

400X 98.26 98.25 98.25 98.25 98.25 

G
o

o
g

le
 N

et
 +

 

L
S

T
M

 

40X 98.38 98.36 98.36 98.37 98.36 

100X 98.93 98.91 98.92 98.92 98.91 

200X 98.76 98.73 98.73 98.75 98.74 

400X 98.53 98.54 98.54 98.52 98.53 

R
es

n
et

 1
0

1
 +

 

L
S

T
M

 

40X 99.16 99.14 99.14 99.17 99.15 

100X 99.76 99.76 99.76 99.75 99.76 

200X 99.20 99.20 99.20 99.18 99.19 

400X 99.11 99.13 99.13 99.10 99.11 
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Figure 6. DNN accuracy at multiple magnifications in 

manufacturing 

 

Figure 7. Hybrid accuracy at multiple magnifications in 

manufacturing 

 

Figure 8. Precision and specificity for hybrid system 

 

3.3. Confusion Matrices 

Tables 7 and 8 are the confusion matrices for two classification 

models applied to the sub-image BreaKHis dataset. 

These matrices give a detailed account of each model's 

classification results, indicating the number of true positives, 

false negatives, false positives, and true negatives. 

 

 

 

Table 7. Confusion matrices for DCNNs 

Type Fact. TP FP FN TN A% 

V
G

G
 1

9
 

40X 1561 36 39 1955 97.91% 

100X 1593 34 33 2085 98.21% 

200X 1569 44 41 1969 97.65% 

400X 1467 48 49 1712 97.04% 

G
o

o
g

le
 N

et
 40X 1558 39 42 1952 97.74% 

100X 1592 35 31 2087 98.24% 

200X 1573 40 43 1967 97.71% 

400X 1464 51 47 1714 97.01% 

R
es

n
et

 1
0

1
 40X 1568 29 28 1966 98.41% 

100X 1605 22 31 2087 98.58% 

200X 1587 26 29 1981 98.48% 

400X 1476 39 44 1717 97.47% 

 

Table 8. Confusion matrices for the hybrid model 

Type Fact. TP FP FN TN A% 
V

G
G

 1
9

 +
 L

S
T

M
 40X 1572 25 27 1967 98.55% 

100X 1606 21 17 2101 98.99% 

200X 1586 27 32 1978 98.37% 

400X 1487 28 29 1732 98.26% 

 

G
o

o
g

le
 N

et
 +

 

L
S

T
M

 

40X 1567 30 28 1966 98.38% 

100X 1606 21 19 2099 98.93% 

200X 1589 24 21 1989 98.76% 

400X 1493 22 26 1735 98.53% 

R
es

n
et

 1
0

1
 +

 

L
S

T
M

 

40X 1579 18 12 1982 99.16% 

100X 1623 4 5 2113 99.76% 

200X 1600 13 16 1994 99.20% 

400X 1504 11 18 1743 99.11% 

 

The findings demonstrate that ResNet101 has attained a 

markedly superior accuracy rate of 99.76% compared to the 

other models. ROC curves, shown in Fig. 9, show the trade-off 

between true positive rate and false positive rate, helping to 

evaluate model performance across all thresholds. Precision-

recall curves, shown in Fig. 10, highlight the trade-off between 

precision and recall for different thresholds and are helpful in 

imbalanced datasets. Table 9. compares the proposed hybrid 

CNN-LSTM with existing state-of-the-art models. Figs. 11 and 

12 show the convergence loss and accuracy for the Hybrid 

ResNet101 + LSTM model. 
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(a) ResNet101 (b) ResNet101+LSTM 

Figure 9. ROC curves  

`
 

(a) ResNet101 (b) ResNet101+LSTM 

Figure 10. Precision-recall curves  

 

 

Table 9. Performance comparison 

Ref. Factors Accuracy Sensitivity Specificity Precision F1 score 

[14] 2019 40X- 400X 88.12% 86.80% 87.33% - - 

[10] 2020 - 95.29% 95.21% - 95.46% 95.29% 

[11] 2020 

40X 89.87% 86.27% - 87.11% 86.34% 

100X 96.45% 86% - 86.37% 85.93% 

200X 94.10% 83.11% - 84.52% 83.08% 

400X 90.94% 80.09% - 80.14% 80.04% 

[15] 2023 

40X 96.30% 95% - 97% - 

100X 92.60% 93% - 92% - 

200X 88.04% 88% - 87% - 

400X 92.51% 93% - 92% - 

[25] 2024 

40X 97.24% 96.69% 96.69% 96.89% 96.79% 

100X 96.88% 96.67% 96.67% 96.09% 96.37% 

200X 97.77% 97.50% 97.50% 97.29% 97.40% 

400X 98.08% 97.92% 97.92% 97.71% 97.81% 

This Work 

2024 

40X 99.16% 99.14% 99.14% 99.17% 99.15% 

100X 99.76% 99.76% 99.76% 99.75% 99.76% 

200X 99.20% 99.20% 99.20% 99.18% 99.19% 

400X 99.11% 99.13% 99.13% 99.10% 99.11% 
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Figure 11. Convergence loss 

 

Figure 12. Accuracy 

 

4. Conclusions 

This paper presents a novel hybrid approach that combines 

CNN-RNN models for breast cancer classification using 

histopathology images. The model effectively extracts features 

and enhances classification accuracy by employing pre-trained 

CNNs such as VGG19, Google Net, and ResNet101.  

The integration of CNN with RNN components allows for 

capturing localized features and insights, further boosting 

accuracy. A sub-image-based strategy and hierarchical self-

learning approach were implemented to address mislabeled 

images, refining the dataset and facilitating robust model 

training. The hybrid model, achieving an accuracy of 99.76%, 

highlights its potential for broader tumor and disease 

classification applications. The paper primarily addresses 

binary classification, which may not capture the complexity of 

different breast cancer subtypes. Overall, this innovative 

approach marks a promising advancement in medical image 

classification, with significant implications for improving 

diagnosis and patient care. 
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