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1. Introduction

In current research, we use the supposition R is a commutative ring with identity and that each
R- module M is a unitary right R- module . The notions N < M'( N < M) stands for N is a submodule
of M. (N is a porper submodule of M ( Clearly every ideal I of R is a submodule of the R- module R).
I < R isnamed prime ideal ifa.b €I,then a€lorb e I[7]. ForN <M , N is called a prime
submodule if whenever a € R, x € M, with xa € N, then x € Nora € (NyM), where (NyM) = {r €
R: Mr < N}. [11]. Recently W. Messiridi & a.t.l in [10] introduced the concept 2-Prime ideal as a
generalization of prime ideal, where if I < R, | is said to be 2-prime if a.b € I (a,b € R), then a? €
h or b? € h.

Fatima and Alaa in [6] generalized this notion for submodules, as follows : N < M is named a 2-
Prime submodule if ma € N with (a € R,m € M), impliesm € N or a? € (N, M).

By [5, Proposition 2.3] every 2-Prime submodule N of M implies (NxM) is 2-Prime ideal, but the
converse may be not valid, see [5, Remark 2.4]. This motivate us to present a new concept namely slight2-
Prime submodule, where N < M is called a slight 2-Prime submodule( shortly S-2PS), if NxM) is a 2-
Prime ideal of R.

In S.2 of this paper many properties of this class of submodules are given. In S.3, we define a type
of modules namely slight 2-Prime module as generalization of 2-prime module which is givenin [6 Y],
where a module M is a 2- prime module if the zero submodule is a 2-Prime ideal. We say that M is a
slight 2-Prime module( abbreviated S-2PM) if < 0 >< M is a S-2PS. Many fundamental results related
with this concept are introduced, some of them are analogues to that of 2-prime modules. Note that we
shall use these abbreviations (2-Pl, 2-PS, S-2-PS, 2-PM, S-2-PM) for 2-Prime ideal, 2-Prime submdule,
slight 2-Prime submodule, 2- Prime module, slight 2-Prime module.
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1. Slight 2-Prime Submodules.
1.1 Definition

Let N < M . N is called slight 2-Prime submodule ( bravely S-2-PS) if (NzM) is a (2-Pl).

1.2 Remark

By [5, Proposition 2.3] every( 2-PS ) Nymodule M implies (NxM) is a (2PI), hence N is (S-2-
PS) of M .

The next example explains that the converse may be not true :

The submodule N =< % + Z > of the Z -module Z,« is (S2PSM), since (N;Z,) = (0) which is a prime

ideal (So that is ( 2PI). On the hand N is not (2-PSM) because P (p_12 + Z) € Nand (p—lz + Z) ¢ N and
P2 € (NyZ,») = 0.
According to common knowledge, an R-module M is considered multiplication when all submodule N
of M (N < M), has an ideal of R where N = M.
Likewise, if for every N < M andN = M (NyM), M is a multiplication module [2].
1.3_Proposition
Let N < M , in which Mis a multiplication R-module . Then N is (2-PSM) if and only if N is a
(S-2-PS).
Proof: Clearly by [5, Corollary 3.10]
1.4 Corollary

For N < M , where M is a multiplication R-module over a Boolean ring R (ie n? = n,vn € N. The
following concepts are equivalent:

a) S-2-PS.

b) 2-PS.

c) Prime submodule.
d) Primary submodule.

The aforementioned statements are all equivalent.
Proof : (a)«>(b): follows the Proposition 1.3
(b)>(c): Let ax € M then either x € Nor a? € (N, M) —.
As R is Boolean ring, either x € N or a € (N3 M). Thus N is considered a prime submodule.
(c)e>(d) and (c)«>(b) (are clear),

(d)<>(c): Let xa € N, where a € R, x € M. Either x € N or n* € (N: M) for some k € Z,, Since N is
defined as a primary submodule,. It is following that either x € N or n € (N: M), when R is Boolean ring.
Thus N is a (PSM).
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1.5 Proposition

Assume M;and M, be R-modules, f: M; —» M, be a homomorphism, and N < M; with Kerf <
N. If N is S-2-PS of M, then f(N) is an S-2-PSof f(M;)

Proof:

Since N £ M and Kerf € N, then f(N) # f(M;). As N is S-2-PS of M;, (NxM,) is a( 2PI) of R.
obviously (NxM;) = (f(N)Rf(M7)), hence (f(N)zf(M})) isa (2PI) of R.

Thus f(N) is S-2-PS of f(M).
1.6 Lemma

Let f: M; - M, be an R-homomorphism, W < f(My;), then (Wi f (M) = (f *(W)xMy)
Proof:

Let a € (WR: f(M,). Then af (M) S W, so that £ ~1f (aM;) S f~L(W), but Mya S f~1f (Myq),
hence aM; € f~1(W). Thus a € (f " Y(W)R: M) and so (WR: f(M;) € (f"L(W)R: M}). The reverse
inclusion is similarly.

Note that if f is an epimorphism, then (Wi M) = (f "Y(W)R: M)
Proposition 1.7

If f:M; - M, be an R- epimorphism, W is (S-2-PS) in M,. Then f~1(W) is (S-2-PS) in M.
Proof : Since W is a (S-2-PS) of M, then W # M, and

(W:r M) isa (2-P1) of R. Hence f~1(W) # M; as f is an epimorphism. Beside this by lemma 2.6,
W:g My) = (f W (g My). Thus (f1(W) :x M) isa (2P1) of Rand f~1(W) is a (2-PS).

Remark 1.8

The condition £ is an epimorphism is a necessary condition in proposition 2.7, for example:

Consider Zg and Zy, as Z -modules, f: Zg — Zy, defined by £(0) = f(4) =0, f(1) = f(5) =
(D), f(2)=f(6)=8,f(3)=f(7)=12.LetW ={ 0,4,8,12} < Z;4. Then (W:,:Z,4) = 4Zis a
(2PSM) of Z,¢ . But f~1(W) = Zg which is not (S-2-PS) of Zg.

Proposition 1.9

Let N be a (S-2-PS) of an R-module M. Then (N3, 1) is an S-2-PS for each idempotent ideal I of R
(i.el =1?).

Proof: To provide (Nj,I) is a (S2PSM) of M, ((N;I)xM) is a (2-PI) of R, that must prove . Leta.b €
((Ny,DrM), where a, b € R, that is Mab < (NjI). Hence Mabl < N and so abl < (N M) which is (2-
PI) of R, hence either a?(Nx M) or b?I? € (N: M).

If a?(N: M), then Ma? € N and Ma?l € NI € N that Ma? € (N;,I). Therfore a? € (Ni,1)xM).
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If b21? < (N,1), Then b%I © (N3xM), (since I? = I). This implies M'b?I € N and so M'b? < (Nj,I).
Thus b? € (N 1) M)
Remark 1.10

The condition I is an idempotent ideal can’t be dropped from Proposition 2.9, as an illustrative
example :

Consider Z,, as Z-module, N ={0,4,8,12}. N is an (S-2-PS) of M. Let I = 8Z. Clearly I is not
idempotent and (N3, I) = Z,, which is not (S-2-PS) of M’ = Zy.

Recalling a module M over R is named cancellation if foreach I ,] < R,MI = MJ],[9]
Proposition 1.11

LetM be a cancellation R-module, let I < R. Then M1 is a (S-2-PS) of M only when [ is a (2-PI)
of R.

Proof : Clearly (MI;M) = I. Hence M| is a (S-2PS) only when | is a (2-PI) of R.
Corollary 1.12

Let M be a multiplication R-module that has been faithfully and finitely generated. The below
statement are equivalent:

1- Ml is a (S-2-PS)
2-lisa (2-Pl) of R
3- M lisa (2-PS)
Proof:

(1) & (2) S, Since M is a multiplication R- module, R — module, M is a cancellation module by [2,
Theorem 3.1]. hold by Proposition 2.11 (2)«>(3) It pursue by Proposition 2.3.

If every submodule of module M is a finite intersection of its primary submodules, then M is
named Laskerian module.[4]

Proposition 1.13

Assume M be a Laskerian R-module with finite generators and @ is a (S-2-PS) of M. The rad @
is a (S-2-PS) of M, where rad @ is all the prime submodules intersections containing @.

Proof: Since M is finitely generated Laskerian R-module, then /(@;M) = (radwiM) by [8, Theorem
5]. Butw is a S-2-PS of M, that is(w;M) is a (2-PI) of R, which implies that ,/ (@;M) is a prime ideal
[10] and so (2P1).

Thus (radwip M is a (2PI) of R and so rad @ is a (S-2-PS) of M.
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A module M of aring R is known as Comultiplication if for every w < M, there exists I < R so
that @ = annl,,. Equivalently for each @ < M, w = (0j),ann @) [1].
Proposition 1.14

Assume N < M ,where M a Comultiplication R-module .Then N will be (2-PI) of R is
idempotent (ie I* = I) and (0) is a (S-2-PS). Thenevery N < M isa (S-2-PS) of Mand (N : M )isa
prime ideal of R.

Proof: As N < M and M isacomultiplication R -module
Then N = (03,1) for some ideal | of R, I#R.

As (0) is a (S-2-PS) of M and | is an idempotent ideal, so that N = (0;,1) is a (S-2-PS) of M by
Proposition 2.9.

Hence (NxM) is a( 2-Pl). As all ideal of R is idempotent, so that(Nz M) is a Prime ideal.
Proposition 1.15

Assume M is considered as an R-module, let{K;}.; is considered a chain of (2-PSM) of M. Then
Nie K; is a (S2PSM) of M.

Proof:
Itis clear that( N Ki:g M) # R, (N Ki :r M) = Nier(K; :g M)

Let a, b € Rsuch that a.b €n;e; (K;,, M). Assume that there exist m,n € I such that a® ¢

(KmxM)and b? & (K, ;,M) . Since {K;};e; is a chain, so it could be assumed K., S K,,- Then (K, M) €
(Ky,M). On the other hand a.b € (K,,, M), So either a? € (K, M) orb? € (K, M'). However each
case implies contradiction. Thus either a® €n;e; (K, M) or b? €Ny (K, M).

Now we define the following:
Definition 1.16

Assume N is a (S-2-PS) of the module M, let C < M. N is called a minimal (S-2-PS) of K if
there is no (S-2-PS) U of M suchthat C € U c N. N is said to a minimal (S-2-PS) of M if Nisa
minimal (S-2-PS) of (0).

Example 1.17

Assume M be the Z -module Z, N = 4Z, K = 8Z. Then N is a minimal (S-2-PS) of K. But N is
not a minimal (S-2-PS) of Z, Since (0) < 8Z < 47 and 8Z is an (S-2-PS)of Z

Proposition 1.18

Every S-2-PS of a module M contains a minimal (S-2-PS) of M.
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Proof: Assume N be a (S-2-PS ) of a (S-2-PS) of M and F = {K:K isa (S-2-PS) of M andK € N}. F #
¢ since N € F. Let {K;};; be achain in F, then by Proposition 2.14, n;¢; K; is a (S2PSM) and

N;e; K; € N. Suppose there exists a ((S-2-PS) T of M such that (0) € T N;¢; K; € N. ThenT € F and
T =N;¢; K; . Thus N;¢; K; is a minimal (S-2-PS) and N;¢; K; € N

Proposition 1.19

Assume N be a (S-2-PS) of a module M, S is a multiplicative closed subset of R. Then S™N is a
(S-2-PS) of S™IR module S~IM. Provided M is finitely generated.

Proof:

Since N is a (S-2-PS of M, then (N :z M) is (2-PI) of R. Hence by [10, Proposition 1.3.2.],
STYN :x M)isa(2-Pl) of R.But S7I(N :x M) = (S7IN :4-15 ST M) because M is finitely
generated, see [7, Proposition 3:14, P43]. Thus (S7IN :g-1, ST? M) isa (2-Pl) of Rand so isS™INisa
(S-2PS) of STIR-module S~1M.

Now, we focus on the direct sum of two (S-2-PS) for the corresponding modules M; and M ,
respectively.

Theorem 1.20

Let N; < M; and N, < M, respectively. If N; @ N, is an (S-2-PS) of M = M;®M,,. Then N;
and N, are (S-2-PS) of M;and M, (respectively). The converse hold if R is a chained ring.

Proof:

If p;: M;®M, — M; be the natural projection. Then p; (N;®N,) = N; and Kerf p; =
(0)®N, < N;®N,. Hence Proposition 2.5, N; is an (S-2-PS) of M. Similary N, is a (S-2-PS) of M,.

Conversely: Since (N;®N, (g M;OM,) = (N, :x M;)n (N, :x M,)and R is a chained ring, then
either (N; :x My) © (Ny iz My)or (Ny :p M) € (N; iz M;). Thus either (N; ®N,, My @M, ) =
(N, M;) which is a (2PI) of R (since a S-2-Pr-), or (N;@N,, M;®M,) = (N, M) which is a (2PI) of
R (since N, is an ( S-2-PS) of M »,).
Remark 1.21

The condition R is a chained ring can't_be dropped from Proposition 1.19, for example:

Consider Z,,®Z as Z-module letN; = {0,4,8,12}, N, = 3Z. Each N; and N, are (S-2-PS)
submodules of Z;¢ and Z (respectively). But (N, ®N,},Z,@®Z) = 12Z which is not a 2-Prime ideal of
Z16®D7Z. Thus N;®N, is not a (S-2-PS) of Z,,PZ.

Proposition 1.22
Let M;and M, be modules, let N; < M; and N; < M, respectively. Then:

1) If Ny is (S-2-PS)of M, it leads to N; M, is (S2PSM) of M; B M,
2) If N, isa (S-2-PS) of M,, it leads to M;®N, is a (S2PSM) of M; M.,
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Proof: It is easy.

Recall that if M; is an R;-module, i = 1,2, and R be the ring R; X R,, so that M = M; X M, is module
where (my, m,) (11, 75) = (My11, My13),¥(my, my) € M, (11,72) ER.

Theorem 1.23

Let R = R{xR,, M = M;xM, be R-module. When N and W are proper M; and M, submodules,
respectively. So that

1) Nisa(S-2-PS) of My, if and only if N X M, is a (S2PSM) of M.
2) Wis a (S-2-PS) of M,, if and only if M; x W is a (S2PSM) of M.

Proof: First

(N X M, g xr, My X My) = (N g, My) X (M5, My) = (N 1z, My) XR,

Let (a,b), (c,d) € Ry X R such that (a, b). (c,d) € (N :5, M;).

Hence (ac, bd) € (N :, M;) X R, and so that ac € (N :z, M;) and bd € R,. As N is (S2PSM) of M,
(N :z, M) is a (2PI) of R, It follows that either a? € (N :z, My) or c? € (N :z, M;). Then clearly

(% b?) € (N 1z, M) X Ryor (c?,d?) € (N :z, My) X R, , ie (a,b)* € (N 1z, M) X R,. Thus
(N iz, M) X R, isa (2P1) of M;.

To prove N is (S-2-PS) of M;.

Leta,b € Ry suchthata.b € (N :5, M), hence for each ¢,d € R,, (ab,cd) € (N 1, My) X R, =

(N X My o My % M) Thatis (a,c). (b, d) € (N X Myl o, My X My ) which is a (2P1) of Ry X Ry
Hence either (a,c)? € (My X M}, 1g,xg, My X M) or (b,d)? € (N X M, 1g,xr, My X M). It follows

that either (a? € (N :z, My )and c? € R,) or (b? € (N :z, M;)and d? € R,). Thus either a? €
(N iz, My) or b? € (N i, M;y). Sothat N is a (2PSM) of M.

Theorem 1.24

Let R = Ry X Ry, M = M; X M, be R-module. When N = N; X N is an (S-2-PS) of M Then
either

1) Nisa(S-2-PS) of M, and N, = M,, or
2) N; =M; and N, is a (S-2-PS) of M, or
3) N; and N, are (S-2-PS) of both M; and M.

Proof: Since N; X N, <of M; X M,. Then there are 3 states:

1) N; <M, sothat N, = M,
2) Nl = Ml SO that NZ § MZ
3) N; M, sothat N, & M,
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State (1): impliesthat N = N; X M,, and byTheorem 1.22 N, is S2Pr- submodule of M;
of M,
State (2): implies that N = M; X N, and Theorem 2.22 yields that , N, isan (S-2-PS) of M ,

State (3): Ny = M; and N; = My imply (N; :x, My) £ R; and (N, :p, M;) = R,. Toprove N; and N,
are (S-2-PS) of M; and M5, respectively.

we must show that : (N, :z, M;) and (N, :, M) are (2-P1) of R, and R;, respectively.

Leta,b € Rand c,d € Ry suchthata.b € (N :x, M;) and.d € (N, :g, M3); thatis (ab, cd) €
((N1 ‘Ry M1) X (Nz ‘R, Mz) = ( (Ny X N3 g, xr, My XMy).

Hence (a,c).(b,d) € (N; X Ny g xr, M; X My).
But N = (N; X N, isa (S-2-PS) of M; x M3).
, so that ((N; x Nz;zlszMl X M5).
is a 2Pr- ideal of R = R, X R. It follows that either
(a,¢)* € (N X Ny i, xr, My X My).
or (b,d)? € ((N; X Ny ip,xg, My X M3).) This implies either
) (a?c?) € ((Ny g, My) X (N, 1z, M), and s0 a? € ((N; :z, M) and c? € (N, 15, My). or
1) (b%,d?) € ((N; X Ny g xg, My X M;,).This implies b? € ((Ny 1z, M;) and d? € (N, :5, M)
Thus each case ((I) or (11)) implies ((N; :z, M) and (N, :z, M) are (2-P1) of R, and R, (respectively).
Therefore N; and N, are (S-2-PS) of M, and M., (respectively).
2. Slight2-Prime Modules

The current section introduced a new class of modules namely slight2-Prime module (S-2-PM) as
a generalization of 2-Prime modules(2PM). The requisite properties of this type of modules are presented.

Definition 2.1

A module M over R is named is slight2-Prime module( briefly S-2-PM) if (0) is (S-2-PS). In other
words M is (S-2-PM) if (0,M) = anngM is a (29P1) of R.

Example and Remarks 2.2
1) All 2-prime module(2-PM) is (S-2-PM) , however, it is not conversely.

Proof:
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Let M be a (2-PM). Then (0) is a (2-PS), hence (03 M) = annM is a (2-PI) of R. Thus M is (S-
2PM).

Assume the Z-module Q. It is (S-2PM) since ann;Q = (0) which a prime ideal of Z , hence (2-PI). But Q
is not (2-PM) .

2) The Z -module Z, is (S-2-PM) since It is (2-PM), the Z -module Zg is not (S-2-PM) since
ann;Z,s = 67 which is not (2-P1) in Z, where2.3 € 6Z, but 22 € 6Z and 32 ¢ 6Z.

3) Not every nonzero submodule of (S-2-PM), for instance : Assume M be the Z -module Z&Z as Z
-module

subsequently ann,M = (0) which is (2-PI).
If N = (0)®Z, then annzN = 6Z which is not 2-Pl of Z, hence N is not (S-2-PM).
Notice that Nis a direct summand of M, hence a direct summand of (S-2-PM) is not necessarily (S-2-PM).

4- The homomorphic image of (S-2-PM) is not necessarily (S-2-PM), for example: Let p: ZOZ, — Zg be
the natural epimorphism, p(Z®Zy) = Z, which is (S-2-PM). (see part (3)).

The concepts (2-PM) and (S-2-PM) are equivalent under the category of multiplication modules.
Proposition 2.3
For a multiplication module M . thereafter, M is (S-2-PM) if and only if M is (2-PM).
Proof : (&) Itis easy

(=)If M is (S-2-PM), then (0) is (S-2-PS), ie ((0)xM) is (2-Pl), hence (0) is (2-PS) of M by Proposition
1.3. Thus M is (2-PM).

Corollary 2.4

Assume M is considered as a cyclic R-module. So that M is a (S-2-PM) if and only if M is (2-
PM).

Proposition 2.5
Let M be faithful module. It leads to the statements below being equivalent:

1) M isa (S-2-PM).
2) R is 2-Prime ring
3) R is S-Prime ring.

Proof

(1)=(2): Since M is an (S-2-PM), annM is a (2-Pl). But annM = 0, since M is faithful, so (0)
is a prime ideal of R. Thus R is a 2Prime ring.

(2)=(1) is similarly.
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(2)=(3) it follows by Corollary 2.4.
Corollary 2.6

Assume M is considered as a faithful module, in which R is an integral domain. So that M be (S-
2-PM).

Proof:

Since R is an integral domain, R is a prime ring, hence R is a 2-Prime ring. But M is faithful, so
that M is a (S-2-PM) by Proposition 2.5.

Proposition 2.7
Let R be a chained ring, M;and M, be (S-2-PM). Then M, ®M, is a (S-2-PM).
Proof:

Since M; and M, are (S-2-PM), anngM; and anng M, are (2-Pl). Also anng (M, ®M,) =
anngM;NanngM,. But R is a chained ring, so that anng (M;®M,) = anngM; or
annR(M1®MM2) - annRMz. ThUS M1®M2 |S (S‘Z'PM)

Next we have the following:
Proposition 2.8

Let M be a finitely generated (S-2-PM) module, S is a multiplicative subset of R. Then S™1M is
an (S-2-PM) S~IR-module.

Proof:

Since M isa (S2PM), then (0) as a (S2PM) of M . Then by Proposition 1.18, S~1(0) is an( S-2-
PM) of S~*M Thus S™1M is an (S2PM) S~1R-module.
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