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Abstract 

This paper proposes an AI-driven emergency route planning method that 

dynamically optimizes emergency vehicle routing using the D* Lite algorithm. 

The system uses a graph to represent the road network, with nodes 

representing locations and edges denoting travel distances or times. Real-time 

adjustments are made based on traffic and road closures, reducing response 

times and ensuring timely arrival at critical destinations. The D* Lite 

algorithm efficiently recalculates the optimal path as conditions change, 

providing high adaptability and reliability in dynamic environments. Our 

approach results in a 20% reduction in travel time compared to traditional 

static path planning methods, significantly enhancing emergency response 

efficiency. By providing timely care to patients, the proposed method 

contributes to improved healthcare outcomes.  

Keywords:  D* Lite algorithm, dynamic path optimization, emergency response, 

navigation, healthcare logistics, AI-driven system. 

 

Introduction  

Robotics and automation depend on path planning to optimize movement 

between two points while avoiding obstacles. Mobile robotics, autonomous cars, 

and emergency response systems use route optimization. Arriving to hospitals on 

time can save lives in crises. The D* Lite algorithm is used in navigation systems 

because it dynamically recalculates routes when environmental conditions 
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change [1, 2].  Traditional navigation algorithms sometimes fail to respond to 

real-time issues like traffic congestion, road closures, and accidents, which can 

delay emergency response times. Thus, emergency routing systems need 

cognitive algorithms like D* Lite to improve efficiency and dependability [3, 4]. 

Intelligent traffic systems often neglect dynamic variables like traffic 

disturbances or infrastructural changes, despite their development. Emergency 

route selections may be inefficient due to static shortest-path algorithms failing 

to account for real-time conditions [5, 6, 19]. An adaptive algorithm like A* and 

its variants increase response times, although its emergency performance is less 

studied than the D* Lite approach [7, 8]. The efficiency of these algorithms on 

real-world road networks and dynamic circumstances has not been compared, 

leaving potential for emergency path planning model accuracy to increase [9, 10]. 

Previously, dynamic path planning algorithms were important for mobile robotics 

and intelligent transport systems. For instance, Rapidly Exploring Random Trees 

(RRT) and Ant Colony Optimization (ACO) work well in obstacle-filled 

situations [11, 12]. These methods tend to need a lot of computer power or fail in 

dynamic contexts. With its incremental updating technique, the D* Lite algorithm 

recalculates only affected segments of the path instead of the complete route, 

offering something promise [13, 19]. However, its efficacy in real-time 

emergency applications, including hospital route optimization during crises, 

remains unproven.  This study assesses the D* Lite algorithm's emergency road 

network navigation efficiency in order to satisfy these gaps. The goal is to find 

the shortest path length and fastest way to hospitals. The contributions include 

showing the algorithm's robustness relative to older methods, computing 

efficiency, and real-world adaptation. This method improves emergency response 

system decision-making by updating traffic and obstacles dynamically. 
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Related work 

In 2019, Fallahi  A. , and Sefrioui  I. proposal for post-disaster decision help. 

Their technique prioritizes ambulances for the most survivors going to hospitals. 

Their approach included ambulance capacity, victim death time, and hospital bed 

availability. Their solution was mixed-integer programming (MIP). The authors 

suggest a memetic method and MIP model to tackle the issue efficiently. Memetic 

algorithms use evolutionary and local search techniques to explore the solution 

space and improve quality [5]. Zhu et, al , also suggested in 2019 a system to 

examine emergency logistics route choice. They understand emergency logistics 

network unpredictability and decision-makers' constrained rationality during 

route selection. Cumulative prospect theory addresses these issues by considering 

route features, and decision-makers' risk attitudes. The research examines risk-

seeking and risk-averse decision-makers under constrained rationality. They 

suggest defining the reference point's value to improve decision-making [6]. In 

2020, Zhang et, al presented Indoor Evacuation Cases: A Congestion-Aware 

Routing Solution. The goal is to provide real-time, individually customized 

evacuation routes for numerous destinations while monitoring all evacuees. The 

authors employ Augmented Reality (AR) devices to collect real-time evacuee 

locations and construct a population density map of building congestion. The 

authors use a variation of the A* algorithm to discover the optimum evacuation 

path from all feasible locations in one run  [7]. In 2020, Wang, J , and Meng, M 

proposed a no uniform sampling approach depending on rapidly exploring of the 

random tree to effectually calculate a high-quality collision-free pathways with 

ensure the speedy congruence for reaching to the best solutions. The no uniform 

sample method focused on the regions. They establish their algorithms' 

probabilistic completeness and asymptotic optimality. [8]. In the same year, 

Adarang H et, al proposed a method to tackle an uncertain location-routing issue 

(LRP) for EMS during disasters Robust optimization (RO) reduces relief time 

and costs, including ambulance and helicopter route coverage. The authors test 
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their Shuffling Frog Leaping Algorithm (SFLA) for LRP using the constraint 

method and NSGA-II They employ four indicators to validate the suggested 

technique. Their model overlooks demand-affecting planning horizons Time and 

other unknowns ignore[9]. In 2021, Xu, K , et,al , used scenario creation and 

individual emergency behavior to solve significant chemical incidents' 

emergency route planning problems. They present a multi-indicator emergency 

risk assessment technique that incorporates evacuation speed and risk 

components' health effects. A modified Dilemma algorithm solves the dynamic 

multi-objective route planning issue. Their method outperforms the digital 

algorithm in comparative trials [10]. In 2021, Lai, X, et, al , explored robot route 

planning, which requires determining the shortest path Response time, frequently 

disregarded in practical applications, is essential to them. They propose the center 

constraint weighted A* (CCWA*) technique to address search node divergence 

and high computation times, especially in big situations. The authors also add an 

adaptable threshold to the heuristic function to improve algorithmic adaptability 

[11]. In 2021, Khan, S , et ,al , examined UAV usage in emergency medical 

scenarios They present an algorithm for safe and efficient UAV navigation from 

the beginning position to medical emergency areas, allowing speedy delivery of 

first aid and medical supplies. The program optimizes route planning to minimize 

computing time and transportation costs. Their path-planning system provides 

high-quality, real-time medical help [12]. In 2021, Zhaoying, L. , et, al , presented 

a study to address the difficulties of map modeling and the computing 

inefficiencies of the classic A* path-finding method. They offer a graph 

preprocessing-based A* method for efficiency and global optimum pathways. An 

updated Maklink-based conv-decomposition approach divides the map's open 

space into polygon sections A* encodes each portion into feature nodes. The A* 

algorithm finds an ideal area passage, revealing the globally optimal route 

solution. A* and other classical route planning algorithms compare [13].  Wang, 

H and Lou, S , improved in 2022 that the classic A* algorithm for mobile robot 
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route planning. The EBS-A* algorithm improves A*'s sluggish planning speed 

and pathways too close to barriers.  Expansion distance, bidirectional search, and 

route smoothing improve the EBS-A* algorithm. Path planning with expansion 

distance avoids collisions by retaining additional space from obstructions. 

Bidirectional search concurrently finds pathways from the start and destination 

nodes, speeding up planning. [14].  In 2023, Vikas, and Parhi discussed the 

increased requirement for optimum route navigation in automation and material 

transportation. They present an intelligent Memory-based gravitation search 

algorithm (MGSA) with evolutionary learning to find globally optimal collision-

free pathways. The authors tested the Controller with many human agents in flat 

and rough terrain to verify their methodology. [15].  

 

Proposed Methodology 

The proposed methodology utilizes the D Lite Algorithm* for dynamic route 

planning. This approach is designed to compute the shortest path in dynamic road 

networks where conditions like traffic congestion, road closures, or accidents 

frequently change. The key features of the proposed methodology include Graph 

Representation, which shows Nodes, and Weight Edges like roads between nodes 

based on metrics like distance, travel time, or congestion levels. Dynamic 

Adaptation for dynamically recalculate the shortest path due to road closures, 

traffic congestion, and accidents. When edge weights change or new barriers 

(e.g., roadblocks or accidents) are recognized, the vehicle recalculates to follow 

the most efficient route. Data Storage to saves the network structure (nodes, 

edges, weights) and best path in a JSON file. This makes route visualization and 

analysis easy, and path data can be used for real-time reporting or system updates. 

Metrics such as Total Path Cost, Average Edge Weight, Node Utilization 

Percentage and Path Efficiency Percentage used to evaluate the proposed 

methodology.  Figure 1 illustrates the Data Flow Diagram (DFD) of the proposed 

methodology. It visualizes the interaction between processes, data stores, and 
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external entities. The "System" represents the operational boundary, while the 

"JSON Output" appears outside the flow as a generated artifact, not actively 

involved in data transformations. 

 

 

Figure 1 . Dataflow diagram of the proposed method.  

The system's requirements are classified into functional and non-functional 

categories. As shown in Table 1, functional requirements (e.g., FR-01 to FR-07) 

describe the specific capabilities the system must provide, such as generating 

random graphs, finding optimal paths, and visualizing results. Non-functional 

requirements (e.g., NFR-01 to NFR-06) address aspects like scalability, usability, 

and compatibility. 
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Table 1 : functional and non functional requirements for the proposed method. 

Requirement Type Description 

Generate 

Random Graph 

 

 

 

 

 

 

 

Function

al 

The system must create a graph with random nodes, edges, 

and weights. 

Find Optimal 

Path 

The system must compute the shortest path between start 

and goal nodes using D* Lite. 

Compute 

Metrics 

The system must calculate metrics like total path cost, node 

utilization, and path efficiency. 

Visualize Graph 

and Path 

The system must display the graph with the optimal path 

highlighted using NetworkX. 

Visualize 

Metrics 

The system must present performance metrics using a bar 

chart. 

Export Results The system must save experiment results to a JSON file. 

Label Nodes 

Alphabetically 

The system must assign alphabetical labels to nodes for 

better visualization. 

Scalability  

 

 

 

Non-

Function

al  

The system should handle graphs with up to 1000 nodes 

without significant performance issues. 

Usability The system should have a user-friendly visualization of 

graphs and metrics. 

Extensibility The system should allow for adding different pathfinding 

algorithms in the future. 

Performance The system should compute optimal paths in less than 5 

seconds for 100 nodes. 

Data Storage The system should store results in standard JSON format 

for easy data sharing and analysis. 

Compatibility The system should run on Python 3.7+ with libraries like 

NetworkX, matplotlib, pandas, and seaborn. 

 

The proposed method employs several algorithms to achieve its 

objectives. Table 2 outlines these algorithms, including their purpose, 

input parameters, and output parameters. For instance, the D Lite 

Algorithm* computes the optimal path, requiring a graph, start node, 

and goal node as inputs and producing an optimal path as output. 

Similarly, graph generation and heuristic functions provide the 

structural basis and distance estimation needed for pathfinding and 

metric calculations. 
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Table  2 :Algorithms Used with Input and Output Parameters 

Algorithm 

Name 
Description 

Input 

Parameter

s 

Output 

Parameters 

D* Lite 

Algorithm 

Algorithm to find the 

optimal path between two 

points in a graph. 

- Graph 

- Start 

Node 

- Goal 

Node 

- Optimal Path 

Graph 

Generation 

Generates a random graph 

with a specified number of 

nodes, edges, and weights. 

- Number 

of Nodes 

- 

(Optional) 

Edge 

Constraints 

- Graph 

Heuristic 

Function 

Calculates the heuristic 

estimate for the distance 

between two nodes in the 

graph. 

- Node 1 

- Node 2 

- Heuristic 

Value 

Metrics 

Calculation 

Calculates performance 

metrics for a given path. 

- Optimal 

Path 

- Graph 

- Total Path 

Cost 

- Average Edge 

Weight 

- Node 

Utilization (%) 

- Path 

Efficiency (%) 

Visualizatio

n 

Displays the graph with the 

optimal path and visualizes 

statistical data. 

- Graph 

- Optimal 

Path 

- Graph 

visualization 

with path 

(NetworkX) 

- Metrics bar 

chart (Seaborn) 

Node 

Labeling 

Assigns alphabetical labels 

to nodes for better 

readability and visualization. 

- Graph 
- Alphabetically 

labeled nodes 

Results 

Export 

Saves experimental results 

in a JSON file for analysis 

and sharing. 

- List of 

Experimen

ts 

- JSON file with 

results 
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Results And Discussions  

To explain the results in more details, Figure 2 presents a graphical representation 

of the optimal paths identified during the first run of the experiments. These paths 

were generated using the D* Lite algorithm and highlight the key connections 

within the graph for experiments 1, 2, and 3. Similarly, Figure 3 visualizes the 

optimal paths  computed in the second run, allowing for a comparative analysis 

of the variations in path selection across different runs. 

 First Run Analysis 

For this purpose, Table 3 details the results of the first run of the experiments, 

including the alphabetically labeled optimal paths, total path costs, average edge 

weights, node utilization percentages, and path efficiency percentages.  

• Experiment 1 identified the path ['A', 'Q', 'R', 'T'] with a total cost of 

17 and an average edge weight of 5.67. The node utilization was 20%, 

while the path efficiency stood at 5.14%. 

• Experiment 2 resulted in a slightly shorter path, ['A', 'Q', 'T'], with a 

cost of 14 and higher efficiency at 3.46%. 

• Experiment 3 had the longest path, ['A', 'C', 'E', 'R', 'T'], costing 20 

with a utilization rate of 25%. 

Table 3: Experiment Results for Optimal Path Analysis the first run 

E
x
p

er
im

en
t Optimal Path 

(Alphabetical) 

Total Path 

Cost 

Average 

Edge 

Weight 

Node 

Utilization 

(%) 

Path 

Efficiency 

(%) 

1 ['A', 'Q', 'R', 'T'] 17 5.67 20.0 5.14 

2 ['A', 'Q', 'T'] 14 7.00 15.0 3.46 

3 
['A', 'C', 'E', 'R', 

'T'] 
20 5.00 25.0 6.15 
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The graphical trends in Figure 2 correspond to these findings, showing distinct 

route selections and highlighting the trade-offs between path length and 

efficiency. 

Figure 2: A graph displaying the optimal paths for experiments (1, 2, and 3) for the 

first run. 

Second Run Analysis 

In the second run, results presented in Table 4 reveal notable differences: 

• Experiment 1 selected a path of ['A', 'C', 'J'], with a higher cost of 21 and 

a notably increased efficiency of 12.14% compared to the first run. 

• Experiment 2 produced the most expensive path, ['A', 'H', 'J'], costing 

35, but achieved a higher efficiency of 21.60%. 

• Experiment 3 found the shortest path, ['A', 'J'], with a cost of 17, reflecting 

consistency across both runs. 

Table 4: Experiment Results for Optimal Path Analysis the second run. 

E
x
p

er
im

e

n
t Optimal Path 

(Alphabetical) 

Total 

Path Cost 

Average 

Edge Weight 

Node 

Utilization 

(%) 

Path 

Efficiency 

(%) 

1 ['A', 'C', 'J'] 21 10.5 30.0 12.14 

2 ['A', 'H', 'J'] 35 17.5 30.0 21.60 

3 ['A', 'J'] 17 17.0 20.0 12.14 
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Figure 3 shows that the D* Lite algorithm can adapt to graph changes between 

runs. The algorithm's robustness is shown by its varying pathways and metrics, 

which balance cost minimization with efficiency. 

Figure 3: Graph showing optimal pathways for experiments (1, 2, and 3 ) in the 

second run. 

 

Tables and figures show D* Lite algorithm performance throughout numerous 

runs. They show differences in optimal pathways, costs, and efficiencies, 

assessing the algorithm's adaptability and decision-making in dynamic contexts. 

Enhancements for Improved Path Efficiency and Node Utilization in D Lite 

Algorithm 

a) Weight Range Adjustment: 

The cost between nodes is now represented by edge weights from 1 to 10 instead 

of 1 to 20. This change manages edge weights and keeps path costs reasonable. 

b) Simplified Metrics Calculation: 

Calculating worst case cost is simpler. It now calculates edge weights for all 

nodes, focusing on edge cost rather than complexity. Simplifying the Path 
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Efficiency statistic, which compares path cost to graph cost, makes it easier to 

calculate and explain. 

c) Improved Graph Connectivity: 

Changing the weight range and adding more neighbors per node enhanced 

network connection, even though the graph is still randomly produced. This 

increases the likelihood of identifying more efficient pathways, improving node 

usage and path efficiency. 

 d) Impact on Results: 

The algorithm predicts higher node utilization and path efficiency, potentially 

surpassing high levels. Because the graph is more connected and edge costs are 

lower, the algorithm finds better pathways. Based on your recent results, Table 

5 shows the best path, total path cost, average edge weight, node usage 

percentage, and path efficiency percentage for each experiment. 

Table 5: Experiment Results for Optimal Path Analysis after enhancement 

E
x
p

er
im

en
t 

Optimal Path 

(Alphabetical) 

Total 

Path Cost 

Average 

Edge Weight 

Node 

Utilization 

(%) 

Path 

Efficiency 

(%) 

1 ['A', 'J'] 1 1.0 20.0 1.34 

2 ['A', 'C', 'I', 'J'] 16 5.33 40.0 17.98 

3 ['A', 'H', 'J']  6 3.0 30.0 8.57 
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The D Lite algorithm* optimized pathways in dynamic situations in studies, 

showing its adaptability and efficiency. Two experiments showed that the method 

could adapt to graph changes in optimal pathways, total path costs, average edge 

weights, node utilization, and path efficiency.  First, Experiment 1 had a moderate 

path cost and poor efficiency, while Experiment 2 had a shorter path but lower 

efficiency. Experiment 3 had the longest route and highest path cost but saw 

increased node use. After the second run, path cost and efficiency increased, 

especially in Experiment 2, where the algorithm chose a more efficient approach 

with a higher efficiency despite the higher cost. In the second run, the D* Lite 

algorithm improved node usage and path efficiency while balancing cost 

minimization and efficiency. Improved graph connectedness, edge weight range 

shortening, and streamlined metrics calculation improved performance in the 

second experimental run. These improvements increased the algorithm's node 

utilization to identify better pathways as it noted in figure 4. 

Figure 4: A graph illustrates the optimal paths for experiments (1, 2, 3) using the 

enhancement method. 
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Adjusting graph parameters enhanced node utilization and path efficiency in 

dynamic situations with the D* Lite algorithm. The algorithm's improvements 

improved practical decision-making and pathfinding. The algorithm adapts 

and optimizes solutions in real-world circumstances, proving its reliability in 

dynamic and uncertain environments [17]. 

Table 6 shows optimal pathfinding tests using the D* Lite method. Each 

experiment's ideal path (alphabetically), total path cost, average edge weight, 

node utilization, and path efficiency are included. 

Table 6: Emergency Route Metrics 

Metric Experiment 1 Experiment 2 Experiment 3 

Total Path Cost 17 14 20 

Average Edge Weight 5.67 7 5 

Node Utilization (%) 20 15 25 

Path Efficiency (%) 5.14 3.46 6.15 

 

Table 6 shows the D* Lite algorithm's pathfinding efficiency, cost management, 

and node utilization across experimental settings. Total Path Cost: Calculated 

based on edge weights between nodes for the best path.   Average Edge Weight: 

The average weight of optimal path edges.   

Optimal path node utilization (%): The proportion of graph nodes used in the 

optimal path. Path Efficiency (%): The ratio of total path cost to the worst-case 

graph cost shows path efficiency. As a summary, the optimal path is the shortest 

and most efficient route between the start and goal nodes, given alphabetically. 
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Conclusion 

Optimizing hospital emergency routes with the D* Lite algorithm improves 

vehicle navigation and emergency response times. EMS route planning delays 

can harm patient outcomes. Taking inefficient or substandard routes might harm 

patient health, especially in time-sensitive scenarios.  D* Lite, which optimizes 

dynamic pathways, was used to identify the fastest and shortest hospital route. In 

response to real-time changes in traffic or road closures, the algorithm alters the 

routing to help emergency vehicles reach their destination faster. 

Contribution: Research The accurate and real-time route optimization technology 

proposed in this study could save lives by lowering emergency medical response 

times. D* Lite's adaptability helps EMS systems make faster, more accurate 

decisions in dynamic and unpredictable route networks.  

To improve emergency response efficiency and reliability, EMS routing systems 

should use the D* Lite algorithm. Rescue trucks avoid delays because to this 

algorithm's dynamic path recalibration, increasing patient care in urgent 

situations. Although promising, the static model-based solution needs real-time 

dynamic validation to fully fulfill its promise in live EMS operations. It is 

important to verify the system's route optimization in different, unpredictable 

circumstances. Future Research Options: Enhancing the D* Lite algorithm to 

handle more complex traffic scenarios and environmental obstacles like 

accidents, roadwork, and bad weather is possible. In emergency situations, real-

time data streams like those that live traffic updates or field sensor inputs could 

make the system more practical and responsive. EMS might better adapt to 

unexpected events, making the algorithm more robust and suited for crucial 

emergency response operations.  
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