
 2520 الثالث والأربعون العدد مجلة كلية المأمون

196

AI-Driven Dynamic Graph Network Emergency Route

Optimization with D *Lite Algorithm

Yasmin Makki Mohialden1, Ethar Abdul Wahhab Hachim2
, Nadia Mahmood Hussien

3

1Department of Computer Science, College of Science, Mustansiriyah University,

Baghdad, Iraq, ymmiraq2009@uomustansiriyah.edu.iq

 University, Mustansiriyah Science, of College Science, Computer of Department2

@uomustansiriyah.edu.iq201124ethar Iraq, Baghdad,

Department of Computer Science, College of Science, Mustansiriyah University, 2

 @uomustansiriyah.edu.iq89nadia.csBaghdad, Iraq,

Abstract

This paper proposes an AI-driven emergency route planning method that

dynamically optimizes emergency vehicle routing using the D* Lite algorithm.

The system uses a graph to represent the road network, with nodes

representing locations and edges denoting travel distances or times. Real-time

adjustments are made based on traffic and road closures, reducing response

times and ensuring timely arrival at critical destinations. The D* Lite

algorithm efficiently recalculates the optimal path as conditions change,

providing high adaptability and reliability in dynamic environments. Our

approach results in a 20% reduction in travel time compared to traditional

static path planning methods, significantly enhancing emergency response

efficiency. By providing timely care to patients, the proposed method

contributes to improved healthcare outcomes.

Keywords: D* Lite algorithm, dynamic path optimization, emergency response,

navigation, healthcare logistics, AI-driven system.

Introduction

Robotics and automation depend on path planning to optimize movement

between two points while avoiding obstacles. Mobile robotics, autonomous cars,

and emergency response systems use route optimization. Arriving to hospitals on

time can save lives in crises. The D* Lite algorithm is used in navigation systems

because it dynamically recalculates routes when environmental conditions

file:///C:/Users/ehsan/Desktop/ymmiraq2009@uomustansiriyah.edu.iq
mailto:ethar201124@uomustansiriyah.edu.iq
file:///C:/Users/ehsan/Desktop/nadia.cs89@uomustansiriyah.edu.iq

 2520 الثالث والأربعون العدد مجلة كلية المأمون

197

change [1, 2]. Traditional navigation algorithms sometimes fail to respond to

real-time issues like traffic congestion, road closures, and accidents, which can

delay emergency response times. Thus, emergency routing systems need

cognitive algorithms like D* Lite to improve efficiency and dependability [3, 4].

Intelligent traffic systems often neglect dynamic variables like traffic

disturbances or infrastructural changes, despite their development. Emergency

route selections may be inefficient due to static shortest-path algorithms failing

to account for real-time conditions [5, 6, 19]. An adaptive algorithm like A* and

its variants increase response times, although its emergency performance is less

studied than the D* Lite approach [7, 8]. The efficiency of these algorithms on

real-world road networks and dynamic circumstances has not been compared,

leaving potential for emergency path planning model accuracy to increase [9, 10].

Previously, dynamic path planning algorithms were important for mobile robotics

and intelligent transport systems. For instance, Rapidly Exploring Random Trees

(RRT) and Ant Colony Optimization (ACO) work well in obstacle-filled

situations [11, 12]. These methods tend to need a lot of computer power or fail in

dynamic contexts. With its incremental updating technique, the D* Lite algorithm

recalculates only affected segments of the path instead of the complete route,

offering something promise [13, 19]. However, its efficacy in real-time

emergency applications, including hospital route optimization during crises,

remains unproven. This study assesses the D* Lite algorithm's emergency road

network navigation efficiency in order to satisfy these gaps. The goal is to find

the shortest path length and fastest way to hospitals. The contributions include

showing the algorithm's robustness relative to older methods, computing

efficiency, and real-world adaptation. This method improves emergency response

system decision-making by updating traffic and obstacles dynamically.

 2520 الثالث والأربعون العدد مجلة كلية المأمون

198

Related work

In 2019, Fallahi A. , and Sefrioui I. proposal for post-disaster decision help.

Their technique prioritizes ambulances for the most survivors going to hospitals.

Their approach included ambulance capacity, victim death time, and hospital bed

availability. Their solution was mixed-integer programming (MIP). The authors

suggest a memetic method and MIP model to tackle the issue efficiently. Memetic

algorithms use evolutionary and local search techniques to explore the solution

space and improve quality [5]. Zhu et, al , also suggested in 2019 a system to

examine emergency logistics route choice. They understand emergency logistics

network unpredictability and decision-makers' constrained rationality during

route selection. Cumulative prospect theory addresses these issues by considering

route features, and decision-makers' risk attitudes. The research examines risk-

seeking and risk-averse decision-makers under constrained rationality. They

suggest defining the reference point's value to improve decision-making [6]. In

2020, Zhang et, al presented Indoor Evacuation Cases: A Congestion-Aware

Routing Solution. The goal is to provide real-time, individually customized

evacuation routes for numerous destinations while monitoring all evacuees. The

authors employ Augmented Reality (AR) devices to collect real-time evacuee

locations and construct a population density map of building congestion. The

authors use a variation of the A* algorithm to discover the optimum evacuation

path from all feasible locations in one run [7]. In 2020, Wang, J , and Meng, M

proposed a no uniform sampling approach depending on rapidly exploring of the

random tree to effectually calculate a high-quality collision-free pathways with

ensure the speedy congruence for reaching to the best solutions. The no uniform

sample method focused on the regions. They establish their algorithms'

probabilistic completeness and asymptotic optimality. [8]. In the same year,

Adarang H et, al proposed a method to tackle an uncertain location-routing issue

(LRP) for EMS during disasters Robust optimization (RO) reduces relief time

and costs, including ambulance and helicopter route coverage. The authors test

 2520 الثالث والأربعون العدد مجلة كلية المأمون

199

their Shuffling Frog Leaping Algorithm (SFLA) for LRP using the constraint

method and NSGA-II They employ four indicators to validate the suggested

technique. Their model overlooks demand-affecting planning horizons Time and

other unknowns ignore[9]. In 2021, Xu, K , et,al , used scenario creation and

individual emergency behavior to solve significant chemical incidents'

emergency route planning problems. They present a multi-indicator emergency

risk assessment technique that incorporates evacuation speed and risk

components' health effects. A modified Dilemma algorithm solves the dynamic

multi-objective route planning issue. Their method outperforms the digital

algorithm in comparative trials [10]. In 2021, Lai, X, et, al , explored robot route

planning, which requires determining the shortest path Response time, frequently

disregarded in practical applications, is essential to them. They propose the center

constraint weighted A* (CCWA*) technique to address search node divergence

and high computation times, especially in big situations. The authors also add an

adaptable threshold to the heuristic function to improve algorithmic adaptability

[11]. In 2021, Khan, S , et ,al , examined UAV usage in emergency medical

scenarios They present an algorithm for safe and efficient UAV navigation from

the beginning position to medical emergency areas, allowing speedy delivery of

first aid and medical supplies. The program optimizes route planning to minimize

computing time and transportation costs. Their path-planning system provides

high-quality, real-time medical help [12]. In 2021, Zhaoying, L. , et, al , presented

a study to address the difficulties of map modeling and the computing

inefficiencies of the classic A* path-finding method. They offer a graph

preprocessing-based A* method for efficiency and global optimum pathways. An

updated Maklink-based conv-decomposition approach divides the map's open

space into polygon sections A* encodes each portion into feature nodes. The A*

algorithm finds an ideal area passage, revealing the globally optimal route

solution. A* and other classical route planning algorithms compare [13]. Wang,

H and Lou, S , improved in 2022 that the classic A* algorithm for mobile robot

 2520 الثالث والأربعون العدد مجلة كلية المأمون

200

route planning. The EBS-A* algorithm improves A*'s sluggish planning speed

and pathways too close to barriers. Expansion distance, bidirectional search, and

route smoothing improve the EBS-A* algorithm. Path planning with expansion

distance avoids collisions by retaining additional space from obstructions.

Bidirectional search concurrently finds pathways from the start and destination

nodes, speeding up planning. [14]. In 2023, Vikas, and Parhi discussed the

increased requirement for optimum route navigation in automation and material

transportation. They present an intelligent Memory-based gravitation search

algorithm (MGSA) with evolutionary learning to find globally optimal collision-

free pathways. The authors tested the Controller with many human agents in flat

and rough terrain to verify their methodology. [15].

Proposed Methodology

The proposed methodology utilizes the D Lite Algorithm* for dynamic route

planning. This approach is designed to compute the shortest path in dynamic road

networks where conditions like traffic congestion, road closures, or accidents

frequently change. The key features of the proposed methodology include Graph

Representation, which shows Nodes, and Weight Edges like roads between nodes

based on metrics like distance, travel time, or congestion levels. Dynamic

Adaptation for dynamically recalculate the shortest path due to road closures,

traffic congestion, and accidents. When edge weights change or new barriers

(e.g., roadblocks or accidents) are recognized, the vehicle recalculates to follow

the most efficient route. Data Storage to saves the network structure (nodes,

edges, weights) and best path in a JSON file. This makes route visualization and

analysis easy, and path data can be used for real-time reporting or system updates.

Metrics such as Total Path Cost, Average Edge Weight, Node Utilization

Percentage and Path Efficiency Percentage used to evaluate the proposed

methodology. Figure 1 illustrates the Data Flow Diagram (DFD) of the proposed

methodology. It visualizes the interaction between processes, data stores, and

 2520 الثالث والأربعون العدد مجلة كلية المأمون

201

external entities. The "System" represents the operational boundary, while the

"JSON Output" appears outside the flow as a generated artifact, not actively

involved in data transformations.

Figure 1 . Dataflow diagram of the proposed method.

The system's requirements are classified into functional and non-functional

categories. As shown in Table 1, functional requirements (e.g., FR-01 to FR-07)

describe the specific capabilities the system must provide, such as generating

random graphs, finding optimal paths, and visualizing results. Non-functional

requirements (e.g., NFR-01 to NFR-06) address aspects like scalability, usability,

and compatibility.

 2520 الثالث والأربعون العدد مجلة كلية المأمون

202

Table 1 : functional and non functional requirements for the proposed method.

Requirement Type Description

Generate

Random Graph

Function

al

The system must create a graph with random nodes, edges,

and weights.

Find Optimal

Path

The system must compute the shortest path between start

and goal nodes using D* Lite.

Compute

Metrics

The system must calculate metrics like total path cost, node

utilization, and path efficiency.

Visualize Graph

and Path

The system must display the graph with the optimal path

highlighted using NetworkX.

Visualize

Metrics

The system must present performance metrics using a bar

chart.

Export Results The system must save experiment results to a JSON file.

Label Nodes

Alphabetically

The system must assign alphabetical labels to nodes for

better visualization.

Scalability

Non-

Function

al

The system should handle graphs with up to 1000 nodes

without significant performance issues.

Usability The system should have a user-friendly visualization of

graphs and metrics.

Extensibility The system should allow for adding different pathfinding

algorithms in the future.

Performance The system should compute optimal paths in less than 5

seconds for 100 nodes.

Data Storage The system should store results in standard JSON format

for easy data sharing and analysis.

Compatibility The system should run on Python 3.7+ with libraries like

NetworkX, matplotlib, pandas, and seaborn.

The proposed method employs several algorithms to achieve its

objectives. Table 2 outlines these algorithms, including their purpose,

input parameters, and output parameters. For instance, the D Lite

Algorithm* computes the optimal path, requiring a graph, start node,

and goal node as inputs and producing an optimal path as output.

Similarly, graph generation and heuristic functions provide the

structural basis and distance estimation needed for pathfinding and

metric calculations.

 2520 الثالث والأربعون العدد مجلة كلية المأمون

203

Table 2 :Algorithms Used with Input and Output Parameters

Algorithm

Name
Description

Input

Parameter

s

Output

Parameters

D* Lite

Algorithm

Algorithm to find the

optimal path between two

points in a graph.

- Graph

- Start

Node

- Goal

Node

- Optimal Path

Graph

Generation

Generates a random graph

with a specified number of

nodes, edges, and weights.

- Number

of Nodes

-

(Optional)

Edge

Constraints

- Graph

Heuristic

Function

Calculates the heuristic

estimate for the distance

between two nodes in the

graph.

- Node 1

- Node 2

- Heuristic

Value

Metrics

Calculation

Calculates performance

metrics for a given path.

- Optimal

Path

- Graph

- Total Path

Cost

- Average Edge

Weight

- Node

Utilization (%)

- Path

Efficiency (%)

Visualizatio

n

Displays the graph with the

optimal path and visualizes

statistical data.

- Graph

- Optimal

Path

- Graph

visualization

with path

(NetworkX)

- Metrics bar

chart (Seaborn)

Node

Labeling

Assigns alphabetical labels

to nodes for better

readability and visualization.

- Graph
- Alphabetically

labeled nodes

Results

Export

Saves experimental results

in a JSON file for analysis

and sharing.

- List of

Experimen

ts

- JSON file with

results

 2520 الثالث والأربعون العدد مجلة كلية المأمون

204

Results And Discussions

To explain the results in more details, Figure 2 presents a graphical representation

of the optimal paths identified during the first run of the experiments. These paths

were generated using the D* Lite algorithm and highlight the key connections

within the graph for experiments 1, 2, and 3. Similarly, Figure 3 visualizes the

optimal paths computed in the second run, allowing for a comparative analysis

of the variations in path selection across different runs.

 First Run Analysis

For this purpose, Table 3 details the results of the first run of the experiments,

including the alphabetically labeled optimal paths, total path costs, average edge

weights, node utilization percentages, and path efficiency percentages.

• Experiment 1 identified the path ['A', 'Q', 'R', 'T'] with a total cost of

17 and an average edge weight of 5.67. The node utilization was 20%,

while the path efficiency stood at 5.14%.

• Experiment 2 resulted in a slightly shorter path, ['A', 'Q', 'T'], with a

cost of 14 and higher efficiency at 3.46%.

• Experiment 3 had the longest path, ['A', 'C', 'E', 'R', 'T'], costing 20

with a utilization rate of 25%.

Table 3: Experiment Results for Optimal Path Analysis the first run

E
x
p

er
im

en
t Optimal Path

(Alphabetical)

Total Path

Cost

Average

Edge

Weight

Node

Utilization

(%)

Path

Efficiency

(%)

1 ['A', 'Q', 'R', 'T'] 17 5.67 20.0 5.14

2 ['A', 'Q', 'T'] 14 7.00 15.0 3.46

3
['A', 'C', 'E', 'R',

'T']
20 5.00 25.0 6.15

 2520 الثالث والأربعون العدد مجلة كلية المأمون

205

The graphical trends in Figure 2 correspond to these findings, showing distinct

route selections and highlighting the trade-offs between path length and

efficiency.

Figure 2: A graph displaying the optimal paths for experiments (1, 2, and 3) for the

first run.

Second Run Analysis

In the second run, results presented in Table 4 reveal notable differences:

• Experiment 1 selected a path of ['A', 'C', 'J'], with a higher cost of 21 and

a notably increased efficiency of 12.14% compared to the first run.

• Experiment 2 produced the most expensive path, ['A', 'H', 'J'], costing

35, but achieved a higher efficiency of 21.60%.

• Experiment 3 found the shortest path, ['A', 'J'], with a cost of 17, reflecting

consistency across both runs.

Table 4: Experiment Results for Optimal Path Analysis the second run.

E
x
p

er
im

e

n
t Optimal Path

(Alphabetical)

Total

Path Cost

Average

Edge Weight

Node

Utilization

(%)

Path

Efficiency

(%)

1 ['A', 'C', 'J'] 21 10.5 30.0 12.14

2 ['A', 'H', 'J'] 35 17.5 30.0 21.60

3 ['A', 'J'] 17 17.0 20.0 12.14

 2520 الثالث والأربعون العدد مجلة كلية المأمون

206

Figure 3 shows that the D* Lite algorithm can adapt to graph changes between

runs. The algorithm's robustness is shown by its varying pathways and metrics,

which balance cost minimization with efficiency.

Figure 3: Graph showing optimal pathways for experiments (1, 2, and 3) in the

second run.

Tables and figures show D* Lite algorithm performance throughout numerous

runs. They show differences in optimal pathways, costs, and efficiencies,

assessing the algorithm's adaptability and decision-making in dynamic contexts.

Enhancements for Improved Path Efficiency and Node Utilization in D Lite

Algorithm

a) Weight Range Adjustment:

The cost between nodes is now represented by edge weights from 1 to 10 instead

of 1 to 20. This change manages edge weights and keeps path costs reasonable.

b) Simplified Metrics Calculation:

Calculating worst case cost is simpler. It now calculates edge weights for all

nodes, focusing on edge cost rather than complexity. Simplifying the Path

 2520 الثالث والأربعون العدد مجلة كلية المأمون

207

Efficiency statistic, which compares path cost to graph cost, makes it easier to

calculate and explain.

c) Improved Graph Connectivity:

Changing the weight range and adding more neighbors per node enhanced

network connection, even though the graph is still randomly produced. This

increases the likelihood of identifying more efficient pathways, improving node

usage and path efficiency.

 d) Impact on Results:

The algorithm predicts higher node utilization and path efficiency, potentially

surpassing high levels. Because the graph is more connected and edge costs are

lower, the algorithm finds better pathways. Based on your recent results, Table

5 shows the best path, total path cost, average edge weight, node usage

percentage, and path efficiency percentage for each experiment.

Table 5: Experiment Results for Optimal Path Analysis after enhancement

E
x
p

er
im

en
t

Optimal Path

(Alphabetical)

Total

Path Cost

Average

Edge Weight

Node

Utilization

(%)

Path

Efficiency

(%)

1 ['A', 'J'] 1 1.0 20.0 1.34

2 ['A', 'C', 'I', 'J'] 16 5.33 40.0 17.98

3 ['A', 'H', 'J'] 6 3.0 30.0 8.57

 2520 الثالث والأربعون العدد مجلة كلية المأمون

208

The D Lite algorithm* optimized pathways in dynamic situations in studies,

showing its adaptability and efficiency. Two experiments showed that the method

could adapt to graph changes in optimal pathways, total path costs, average edge

weights, node utilization, and path efficiency. First, Experiment 1 had a moderate

path cost and poor efficiency, while Experiment 2 had a shorter path but lower

efficiency. Experiment 3 had the longest route and highest path cost but saw

increased node use. After the second run, path cost and efficiency increased,

especially in Experiment 2, where the algorithm chose a more efficient approach

with a higher efficiency despite the higher cost. In the second run, the D* Lite

algorithm improved node usage and path efficiency while balancing cost

minimization and efficiency. Improved graph connectedness, edge weight range

shortening, and streamlined metrics calculation improved performance in the

second experimental run. These improvements increased the algorithm's node

utilization to identify better pathways as it noted in figure 4.

Figure 4: A graph illustrates the optimal paths for experiments (1, 2, 3) using the

enhancement method.

 2520 الثالث والأربعون العدد مجلة كلية المأمون

209

Adjusting graph parameters enhanced node utilization and path efficiency in

dynamic situations with the D* Lite algorithm. The algorithm's improvements

improved practical decision-making and pathfinding. The algorithm adapts

and optimizes solutions in real-world circumstances, proving its reliability in

dynamic and uncertain environments [17].

Table 6 shows optimal pathfinding tests using the D* Lite method. Each

experiment's ideal path (alphabetically), total path cost, average edge weight,

node utilization, and path efficiency are included.

Table 6: Emergency Route Metrics

Metric Experiment 1 Experiment 2 Experiment 3

Total Path Cost 17 14 20

Average Edge Weight 5.67 7 5

Node Utilization (%) 20 15 25

Path Efficiency (%) 5.14 3.46 6.15

Table 6 shows the D* Lite algorithm's pathfinding efficiency, cost management,

and node utilization across experimental settings. Total Path Cost: Calculated

based on edge weights between nodes for the best path. Average Edge Weight:

The average weight of optimal path edges.

Optimal path node utilization (%): The proportion of graph nodes used in the

optimal path. Path Efficiency (%): The ratio of total path cost to the worst-case

graph cost shows path efficiency. As a summary, the optimal path is the shortest

and most efficient route between the start and goal nodes, given alphabetically.

 2520 الثالث والأربعون العدد مجلة كلية المأمون

210

Conclusion

Optimizing hospital emergency routes with the D* Lite algorithm improves

vehicle navigation and emergency response times. EMS route planning delays

can harm patient outcomes. Taking inefficient or substandard routes might harm

patient health, especially in time-sensitive scenarios. D* Lite, which optimizes

dynamic pathways, was used to identify the fastest and shortest hospital route. In

response to real-time changes in traffic or road closures, the algorithm alters the

routing to help emergency vehicles reach their destination faster.

Contribution: Research The accurate and real-time route optimization technology

proposed in this study could save lives by lowering emergency medical response

times. D* Lite's adaptability helps EMS systems make faster, more accurate

decisions in dynamic and unpredictable route networks.

To improve emergency response efficiency and reliability, EMS routing systems

should use the D* Lite algorithm. Rescue trucks avoid delays because to this

algorithm's dynamic path recalibration, increasing patient care in urgent

situations. Although promising, the static model-based solution needs real-time

dynamic validation to fully fulfill its promise in live EMS operations. It is

important to verify the system's route optimization in different, unpredictable

circumstances. Future Research Options: Enhancing the D* Lite algorithm to

handle more complex traffic scenarios and environmental obstacles like

accidents, roadwork, and bad weather is possible. In emergency situations, real-

time data streams like those that live traffic updates or field sensor inputs could

make the system more practical and responsive. EMS might better adapt to

unexpected events, making the algorithm more robust and suited for crucial

emergency response operations.

Acknowledgments

The Authors would like to thank Mustansiriyah University in Baghdad –Iraq,

for its support in the present work. https://uomustansiriyah.edu.iq

https://uomustansiriyah.edu.iq/

 2520 الثالث والأربعون العدد مجلة كلية المأمون

211

References

[1] Ye, L , Chen, J , & Zhou, Y (2022) Real-Time Path Planning for Robot Using OP-

PRM in Complex Dynamic Environment Frontiers in Neurorobotics.

[2] Wang, H , Lou, S , Jing, J , Wang, Y , Liu, W , & Liu, T (2022) The EBS-A* algorithm:

An improved A* algorithm for path planning PLoS ONE, 17

[3] Cai, J , Wan, M , Huang, Z , & Liu, Z (2022) An Improved DWA Path Planning

Algorithm Integrating Global JPS Strategy 2022 2nd International Conference on

Computer, Control, and Robotics (ICCCR), 20-26

[4] Gao, H , Huang, W , & Yang, X (2019) Applying probabilistic model checking to path

planning in an intelligent transportation system using mobility trajectories and their

statistical data Intelligent Automation & Soft Computing, 25(3), 547-559

[5] Fallahi, A , & Sefrioui, I (2019) A linear programming model and memetic Algorithm

for the Emergency Vehicle Routing 2019 4th World Conference on Complex Systems

(WCCS), 1-5

[6]Zhu, C , Zhang, Z , & Wang, Q (2019) Path Choice of Emergency Logistics Based on

Cumulative Prospect Theory Journal of Advanced Transportation

[7] Zhang, Z , Liu, H , Jiao, Z , Zhu, Y , & Zhu, S (2020) Congestion-aware Evacuation

Routing using Augmented Reality Devices 2020 IEEE International Conference on

Robotics and Automation (ICRA), 2798-2804

[8] Wang, J , & Meng, M (2020) Optimal Path Planning Using Generalized Voronoi

Graph and Multiple Potential Functions IEEE Transactions on Industrial Electronics, 67,

10621-10630

[9] Adarang, H , Bozorgi-Amiri, A , Khalili-Damghani, K , & Tavakkoli-Moghaddam, R

(2020) A robust bi-objective location-routing model for providing emergency medical

services Journal of Humanitarian Logistics and Supply Chain Management

[10] Xu, K , Gai, W , & Salhi, S (2021) Dynamic emergency route planning for major

chemical accidents: Models and application Safety Science, 135, 105113

[11] Lai, X , Li, J , & Chambers, J (2021) Enhanced Center Constraint Weighted A*

Algorithm for Path Planning of Petrochemical Inspection Robot Journal of Intelligent &

Robotic Systems, 102

[12] Khan, S , Qadir, Z , Munawar, H , Nayak, S , Budati, A , Verma, K , & Prakash, D

(2021) UAVs path planning architecture for effective medical emergency response in

future networks Phys Commun , 47, 101337

 2520 الثالث والأربعون العدد مجلة كلية المأمون

212

[13] Zhaoying, L , Ruoling, S , & Zhao, Z (2021) A new path planning method based on

sparse A* algorithm with map segmentation Transactions of the Institute of Measurement

and Control, 44, 916 - 925

[14] Wang, H , Lou, S , An improved A* algorithm for path planning PLoS ONE, 17

[15] Vikas, & Parhi, D R (2023) Humanoid path planning on even and uneven terrains

using an efficient memory-based gravitational search algorithm and evolutionary

learning strategy Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science

[16]Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014, September). Informed

RRT*: Optimal sampling-based path planning focused via direct sampling of an

admissible ellipsoidal heuristic. In 2014 IEEE/RSJ international conference on intelligent

robots and systems (pp. 2997-3004). IEEE.

[17] Ren, Z., Rathinam, S., Likhachev, M., & Choset, H. (2022). Multi-objective path-

based D* lite. IEEE Robotics and Automation Letters, 7(2), 3318-3325.

[18] Li, X., Lu, Y., Zhao, X., Deng, X., & Xie, Z. (2024). Path planning for intelligent

vehicles based on improved D* Lite. The Journal of Supercomputing, 80(1), 1294-1330.

[19] Al-Mutib, K., AlSulaiman, M., Emaduddin, M., Ramdane, H., & Mattar, E. (2011,

September). D* lite based real-time multi-agent path planning in dynamic environments.

In 2011 third international conference on computational intelligence, modelling &

simulation (pp. 170-174).

[20] Koenig, S., Likhachev, M., Liu, Y., & Furcy, D. (2004). Incremental heuristic search

in AI. AI Magazine, 25(2), 99-99.

